Optimal Design of Energy Systems Chapter 4 Equation Fitting

Min Soo KIM

Department of Mechanical and Aerospace Engineering Seoul National University

4.1 Mathematical Modeling

performance characteristics of equipmentbehavior of processesthermodynamic properties

- Equation development is required
 - Facilitate the process of system simulation
 - Develop a mathematical statement for optimization

4.2 Matrices

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
 Order of matrix $m \times n$

 $[A]^{\prime}$ Transpose of a matrix [A]

ex>
$$[A] = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$
 $[A]^T = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$

4.2 Matrices

Simultaneous linear equations

$$2x_1 - x_2 + 3x_3 = 6$$

$$x_1 + 3x_2 = 1$$

$$4x_1 - 2x_2 + x_3 = 0$$

$$2x_{1} - x_{2} + 3x_{3} = 6
x_{1} + 3x_{2} = 1
4x_{1} - 2x_{2} + x_{3} = 0$$

$$\begin{bmatrix}
2 & -1 & 3 \\
1 & 3 & 0 \\
4 & -2 & 1
\end{bmatrix}
\begin{bmatrix}
x_{1} \\
x_{2} \\
x_{3}
\end{bmatrix} = \begin{bmatrix}
6 \\
1 \\
0
\end{bmatrix}$$

4.2 Matrices

Determinant

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} +a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{31}a_{22}a_{13} - a_{21}a_{12}a_{33} - a_{11}a_{23}a_{32} \end{vmatrix}$$

$$= a_{11}\underline{A_{11}} + a_{21}A_{21} + a_{13}A_{31}$$

$$cofactor of a_{11}$$

$$= a_{22}a_{33} - a_{23}a_{32}$$

$$A_{ij} = [(-1)^{i+j}]$$

$$submatrix formed by striking out i th row and j th column of [A]$$

4.3 Solution of Simultaneous Equations

✓ Simultaneous linear equations

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

✓ Matrix form

$$[A][X] = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = [B]$$

4.3 Solution of Simultaneous Equations

Crammer's rule

$$x_i = \frac{\big| [A] \; matrix \; with \; [B] \; matrix \; substituted \; in \; ith \; column \big|}{\big| A \big|}$$

$$\begin{bmatrix} 2 & 1 & -1 \\ 1 & -2 & 2 \\ -1 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 9 \\ 0 \end{bmatrix} \quad x_1 = \frac{\begin{vmatrix} 3 & 1 & -1 \\ 9 & -2 & 2 \\ 0 & 0 & 3 \end{vmatrix}}{\begin{vmatrix} 2 & 1 & -1 \\ 1 & -2 & 2 \\ -1 & 0 & 3 \end{vmatrix}} = \frac{-45}{-15} = 3 \quad x_2 = \frac{\begin{vmatrix} 2 & 3 & -1 \\ 1 & 9 & 2 \\ -1 & 0 & 3 \end{vmatrix}}{\begin{vmatrix} 2 & 1 & -1 \\ 1 & -2 & 2 \\ -1 & 0 & 3 \end{vmatrix}} = -2 \quad x_3 = \frac{\begin{vmatrix} 2 & 1 & 3 \\ 1 & -2 & 9 \\ -1 & 0 & 0 \end{vmatrix}}{\begin{vmatrix} 2 & 1 & -1 \\ 1 & -2 & 2 \\ -1 & 0 & 3 \end{vmatrix}} = 1$$

4.3 Solution of Simultaneous Equations

Gaussian elimination

4.4 Polynomial representation

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

of data point = n+1 \rightarrow exact expression

> → best fit

4.6 Simplification when the independent variable is uniformly spaced

$$\Delta x = x_1 - x_0 = \dots = x_n - x_{n-1} \blacktriangleleft$$

- ✓ Points are equally spaced
- ✓ Derive 4th degree polynomial
- √ n=4

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$y - y_0 = a_1 \left[\frac{n}{R} (x - x_0) \right] + a_2 \left[\frac{n}{R} (x - x_0) \right]^2$$

$$+ a_3 \left[\frac{n}{R} (x - x_0) \right]^3 + a_4 \left[\frac{n}{R} (x - x_0) \right]^4$$
Eq. (4.16)

(next page)

4.6 Simplification when the independent variable is uniformly spaced

TABLE 4.1 Constants in Eq. (4.16)

Equation	<i>a</i> ₄	<i>a</i> ₃	a_2	a_1
Fourth degree	$\frac{\frac{1}{24}(\Delta y_4 - 4\Delta y_3) + 6\Delta y_2 - 4\Delta y_1)}{+6\Delta y_2 - 4\Delta y_1}$	$\frac{\Delta y_3}{6} - \frac{\Delta y_2}{2} + \frac{\Delta y_1}{2} - 6a_4$	$\frac{\Delta y_2}{2} - \Delta y_1$ $-3a_3 - 7a_4$	$\Delta y_1 - a_2 - a_3 - a_4$
Cubic		$\frac{\frac{1}{6}(3\Delta y_1 + \Delta y_3)}{-3\Delta y_2}$	$\frac{1}{2}(\Delta y_2 - 2\Delta y_1)$ $-3a_3$	$\Delta y_1 - a_2 - a_3$
Quadratic			$\frac{1}{2}(\Delta y_2 - 2\Delta y_1)$	$\Delta y_1 - a_2$
Linear				Δy_1

4.6 Simplification when the independent variable is uniformly spaced

✓ if substitute (x1,y1)

$$\Delta y_1 = a_1 \frac{4(x_1 - x_0)}{R} + a_2 \left[\frac{4(x_1 - x_0)}{R} \right]^2 + a_3 \left[\frac{4(x_1 - x_0)}{R} \right]^3 + a_4 \left[\frac{4(x_1 - x_0)}{R} \right]^4$$
$$= a_1 + a_2 + a_3 + a_4$$

✓ Substitute all the points to Equation (4.16)

$$x = x_0, y = y_0$$

 $x = x_1, y = \Delta y_1 = a_1 + a_2 + a_3 + a_4$
 $x = x_2, \qquad \Delta y_2 = 2a_1 + 4a_2 + 8a_3 + 16a_4$
 $x = x_3, \qquad \Delta y_3 = 3a_1 + 9a_2 + 27a_3 + 64a_4$
 $x = x_4, \qquad \Delta y_4 = 4a_1 + 16a_2 + 64a_3 + 256a_4$

4.7 Lagrange Interpolation

$$y = a_0 + a_1 x + a_2 x^2$$

$$y = c_1(x - x_2)(x - x_3) + c_2(x - x_1)(x - x_3) + c_3(x - x_1)(x - x_2)$$

$$x = x_1, \quad y_1 = c_1(x_1 - x_2)(x_1 - x_3)$$

$$x = x_2, \quad y_2 = c_2(x_2 - x_1)(x_2 - x_3)$$

$$x = x_3, \quad y_3 = c_3(x_3 - x_1)(x_3 - x_2)$$

$$y = \sum_{i=1}^{n} y_i \prod_{j=1}^{n} \frac{(x - x_j) \text{ ommiting } (x - x_i)}{(x_i - x_j) \text{ ommiting } (x_i - x_i)}$$

4.8 Function of two variables

$$S_{1}: \Delta P_{1} = a_{1} + b_{1}Q + c_{1}Q^{2}$$

$$S_{2}: \Delta P_{2} = a_{2} + b_{2}Q + c_{2}Q^{2}$$

$$S_{3}: \Delta P_{3} = a_{3} + b_{3}Q + c_{3}Q^{2}$$

$$DP = a(S) + b(S)Q + c(S)Q^{2}$$

$$a(S) = A_{0} + A_{1}S + A_{2}S^{2}$$

$$b(S) = B_{0} + B_{1}S + B_{2}S^{2}$$

$$c(S) = C_{0} + C_{1}S + C_{2}S^{2}$$

4.9 Exponential Forms

$$y = bx^{m}$$

$$\ln y = \ln b + m \ln x$$

$$\checkmark \quad y = b + ax^m$$

If y approaches some value b, as $x \to \infty$ or $x \to -\infty$

Estimate b

Calculate m with log-log plot (y-b vs. x)

Fitting (y vs. x^m)

Correct value of b

4.10 Best fit: Method of Least Squares

The sum of the squares of the deviation is a minimum

Example of least square method

- Misuses of least square method
- (a) Questionable correlation
- (b) Applying too low degree

4.10 Best fit: Method of Least Squares

• Method of least squares for y = a + bx

$$z = \sum_{i=1}^{m} (a + bx_i - y_i)^2 \to \min$$

$$\frac{\partial z}{\partial a} = \sum 2(a + bx_i - y_i) = 0$$

$$\frac{\partial z}{\partial b} = \sum 2(a + bx_i - y_i)x_i = 0$$

$$ma + b\sum x_i = \sum y_i$$

$$a\sum x_i + b\sum x_i^2 = \sum x_i y_i$$

4.10 Best fit: Method of Least Squares

<Example> provide a best fit (least square) $y = a_0 + a_1 x$

Х	У	
1	4.9	
3	11.2	
4	13.7	
6	20.1	

<Solution>

	x_i	Уi	x_i^2	$x_i y_i$	
Σ	1 3 4 6 14	4.9 11.2 13.7 20.1 49.9	1 9 16 36 62	4.9 33.6 54.8 120.6 213.9	

$$4a_0 + 14a_1 = 49.9$$

$$14a_0 + 62a_1 = 213.9$$

$$y = 1.908 + 3.019x$$

4.10 Best fit: Method of Least Squares

• Method of least squares for $y = a + bx + cx^2$

$$\begin{bmatrix}
a\sum 1 + b\sum x_i + c\sum x_i^2 = \sum y_i \\
a\sum x_i + b\sum x_i^2 + c\sum x_i^3 = \sum y_i x_i \\
a\sum x_i^2 + b\sum x_i^3 + c\sum x_i^4 = \sum y_i x_i^2
\end{bmatrix}$$

• For $y = a \sin x + b \ln x$

4.11 Method of Least Squares Applied to Nonpolynomial Forms

- Method of least squares
 - → apply to equation with constant coefficients
 - cf) $y = \sin 2ax + bx^c$

4.12 The are of equation fitting

• Choice of the form of the equation

Polynomials with negative exponent⁽¹⁾

Exponential eq.(2)

Gompertz eq⁽³⁾ $y = ab^{c^x}$ where b, c < 1

combination

