

Concepts and Nomenclature

History

- Natural polymers like proteins, silk, wood, ---
- Empirical developments
 - vulcanized rubber (1840)
 - cellulose polymers ~ Celluloid, Cellophane, -- (1850)
 - □ Bakelite ~ a PF resin ~ the first fully-synthetic (1910)
- Polymer science
 - Staudinger ~ polystyrene (1920)
 - 'Macromolecules are long-chain molecules.'
 - □ Carothers ~ nylon (1935)
 - □ Ziegler & Natta ~ polyethylene (1955)
- > When is the start of 'the Plastic Age'?

Ch 1,2 Sl 3

Nobel prizes

- 1953 (Chemistry) Hermann Staudinger for contributions to the understanding of macromolecular chemistry. Chapt 4
- 1963 (Chemistry) Giulio Natta and Karl Ziegler for contributions in polymer synthesis. (Ziegler-Natta catalysis). Chapt 6
- 1974 (Chemistry) Paul J. Flory for contributions to theoretical polymer chemistry. Chapt 3, 10, 16
- 1991 (Physics) Pierre-Gilles de Gennes for developing a generalized theory of phase transitions with particular applications to describing ordering and phase transitions in polymers. Chapt 16
- 2000 (Chemistry) Alan G. MacDiarmid, Alan J. Heeger, and Hideki Shirakawa for work on conductive polymers, contributing to the advent of molecular electronics. Chapt 8
- 2002 (Chemistry) John Bennett Fenn, Koichi Tanaka, and Kurt Wüthrich for the development of methods for identification and structure analyses of biological macromolecules. Chapt 14
- 2005 (Chemistry) Robert Grubbs, Richard Schrock, Yves Chauvin for olefin metathesis. Chapt 7

macromolecule = large [giant] molecule [巨大分子]
 with high molar mass [molecular weight]

□ polymer = poly + mer = many + part [高分子]

parts linked to form a long sequence [chain]

- monomer to polymer thru polymerization [重合]
- 'polymer' and 'macromolecule'
 - usually interchangeable
 - strictly;
 - A macromolecule is a molecule.
 - A polymer is composed of macromolecules.
 - Polymers are synthesized [polymerized].

Classification of polymers

- by chemical structure
 - homopolymers ~ with single type of repeat unit
 - chain polymers
 - step polymers
 - \Box copolymers ~ with \geq 2 different types of repeat unit
- by skeletal structure
 - linear vs branched vs crosslinked polymers
- by aggregation structure
 - amorphous vs (semi)crystalline polymers
- □ by (thermomechanical) behavior
 - thermoplastics vs thermosets

Nomenclature of homopolymers

- 2 types of homopolymers and nomenclature
 - chain polymers
 - #1-8, Table 1.1 p7
 - from chain polymerization
 - source-based nomenclature: poly+monomer
 - repeat unit = monomer unit

vinyl chloride

poly(vinyl chloride) or polyvinyl chloride

() for more than 2 words; omitted conveniently and commonly

Monomers

1. Ethylene CH₂=CH₂

2. Propylene CH₂=CH | CH₃

3. Tetrafluoroethylene $CF_2 = CF_2$

Polymer Polyethylene (PE) $+CH_2-CH_2+n$ Polypropylene (PP) $+CH_2-CH+n$ CH_3 Polytetrafluoroethylene (PTFE) $+CF_2-CF_2+n$

4. Styrene CH₂=CH

Monomers 7. Vinyl acetate $CH_2 = CH$ O C=O CH_3 8. Ethylene oxide $CH_2 - CH_2$ O9. Ethylene glycol HO - $CH_2 - CH_2 - OH$ and terephthalic acid HO - C - OH10. Howemethylene diamine $H N = (CH_2) = NH_2$ and seharic acid

10. Hexamethylene diamine H_2N —(CH₂)₆—NH₂ and sebacic acid

$$HO - C - (CH_2)_8 - C - OH$$

step polymers

- #9,10, Table 1.1 p8
- from step polymerization
- structure-based nomenclature: poly+repeat unit
- repeat unit ≠ monomer unit (structural unit)

$$HO-CH_{2}-CH_{2}-OH + HO - CH_{2}-CH_{2}-O + HO - CH_{2}-CH_{2}-O - CH_{2} - O -$$

repeat unit

Copolymers

□ polymer with \geq 2 different types of repeat unit

types

- alternating ~ --ABABABAB--
 - poly(A-*alt*-B)
- statistical
 - Sequence distribution obeys statistical rule.
 - Markov chain ~ dep on previous unit only
 - poly(A-stat-B)

random

- Bernoulli distrib'n ~ indep of previous unit
- poly(A-*ran*-B)

types (cont'd)

- block ~ --AAAAABBBBBBB--
 - poly(A-b-B) or polyA-block-polyB

graft

- poly(A-g-B) or polyA-graft-polyB
- > poly(A-co-B) ~ unspecified

✓ alt, stat, ran ~ <u>no</u> phase separation, avg property
 ✓ block, graft ~ phase separation, composite property

Skeletal structure

Ch 1,2 SI 12

Aggregation structure and behavior Ch 1,2 SI 14

Ch 1,2 SI 16

Molar mass [分子量]

polymer is 'molecule with high molar mass'

- molar mass vs molecular weight
 - [g/mol] vs dimensionless (or [g/molecule])
 - MM preferred over MW
 - still, interchangeable

polymer is gathering of chains

- with distribution of molar mass
 - MM distribution [MMD, 分子量分布]
 - polydisperse (not monodisperse)

MM should be averages

 \square MM of polymer, M = x M₀

□ x ~ (average) degree of polymerization

 \square M₀ ~ molar mass of monomer unit (not repeat unit)

Molar mass averages

□ number avg molar mass [數平均分子量]

$$\overline{M}_{n} = \sum X_{i}M_{i} = \frac{\sum N_{i}M_{i}}{\sum N_{i}} = \text{total mass / total } \#$$

N_i = number of molecules having M_i

• $x_n =$ number avg degree of polym'n

 \square M_n = X_n M₀

• X_i = number [mole] fraction of i = N_i / ΣN_i

□ weight avg molar mass [重量平均分子量]

$$\overline{M}_{w} = \sum w_{i}M_{i} = \frac{\sum N_{i}M_{i}^{2}}{\sum N_{i}M_{i}}$$

$$w_{i} = \text{weight fraction of } i = N_{i}M_{i} / \Sigma N_{i}M_{i}$$

$$\frac{\text{fr} \quad M \quad N \quad NM \quad NM^{2}}{\text{i} + 1 \quad 2E4 \quad 10 \quad 1E5 \quad 1E9}{\text{i} + 1 \quad 2E4 \quad 10 \quad 2E5 \quad 4E9}$$

$$M_{w} = X_{w} M_{0}$$

$$\Sigma \quad \Sigma Ni \quad \Sigma NiMi \quad \Sigma NiMi^{2}$$

Ch 1,2 SI 18

other avg's

 \Box M_v

MM distribution

 \Box polydispersity index, PDI = M_w/M_n

PDI of 'most probable' distribution = 2

 \square PDI can be < 2, mostly > 2

□ IUPAC recommended in 2009;

- \Box polydisperse \rightarrow non-uniform
- \Box monodisperse \rightarrow uniform
- \Box PDI \rightarrow D (dispersity)

MM and properties

Property

- MM independent
 - property dep on chem structure
 - solubility, refractive index, --
- □ M_n dependent
 - property dep on # of molecules
 - strength, T_g
- □ M_w dependent
 - property dep on motion of whole chain
 - melt viscosity $\eta = KM_w \text{ or } KM_w^{3.4}$

 $M_{n} \text{ or } M_{w}$

Principles of Polymerization

Classification of polym'n (1)

- □ by type of reaction ~ Carothers' method ~ *older*
 - condensation polym'n
 - #9 & 10, Table 1.1 p7
 - condensation rxn \rightarrow releasing small molecule like water

$$HO-R-OH + HO-C-R'-C-OH \xrightarrow{(-H_2O)} H = O-R-O-C-R'-C \xrightarrow{0} H OH$$

- addition polym'n
 - #1 #8, Table 1.1 p7
 - addition rxn \rightarrow not releasing small molecule

$${}_{nCH_{2}=CH} \xrightarrow{CI} (CH_{2}-CH)_{\pi}$$

PU polymerized by addition rxn of functional groups

Classification of polym'n (2)

by mechanism

Table 2.1

- □ step (growth) polym'n [段階重合]
 - reaction of functional groups
 - stepwise growth of the polymer chain
 - n-mer + m-mer \rightarrow (n+m)-mer
 - #9 & 10, Table 1.1 p7
- □ chain (growth) polym'n [連鎖重合]
 - addition of monomer unit to the growing chain
 - chain reaction
 - n-mer + monomer \rightarrow (n+1)-mer
 - #1 8, Table 1.1 p7

Ch 1,2 Sl 23

Step vs chain polym'n

Ch 1,2 SI 24

step polym'n	chain polym'n
Any two species can react.	Reaction of growing chain and monomer
Monomer disappears early.	Monomer concentration decreases steadily.
Polymer molecular weight rises steadily.	High polymer formed at once.
Long reaction time required for high MW.	Long reaction time gives high yield only.
At any stage, species of any MM are present with distribution.	Only monomer, high polymer, and very small amount of growing chain are present.

Ch 1,2 SI 25

- □ Ch 3 Step polym'n
- Ch 4 Radical polym'n
- □ Ch 5 Ionic polym'n
- Ch 6 Coordination polym'n
- Ch 7 Ring-opening polym'n
- Ch 8 Specialized methods
- Ch 9 Copolymerization
- □ Ch 10-15 Molar mass determination

chain polym'n

Monomer functionality

functionality of monomer, f

□ the number of chain links the monomer can give rise to

Ch 1,2 SI 26

f and structure

- □ $f = 2 \rightarrow$ linear polymer Figure 2.1
 - a double bond or a ring ~ f = 2
 - diol, diamine, diacid, etc ~ f = 2
- □ f > 2 \rightarrow non-linear polymer (branched, Xlinked)
- $\Box f = 1 \rightarrow ?$

Reactivity of functional groups

Ch 1,2 Sl 27

- equal reactivity of functional groups
 - reactivity indep of molecular size
 - reactivity of one end irrespective of the other end
 - \Box an assumption proved exp'tally \rightarrow principle
 - Problem 2.2 p18
- theoretical validation
 - reactivity ∞ collision frequency
 - 1. Rxn is slower than diffusion, esp for step polym'n.
 - 2. If not [If diffusion-controlled], diffusion of ftnal group is much faster than that of whole molecule.
 - 3. If not [If diffusion rate depends on molecular size], large molecules diffuse in and diffuse out slowly.