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L ast week’s lecture
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« Some useful steady state and transient solutions
— Terminology

— Flow to a well in confined aquifer
§ Steady state solution

] Transient Theis solution

— Method of measuring hydraulic conductivity and specific storage

] Curve matching method, Time drawdown method & Distance drawdown method



Modification of transient equation %."’
Time-drawdown Method (example) O

« 305 m from a well pumping at a rate
of 5.43 x 103 m3/day

* Drawdown from 10 to 100 sec
1S 0.24 m.

T - 2.3Q |Ogt—2 _ 2.3x5.43x10°m° / day
4rs t, 4x3.14x0.24m

=4.1x10°m?* / day
We can select any point in the
1000 graph. When s=0 is selected

3
Figure 6.7 Semilogarithmic plot of drawdown versus time Convenlence, > 72'-? log
R T g _ 2:25Tt, _ 2.25x4.1x10°m" / day x5 min
r2 93025m? x1440 min/ day 1
=4.1x10°m* / day

Domenico & Schwartz, 1998
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— Determination of flow direction from piezometric measurement
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.. .— Heat transfer rate is a constant in the
e radial direction.

- Assuming constant k,
T(r)=C/Inr+C, 2T consta~t

T.,=C/Inr,+C,and T,,=C, Inr, +C, T= C Wwrx Cp
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* From Dr Min’s notebook...
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* Closed-book, 75 minutes, English/Korean



Today
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 Mixing laws - Effective thermal conductivity, heat capacity

* Forced convection and free convection

* Conductive-convection equation
— Derivation

— Peclet Number
— 1D equation
 Dimensional analysis

* Free convection



Effective thermal conductivity i,
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* Model can predict an effective (equivalent) thermal
conductivity of fluid-saturated rock with known properties
(porosity, ki, k).

» Laboratory measurement of thermal conductivity on all rock
types of possible porosity can be time consuming.

 Weighted arithmetic mean (largest value)
kK, =k.n+k, (1—n)

— k. effective (equivalent) thermal conductivity of saturated rock

— kg thermal conductivity of fluid (e.g., water)

— K, thermal conductivity of solid (e.g., rock) fluid (water)

—  n: porosity

Solid (rock)



Effective thermal conductivity oy
Mixing Laws "
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— Weighted arithmetic mean (largest value) — by considering volume
fraction
kK, =K,n+k,(1—n)

8k, effective (equivalent) thermal conductivity of saturated rock
ak; thermal conductivity of fluid (e.g., water)
8k, thermal conductivity of solid (e.g., rock)

{N: porosity
— Weighted harmonic mean (lowest value)
k, =(n/k, +(@-n)/k,)"

— Maxwell model (somewhere between)
k, =k {[ 2nk, +(3-2n)k, /[ (3-n)k, +nk, ||
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Effective thermal conductivity N,
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Mixing law models predictions of thermal conductivity as a function of porosity for water-

saturated quartz sand compared with experimental measurement (Somerton, 1992)



Effective volumetric heat capacity R,
Mixing Laws
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* Heat capacity of fluid-saturated rock

pC - anCW + (1_ n)pSCS

- p, density of fluid

— n "dencitv of enlid (e a0  rock)
NS- \V AV | IUIE] N1 UNVIINA \V-v-’ IVUI\I

- ¢, heat capacity of fluid (e.g., water)
— ¢4 heat capacity of solid (e.g., rock)

— N porosity Sold (tock fluid (water)
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Convection f @g

Forced convection and free convection ... woco cuvecers

4
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« Forced convection

— Flow is caused by external forces

* Free (natural) convection

— Flow driven by density variation (€< thermal expansion of water)

» Forced and free convections are two limiting cases and they
can exist together (mixed convection)



Conduction-convection equation

Derivation(]-) SEOUL NATIONAL UNIVERSITY
— Fourier’s law
q”__ a_T q”__ a_T q”__kﬁ_T
X ox oy 0z

— Fourier’s law (conduction) + fluid motion (convection)

——k - €Tpe TV

"
qT , X T ax

ST oT Contribution from convection!
Gy =7k 7y 00,6,TV, >

14 GT
R SF TR

0z
— 0y, - heat flux in x-direction (W/m2)

— V. velocity (m/sec)

- p,C,: volumetric heat capacity (J/m3K)



Conduction-convection equation (Y
Derivation(2)
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Heat Diffusion Equation
Derivation (3)

T

q.+9, +q. Figdxdydz|-

Qv — q‘1-‘+d}’ Y rd] = /OC _ded} dz

ot
Through rearrangemeni
O oq,
Do g S gy Xe i gavdydz = pe, S dvdydz
ox oy oz

ot
Heat rates may be evaluated from Fourier's law,

= —kdydz —T , —kdxdz —T

ox Cl

5
—kedxdy or

Oz
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Conduction-convection equation %,
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o, oT
—divq :'OCE
Contribution from convection!
q"=-k VT +
> oT
VT —np,C,[V- VT +TV-V] =pe—r
For Steady state flow
) ol
K; VT —np,c V-VT = ch <+ V.v=0

conduction convection

Conservation expression that describe the manner in which energy is moved
from one point to another by means of bulk fluid motion and by conduction



diffusion equation G
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* Dimensionless group dictate the nature of diffusion process or
demonstrate the competition between two rate process

L: length of the model (1D) or some length

X" =x/L associgted with fluid movement (2D)
yt=y/L + indicates a dimensionless quW
- L :some characteristic length
B t, : some characteristic time
t =t/t, h, : some characteristic head
h"=h/h,
V' =LV
S oh SHERY
2+ _ | 2y72 Vzh = > V2+h+ — s
ve=Lv K at (Kte]aﬁ
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diffusion equation il
Dimensional Analysis
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* Fourier Number, N,

SL’/K L*/c
Neo ===

e €

t >>L°/c

= Transient behavior will NOT be observable

t <L*/c

— Transient behavior is observable
 For heat diffusion,

L’/ «
Neo = t

e



Conductive-convection equation (i
Dimensional Analysis "
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* Dimensionless group dictate the nature of diffusion process or
demonstrate the competition between two rate process

L: length of the model (1D) or some length
X" =x/L associgted with fluid movement (2D)

y =y/L + indicates a dimensionless quW

N L : some characteristic length
z'=z/L _ L
t, : some characteristic time
tr=t/t, T, : some characteristic temperature
T =T/T,

- —{anCWVL}V+T+ _ { LZ(pC/kT)} oT*
t ot"

T e



Conductive-convection equation v,;g
Peclet Number (Npg)
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2 +
V2T np,C,VL VT = L*(pc/k,) |OT
] t ot'

e

Transport by bulk fluid motion

N £,C,dL q :specific discharge
kK > Kk L : some characteristic length

Transport by conduction

* Peclet number (Npg): expresses the transport of energy by
bulk fluid motion to the energy transport by conduction.

* Reflects a competition between forced convection and
conduction.

* Large Npz = convective transport dominates



Conductive-convection equation R}
1D form
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k; O°T np,c, o1 _at
pCcox>  pc “ox ot

* v,: mean groundwater velocity in the x-direction

* |tis assumed that the temperature of the fluid and the solids
are equal.

2
@I—nAWWWaT:O
0z K, 0z

o)
> T-T,+(T.-T,)

{exp(Npe ) -1}

solution



Conductive-convection equation
1D form

Ground surface

Water table

2 - T
L

Artesian aquifer

Ty, T, T.: measured temeprature

v, : leakage rate (pore linear velocity) PN 7!
’ (Domenico and Schwartz, 1998) exp(N ) - 1
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Convective heat transfer
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« What will be the factors that make these two cases different?

Saturated Porous media
- Fluid NOT flowing
T,=100°C T,=15°C
S e

\__’ \~—//N\\—..Jf'>
Saturated Porous media
S L3 — : Tl t

"~ ~-Fluid Flowing ~~-~

T,=100°C T,=15°C
* Inreality, the velocity cannot be taken as constant. = diffusion equation of porous
media flow and conduction-convection equation have to be solved simultaneously.
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Conductive-convection equation N o)
1D form SEOUL NATlo:':L UNIVERSITY

<3

* In reality, the velocity cannot be taken as constant. =2
diffusion equation of porous media flow and conduction-
convection equation have to be solved simultaneously.



Thermal expansion
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— Linear thermal expansion

Aleoz(T -T,)

a. coefficient of linear thermal expansion (unit: /K)
T, reference temperature

T: new temperature

_ \/nlhiimatrir tharmal avnancinn
VUIUIILICU IV LUITIHTHTTAI U/\'JC" 1I91VI
A
2 _3a(T-T,)
V

— Thermal expansion coefficient of Rock
xBerea Sandstone: 1.5x10°,
{Boom clay: 3.3x10
aWater: 6.6x10-
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Convective heat transfer %_1;
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* Linear pore velocity for free convection (under hydrostatic
pressure)

kg p,3a(T —T,) 0z q
V= V=—
nu OX




Convective heat transfer
Free convection

— In a buoyancy-driven fluid system (steady‘-lgfhe!lt'é),'

- {gpocwprka(T —To)}wr 0

k
Ao q : specific discharge

L : some characteristic length
N ngCWpWLka(T _TO)
RA —

e

— Rayleigh number (Nr,): expresses the transport of energy by free
convection to the energy transport by conduction.

— Used to establish the conditions for the onset of free convection.

— Onset of free convection: ~ 40 based on horizontal layers with
impermeable boundaries (from Domenico and Schwartz, 1998)

(Domenico and Schwartz, 1998)



Today
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 Mixing laws - Effective thermal conductivity, heat capacity

* Forced convection and free convection

* Conductive-convection equation
— Derivation

— Peclet Number
— 1D equation
 Dimensional analysis

* Free convection



Next week R
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« Reservoir Geomechanics
— Hydraulic fracturing
— Borehole stability

— Coupled process
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