Chapter 5

Ionic Polymerization

- Ionic polym'n is
 - □ specific to monomer Table 5.1 p124
 - cationic polym'n for CH₂=CH(X) with X that donate e⁻ and/or resonance-stabilize (+) charge [inductive and/or resonance e⁻ donating X]
 - $CH_2 = CH(OR)$, $CH_2 = C(R_1)(R_2)$
 - $CH_2 = CH(Ph)$, $CH_2 = C(R)(Ph)$, $CH_2 = CH(CH = CH_2)$, $CH_2 = CH(CR = CH_2)$
 - CH₂=CH(R) ~ too-weakly donating with short R (like Me)
 - anionic ---
 - $CH_2 = CH(COOR)$, $CH_2 = C(R)(COOR)$, $CH_2 = CH(C \equiv N)$, $CH_2 = C(R)(C \equiv N)$
 - Both possible for styrenics, dienes
 - weakly inductive-donating
 - resonance-stabilizing both (+) and (-) charge [+M/-M]
 - Both not facile for vinyl halides, vinyl esters

Ionic polym'n is (cont'd)

much faster than radical polym'n

 \leftarrow high conc'n of propagating chain

influenced by counter-ion [gegenion]

■ ----C⁺ A⁻ or ----C⁻ M⁺

influenced by solvent

---C⁺ A⁻ [contact] ---C⁺ //A⁻ [separated] ---C⁺ + A⁻ [free]

Cationic polym'n: mechanism

initiation

□ with protonic acid, HA

Ch 5 *SI* 4

- not HCI or HBr ← counter-ion [A-] too nucleophilic
- H₂SO₄, HClO₄ popular

with Lewis acid

- initiator/cocatalyst ~ a misnomer
 - activator/initiator, actually

- head-to-tail
- when C⁺ rearrangement possible \rightarrow isomerization polym'n
- termination and chain transfer
 - <u>no</u> bimolecular termination
 - ion-pair rearrangement

chain transfer to counter-ion, spontaneous termination

termination and chain transfer (cont'd)

CT to monomer

□ CT to solvent, impurity, or polymer also possible

β-H electrophilic due to hyperconjugation

Kinetics of cationic polym'n

rate of polym'n

$$Initiation: \mathbb{R}^{+} \mathbb{A}^{-} + \mathbb{M} \xrightarrow{k_{i}} \mathbb{R} \mathbb{M}_{1}^{+} \mathbb{A}^{-}$$

$$Propagation: \mathbb{R} \mathbb{M}_{n}^{+} \mathbb{A}^{-} + \mathbb{M} \xrightarrow{k_{p}} \mathbb{R} \mathbb{M}_{n+1}^{+} \mathbb{A}^{-}$$

$$Ion-pair rearrangement: \mathbb{R} \mathbb{M}_{n}^{+} \mathbb{A}^{-} \xrightarrow{k_{t}} \mathbb{R} \mathbb{M}_{n} + \mathbb{H}^{+} \mathbb{A}^{-}$$

$$Chain transfer to monomer: \mathbb{R} \mathbb{M}_{n}^{+} \mathbb{A}^{-} + \mathbb{M} \xrightarrow{k_{tM}} \mathbb{R} \mathbb{M}_{n} + \mathbb{H} \mathbb{M}_{1}^{+} \mathbb{A}^{-}$$

$$R_{p} = -\frac{d[\mathbb{M}]}{dt} = k_{p}[\mathbb{M}][\mathbb{M}^{+}] \qquad [\mathbb{M}^{+}] = \sum_{n=1}^{\infty} [\mathbb{R} \mathbb{M}_{n}^{+}]$$

$$\frac{d[\mathbb{M}^{+}]}{dt} = k_{i}[\mathbb{R}^{+} \mathbb{A}^{-}][\mathbb{M}] - k_{i}[\mathbb{M}^{+}] = 0 \quad \boldsymbol{\leftarrow} \text{ s-s condition}$$

$$\mathbb{S} \text{-s not achieved in most cases; so fast}$$

$$R_{p} = \left(\frac{k_{i}k_{p}}{k_{t}}\right) [\mathbb{R}^{+} \mathbb{A}^{-}][\mathbb{M}]^{2} \qquad \boldsymbol{\leftarrow} [\mathbb{M}^{+}] = \left(\frac{k_{i}}{k_{t}}\right) [\mathbb{R}^{+} \mathbb{A}^{-}][\mathbb{M}]$$

Ch 5 Sl 7

□ R_p (cont'd)

$$R_{\rm p} = \left(\frac{k_{\rm i}k_{\rm p}}{k_{\rm t}}\right) [\mathrm{R}^{+}\mathrm{A}^{-}][\mathrm{M}]^{2}$$

radical polym'n

$$R_{\rm p} = k_p \left(\frac{fk_{\rm d}}{k_{\rm t}}\right)^{1/2} [\rm M][\rm I]^{1/2}$$

□ 2nd-order on [M] ■ when $R^{+}A^{-} + M \xrightarrow{k_{i}} RM_{1}^{+}A^{-}$ is RDS. (most cases)

□ If BF_3+H_2O → $H^+(BF_3OH)^-$ is RDS, 1st-order on [M].

□ If transferred active center re-initiate rapidly, $[M^+] = [R^+A^-]$ and $R_p = k_p[M][R^+A^-]$.

$$\mathbf{X}_{n} \quad \overline{x}_{n} = \frac{k_{p}[M][M^{+}]}{k_{t}[M^{+}] + k_{trM}[M^{+}][M]} \longrightarrow \frac{1}{\overline{x}_{n}} = \frac{k_{t}}{k_{p}[M]} + \frac{k_{trM}}{k_{p}}$$
$$\square \text{ If no CT to M, } (\overline{x}_{n})_{0} = (k_{p}/\overline{k}_{t})[M].$$

□ effect of Temp

$$\frac{d\ln(R_p)}{dT} = \frac{E_i + E_p - E_t}{\mathbf{R}T^2} \quad \text{can be} > 0 \text{ or } < 0$$

• activated C=C by subs $\rightarrow E_i$ and E_p small and $< E_t$

$$\frac{\mathrm{d}\ln(\bar{x}_{\mathrm{n}})_{0}}{\mathrm{d}T} = \frac{E_{\mathrm{p}} - E_{\mathrm{t}}}{\mathbf{R}T^{2}} < \mathbf{0}$$

As Temp up, x_n down.

$$\frac{\mathrm{d}\ln(C_{\mathrm{tr}})}{\mathrm{d}T} = \frac{E_{\mathrm{tr}} - E_{\mathrm{p}}}{\mathbf{R}T^2} > \mathbf{0}$$

As Temp up, C up, and x_n down.

Low temperature preferred in cationic polym'n.

effect of solvent and counter-ion

□ free ion active center propagates faster

- higher k_p (by ala > ten times)
- Iower k_t for ion-pair rearrangement, also
- □ faster in polar solvent
- □ faster with larger counter-ion
 - not evident ~ no systematic exp'tal data
 - <cf> anionic polym'n

Pseudocationic polym'n

- In some of cationic polym'n
 - with protonic acid initiator in less polar solvent
 - eg, ST with HCIO₄ and some others
 - □ shows bimodal MMD.
 - there is another process than ionic propagation
- pseudocationic (covalent) polym'n

□ slower than ion/ion-pair propagation → lower MM
 □ losing popularity ~ ion and ion-pair separately

Living cationic polym'n

Cationic polym'n is hardly living-like.

- very sensitive to impurity and conditions
- □ CT and rearrangements (← hyperconjugation)
- Iiving-like may be possible by controlling C---counter ion bond characteristic
 - betw covalent and ionic (like pseudocationic)

$$CH_2 = CH \xrightarrow{HI} H - CH_2 - CH - I \xrightarrow{I_2} H - CH_2 - CH - I \xrightarrow{R^+ \delta^-} H - CH_2 - CH - I_2 \xrightarrow{R^+ \delta^+} H - CH_2 - CH - I_2 \xrightarrow{R^+ \delta^+} H - CH_2 - CH - I_2 \xrightarrow$$

 \Box x_n should be [M]/[I].

Practical considerations in cationic

Ch 5 SI 13

- Cationic polym'n requires
 - □ low rxn Temp ~ often below 0 °C
 - □ free from impurities
 - \Box control of heat \leftarrow very fast initiation and propagation
- butyl rubber
 - the only commercial polymer by cationic polym'n
 - isobutylene copolymerized with small amount of isoprene
 - isoprene for (S) vulcanization
 - with alkyl halide/Lewis acid
 - □ at low Temp below 0 °C
 - □ MM control by Temp ~ control CT

Anionic polym'n

Ch 5 SI 14

□ Virtually all anionic polym'n is truely living.

- no bimolecular termination
- □ no CT ~ requires H:⁻ ion abstraction

Earlier works were not living Section 5.3.1 p132

mechanism with basic (organometallic) initiator

□ in polar solvent like THF ~ for free initiator and ion

■ mechanism with e⁻ transfer initiation

- in polar solvent like THF
- propagation
- □ <u>No</u> appreciable termination or CT

Kinetics of anionic polym'n

Ch 5 SI 16

 \Box R_p

 $\Box k_i > k_p \sim$ initiation completed before propagation

$$R_{\rm p} = -\frac{\mathrm{d}[\mathrm{M}]}{\mathrm{d}t} = k_{\rm p}[\mathrm{I}]_0[\mathrm{M}]$$

- much faster than radical
 - k_p comparable ~ lower in non-polar, higher in polar solvent
 - $[M^-] (= [I]_0)$ much higher than $[M^\bullet]$

🗅 MM

 $\overline{x}_n = \frac{cK[\mathbf{M}]_0}{[\mathbf{I}]_0}$

K=1 for initiation by organometallic compounds K=2 for electron transfer initiation

MMD

 \Box Initially, N initiators (\rightarrow N polymers later)

■ At time t, N₀, N₁, N₂, --- N_x, ---
■ N_x ~ # of x-mer

$$\frac{dN_x}{dt} = \Phi N_{x-1} - \Phi N_x \qquad v = \int_0^t \Phi dt \qquad \Phi \sim \text{rate of a monomer addition} \\ v \sim \text{kinetic chain length, } x_n \qquad N_x = \frac{Nv^x e^{-v}}{x!} \qquad \longrightarrow P(x) = \frac{v^x e^{-v}}{x!} \sim \text{Poisson distribution} \\ \overline{M}_n = \sum_{x=1}^\infty P(x)M_x \qquad \overline{M}_x = xM_0 \qquad \overline{M}_n = M_0 e^{-v} \underbrace{\sum_{x=1}^\infty xv^x}_{x!} = M_0 v e^{-v} \underbrace{\sum_{x=1}^\infty v^x r^{-1}}_{(x-1)!} \\ \overline{M}_n = M_0 v \qquad \underbrace{\sum_{x=1}^\infty v^r / r! = e^v}_{r=0} \\ \end{array}$$

$$w_{x} = \frac{N_{x}M_{x}}{NM_{0}v} \longrightarrow w_{x} = \frac{e^{-v}v^{x-1}}{(x-1)!}$$

$$\overline{M}_{w} = \sum_{x=1}^{\infty} w_{x}M_{x} \longrightarrow \overline{M}_{w} = M_{0}e^{-v} \sum_{x=1}^{\infty} xv^{x-1}$$

$$M_{x} = xM_{0} \longrightarrow \overline{M}_{w} = M_{0}e^{-v} \sum_{r=1}^{\infty} rv^{r-1}/(r-1)! = (v+1)e^{v}$$

$$\overline{M}_{w} = M_{0}(v+1) \longrightarrow \sum_{r=1}^{\infty} rv^{r-1}/(r-1)! = (v+1)e^{v}$$

□ PDI or D

 \overline{M}_n

• theoretically, $D \approx 1.0$

V

practically, 1.02 – 1.20

Effect of solvent and counter-ion

Ch 5 SI 19

effect of solvent

	Dialactria	L app
Solvent	Constant (ϵ)	liters/mole-sec
Benzene	2.2	2
Dioxane	2.2	5
Tetrahydrofuran	7.6	550
1,2-Dimethoxyethane	5.5	3,800

TABLE 5-10 Effect of Solvent on Anionic Polymerization^a of Styrene Odian p424

 \Box polarity [ε] of solvent $\land \rightarrow$ fraction of free ion $\land \rightarrow k_p \land$

 \Box MMD broader in non-polar solvent \leftarrow slow initiation

effect of counter-ion

- □ in polar solvents
 - $k_p \sim K^+ < Na^+ < Li^+$
 - smaller ions better solvated ~ [free ion] up
- □ in non-polar solvents
 - $k_p \sim K^+ > Na^+ > Li^+$
 - separation of ion governs

- □ Energetics ~ complex
 - \Box E_p > 0 ~ small, dependent on solvent and counter-ion

Deactivation/functionaliz'n

□ At the end of anionic polym'n

 \Box addition of proton donor like ROH \rightarrow deactivation

polymer with functionalized end-group, controlled MM/MMD

Practical considerations in anionic

- Anionic polym'n requires
 - \Box highly purified reactants \leftarrow reactive active center
 - □ inert rxn system ~ high vac, sealed

□ Acidic H in monomer must be protected.

side rxn in polar M like (meth)acrylates, acrylonitriles

requires polar solvent, bulky initiator, low temperature

Ch 5 SI 22

GTP

- group transfer polym'n
 - □ for polar monomers (with C=O or C≡N)
 - to avoid side reactions
 - initiator ~ silyl ketene acetal

catalyst

- Nu:⁻ ~ popular ~ HF₂⁻, F⁻, etc
- Lewis acid ~ larger amount needed ~ less popular

mechanism

- associative p142 ~ not anionic ~ may be wrong
- dissociative p143 ~ anionic ~ more plausible

mechanism (cont'd)

□ GTP is a living anionic polym'n

- □ like anionic, sensitive to impurities like active H
 - dry condition
 - protection needed for monomers with active H
- □ unlike anionic, at high temp (50 80 °C)
- □ PDI ~ 1.1 1.3
- □ side reaction ~ back-biting cyclization p144
- GTP mainly for
 - □ functionalized polymethacrylates with low MM < 50K
 - GTP of acrylate and (meth)acrylonitrile too fast

Aldol GTP

GTP of silvl vinyl ether using aldehyde initiator

Carbonyl polym'n

Odian p444-449

Ch 5 SI 28

- Iow ceiling temperature
 - \Box due to low ΔH
 - for R=Me, $\Delta H = 29 \text{ kJ/mol}$
 - short and stable C=O
- □ anionic polym'n of CH₂O
 - polyformaldehyde [= polyoxymethylene (POM) = polyacetal]
 - an engineering plastic with high T_m = 175 °C
 - mechanical, abrasive, and dimensional stability
 - end-capping for use

 $HO_{+}CH_{2}O_{+} CH_{2}OH \xrightarrow{(RCO)_{2}O} RCOO_{+}CH_{2}O_{+}CH_{2}OCOR$

Monomer	T_c (°C)
Formaldehyde	119 ⁶
Trifluoroacetaldehyde	85
Trichloroacetaldehyde	11
Propanal	-31
Acetaldehyde	-39
Pentanal	-42
	Odian p445