
 

 

 

Analytical Dynamics  

with an Introduction to Dynamical Systems 

 

 

 

 

 

 

 

 

~ Advanced dynamics or Classical dynamics 



( > Relativity ! : speed of light : 

Modernmechanics, Quantum mechanics ~ Einstein) 

 

oNewtonian mechanics( F ) : A 

->each particle : vector :   

oAnalytical dynamics( Energy ) : B 

->system as a whole :scalar ! 

( T , V ; Conservative system) Non-conservative system 

 



 % A > B or A = B 

 

Merit or Dis-advantage ? 

Vector ? ~ Scalar ? 

 

 

 

6 Home works 

Mid-term, Final tests 
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Preface: 

Principles of analytical mechanics 

~mechanicalengr.physics and applied math. 

- Topics in Advanced dynamics and elegant variational 

approachto formulating problems in mechanics. 

Basically, time t is involved ! 

vSolid mechanics: Stiffness (PDE) 

vDynamics: Mass(ODE) 

 



- Solid Mechanics + Dynamics = Real system ! 

 

- Nonlinear Partial Differential Equationsincludingt ! 

 

Pre-requisites :basic dynamics, differential equations 

 

Practice !!! 

 

 



Chapter 1 PRINCIPLESOF DYNAMICS 

F ~a: Inertia property ? 

F = ma: Newton law( Principle ) :  

(Definition?) : why ? God only knows ! 

 

Truth - Experiment ; Verification, Reproduce! 

~Stem cell ? 

 Logical path – theoretical + experimental works  

SungsooBridge ? 



 

Work ~ Force ;Scala~Vector : Dimension ? 

Consuming a Force without doing a work ? 

F *dr = 0 ? 

 

Can the potential energy be defined without any 

restriction ? 

 

Goal for Analytical Mechanics 



Systematicmethod to derive exact T and V expressions 

for general system, and obtain the governing equations 

as PDE or ODE. 

Solution ? : another problem.. 

-------- 

We live in constantly changing universe. Why ? 

Deep impact ,Tornado, Earthquake... 

Atomic particle -- > Comet : Motion 

 



The science of changing systems is known as dynamics 

Change was passively accepted and used as a barometer 

to life. 

In order to precise describe and predict the motion of 

bodies, mathematical technique were invented and 

increasingly used to model the observed changes.  

In fact, the developments of dynamics and mathematics 

runs parallel.  

Through the constant interaction, new mathematical 



techniques and principles were discovered invented. : 

Developments based on mutual interaction  ! 

 

Theory ~ Experiment.. 

18 th : Laplace:  

19 th : Mathematics and Physics .... 

20 th : Modern Technologies Age:  

:Relativity theory and Quantum mechanics( Einstein..) 

 



Mechanics 

 

oClassical ( Advanced ) Mechanics :  

Macroscopic world : Scientist and Engineers 

 

oModern ( Quantum ) Mechanics :  

Atomic size, Speed of light(Einstein) - Nanoscale... 

 

But the Classical Mechanics is by no means invalidated 



by these elegant and newer theories. 

Macroscopic world around us is still extremely well 

modeled by the Newton's law. 

 

Mechanics 

 

Vector Mechanics ;Analytical(Lagrangian) Mechanics 

(Force) ~( Scalar : Using T, V expressions) 

free-body diagram~ system as a whole 



Total Energy of a System 

Generalized coordinate system 

Complimentary 

 

Basic Principles of Mechanics  

 

Three basic laws, 

1. Static equilibrium 2. Newton's law of motion  

3. Action and reaction 



 

Earth-fixed Coordinate : Inertial or Non-inertial ? 

 

KINEMATICS : 

Geometric expression only ~coordinate systems 

Choice of the reference frame: x , dx/dt , d2x/dt2 

 Absolute velocity, acceleration 

 Trajectory ~ path 

 Speed 



Global ~ Local coordinate 

Local moving frame of reference  

o Normal and tangential coordinates ~ bi-normal 

o Cylindrical (polar) coordinates  

o Spherical coordinates 

 

COORDINATE TRANSFORMATIONS 

 

 



TIME RATE OF CHANGE OF A UNIT VECTOR 

Rotating coordinate system with angular velocity: 

 

KINETICS : 

Force ~ origin of motion ! 

 

WORK AND ENERGY 

 

CONSERVATIVE SYSTEMS 



Mechanics 

 

Vector Mechanics ;Analytical(Lagrangian) Mechanics 

(Force) ~( Scalar : Using T, V expressions) 

free-body diagram~ system as a whole 

Total Energy of a System 

Generalized coordinate system 

Complimentary 

 



Basic Principles of Mechanics  

 

Three basic laws, 

1. Static equilibrium 2. Newton's law of motion  

3. Action and reaction 

 

Earth-fixed Coordinate : Inertial or Non-inertial ? 

 

KINEMATICS : 



Geometric expression only ~coordinate systems 

Choice of the reference frame: x , dx/dt , d2x/dt2 

 Absolute velocity, acceleration 

 Trajectory ~ path 

 Speed 

Global ~ Local coordinate 

Local moving frame of reference  

Rectangular coordinate system ~ Moving coordinate system ;orthogonality ! 

o Normal and tangential coordinates ~ bi-normal 



r , v, a 

o Cylindrical (polar) coordinates  

r , v, a 

o Spherical coordinates 

r, v, a 

COORDINATE TRANSFORMATIONS 

( , , )x y z  

( , , )r z  



( , , )r  
 

 

 

 

TIME RATE OF CHANGE OF A UNIT VECTOR 

Rotating coordinate system with angular velocity: 

 

KINETICS : 



Force ~ origin of motion ! 

 

WORK AND ENERGY 

 

CONSERVATIVE SYSTEMS 

 

 

 

 



SYSTEMS OF PARTICLES 

 

Single Particle  ?~  Satellite about the Earth ? 

All matter is in constant interaction with other matter. 

Newton’s law : originally formulated for a single particle ! 

       ~ > ? multiple 

System of N particles each of mass mj( j= 1,…,N) 

Definition: mass center of a system of particles  

   Global axes X-Y-Z-O 

Total mass M~  for each mj 

Center of mass :Rc: Weighted average 

 

Rc?  

 



Newton’s 2nd law 

 

 

 

 

 

Newton’s second law for each particle  Pi  in a system of n particles, 

 

 
1 1

;

 external force  internal forces   effective force

n n

i ij i i i i i ij i i i

j j

i ij i i

F f m a r F r f r m a

F f m a

 

      

  

 



• Summing over all the elements, 

 
• Since the internal forces occur in equal and opposite collinear 

pairs, the resultant force and couple due to the internal forces 

are zero, 

 
 

= > (1.50) ! 

 

              : Absolute coordinate system (X,Y) 

Moving reference frame attached at Rc 

Rj= Rc + rj 

 

   Angular momentum .. 

     
1 1 1 1 1 1 1 1

;
n n n n n n n n

i ij i i i i i ij i i i

i i j i i i j i

F f m a r F r f r m a
       

           

   :i i i i i i i iF m a r F r m a      



Kinetic Energy  

 

• Kinetic energy of a system of particles, 

                   

Expressing the velocity in terms of the centroidal reference frame, 

 

• Kinetic energy is equal to kinetic energy of mass center plus kinetic 

energy relative to the centroidal frame. 

  

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• Although  are equal and opposite, the work of these forces will 

not, in general, cancel out. 

 

MOTION IN NONINERTIAL REFERENTIAL FRAME 

 

 

 

 

 

 

jiij ff


 and 



T = 
2 2

.

1

1 1

2 2

N

c j j

j

MV m r


   

 

Total Kinetic Energy= 

 

 Energy associated with the motion as a single entity 

(orbital kinetic energy) 

 

+Energy of motion of theindividual particle about the 

mass center (spin kinetic energy) 

 

Only for    

.

0

1

N

j j

j

m r 




 



MOTION IN NONINERTIAL REFERENC FRAMES 

 

Newton’s law is based on the inertial reference frame: 

 

  ~ Allow moving frame with constant (uniform) velocity 

 

A noninertial reference frame: 

 

With linear acceleration wrt some I.R.F. 

 

or 

 

With some angular velocity wrt an I.R.F. 

 

~ Both will occur in various cases. 



Any reference frame attached to the Earth: 

 

Inertial reference frame ? 

 

Acceptable assumption ? : negligible errors 

 

Gun ?  I.C.B.M. ? 

 

: Most practical problems involve reference frames ~ 

 

~Non-inertial frame ! 

 

Objective of this section : 

How dynamics can be formulated and analyzed using 

moving reference frame ? 



Reference frame : 

 

oInertial reference : OXYZ with unit vector I,J,K. 

 

oAmoving (  )reference frame :  

oxyzwith unit vector i,j,k 

 

 

 

 

 

 

 

 

 



Refer to Fig.1.28, 

 

rp(t) = rB (t) + r rel (t) 

 

 Then 

 

vp = v B + ( r rel) + v rel 

 

 

        ~ Motion of a Particle P in a Box ! 

 

         = ? 

 

 

 



 

 

Acceleration: 

 

 
d

dt
vp = 

d

dt
v B+

d

dt
( r rel) + 

d

dt
 v rel 

 

 

ap = a B + ( r rel) +  
d

dt
r rel + 

d

dt
v rel 

 

 

Remember 

 



d

dt
rrel = ( r rel) + v rel 

 
d

dt
vrel =  ( v rel)  + arel 

 

 

Then, 

ap = a B + ( r rel) +  
d

dt
r rel + 

d

dt
v rel 

 

Finally, 

 

ap = a B + ( r rel) +  (   r rel )+ 2( v rel) + arel 

 

 This is based only on kinematics ! 



  Absolute frame (Inertial frame : OXYZ )  

 

  ~ Moving frame(Non-inertal frame : oxyz ) 

 

Keep in mind : Both observing the same particle  

( Remenber Fig.1.28) 

 

 

Coriolisforce : 

 

(PLANA MOTION OF RIGID BODY) 

 

 

 

 



VIRTUAL WORK 

 
 

 

Method of Virtual Work : 

 

What is virtual(  ) ?  What is actual ( d ) ? 

 

What is statics ?  What is dynamics ? 

 

Time is involved ! 

 

 

Mechanics: 

 

o Vector Mechanics : Free body diagram for isolated body 

 



~ Reaction should be involved  !Force  !~  Vector ! 

 

o Analytical Mechanics , Computational ?? 

 

       ~ System as a whole ! 

 

 

 

 

 

 

 



Kinetic Energy and Generalized Momenta 

 

- Motion of a dynamical system: 

 

Evolution of a single point in the configuration space. 

 

- Physical coordinate of the system vary with time: 

 

Generalized(~Mathematical) coordinates using  

 

the transformation equations 

 

   ! Space fixed and Body fixed ; Final goal ? 



 Up to now,  

 
( , , ) ( , , )r z and r   : orthogonal coordinate system 

 

- Time rate of change of the generalized coordinates  

 

characterize the motion of a point along a curve in the  

 

configuration space.  

 

-Generalizedvelocities of the system:dqi/dt 

 

~ Change of generalized coordinates w.r.t time: 

 



: Car pendulumsystem  ( 2 D model ) 

 

(q1)distance, +(q2)angular rotation angle. 

 
( , )x  ~ 1 2( , )q q  :  body fixed ? orthogonal ? 

 

     :  Generalized coordinate ! 

 

 Generalized velocity are not necessarily 

 

absolute velocity:Depend on ref.. 

 

 



Firstly,single particle in 3-D space : up to Eqn(2.17) 
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(
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
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
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
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

3

2
)  

 

Using index notation(without   ),  

 
1

(
2

m x


1
2
 + x



2

2
 + x



3

2
) = 

1

2
m x



i x


 i  ( for i= 1..3)   :  Orthogonal system 

 

 

Physical coordinate: 

 

xi=xi(q1,q2,q3,t)(2.15) 

 

qi(i=1..3): Generalized coordinate 



Applying chain rule for total derivatives to  

 

the transformations (2.15) 

 

  Total derivative for i= 1,,3 

 

  For i = 1 

 
3 3

1 1 1 1 1

1 1

j
j

j jj j

dx x q x x x
q

dt q t t q t



 

    
   

    
   

 

Naturally, (using summation convention, index notation) 

 



3

, ,

1

i i i i i
j j i j j i t

j jj

dx x x x x
q q x q x

dt q t q t

  



   
     

   
 (2.16) 

 

If ix  is not an explicit function of time, 

 

what  happens?    

 

Next,  T = , , , ,
1 1

( )( )
2 2

i i
i j j i t i k k i t

dx dx
m m x q x x q x

dt dt

 

    

 

= , , , , , , , ,
1 1 1

( ) )
2 2 2

i j i k j k i j i t j i k i t k i t i tmx x q q m x x q x x q mx x
  

       

 

         2ndterm : index k -> j 

Why ? 



= , , , ,
1 1 1

2 )
2 2 2

jk j k i j i t j i t i tq q m x x q mx x
 

       

 

=
1

2
jk j k j jq q q  

 

                           (2.17) 

 

       For single particle !<~>Eqn(2.18) for N 

 

Among the N particles, choose i-th particle, and then  

 

dqi/dt can be expressed in terms of generalized  

 

coordinates ! -> 

 

Just through a coordinate transformation by using a  



 

Chain rule !!wrtx - >q 

 

: Rate of change of physical coordinate xi depends  

 

on the rate of change of the generalized coordinates.  

 

It may also depend on time t if the change of  

 

coordinates contain texplicitly. ( * Moving frame ) 

 

Kinetic energy of N-particles : 

 

 In terms of generalized coordinate :  



Eqn(2.17) <~>Eqn(2.19) 

 

 

T=T( q, dq/dt , t) 

 

 

Actually depend on generalized coordinates ~  

 

determined by the nature of transformation: 

 

       T = T2 + T1 +T0 

 

  Homogeneous Quadratic + Linear + Constant 

 



: Coordinate transformation does not  

 

dependent on t T1=T0=0 

 

Generalized momentum 

 

= Partial differentiationof Twrtdqi/dt: 

 

Kinetic energy/ Generalized velocity 

 

Physical interpretation of a particular component of  

 

a generalized momentum pi dependson the nature of  

 



the corresponding generalized coordinates. 

 

In 3–dimensional space :orthogonal bases 

 
1

2
m(vx

2+vy
2+vz

2) ~ quardratic function ! ( , , ), ( , , ).r z r    

 

linear momentum  

 

Ex) Earth surface! 

 

Generalized coordinates may be actual x-,y- and z- 

 

components of position 



 

Using the definition, px =mdx/dt ,py=.., pz=.. 

 

In spherical coordinates, the kinetic energy is 

2 2 2 2 2 21
cos

2
T m r r r 

 
   

 

 

 

Generalized coordinates : distance, two angles 

 

Generalized momenta conjugate to these coordinates : 

 



( .. )rp mr linear momentum
.  

2 2cos ( .. )p mr angular momentum 
 .  

2 ( .. )p mr angular momentum   

 

 Based on geometric configuration ~  

 

independent of the type of generalized coordinates ! 

 

 

Generalized Force 

 



- Vector mechanics :  

 

Time rate of change of the momenta of a system ~  

 

force, moment 

 

- Analytical mechanics: 

 

Geometric relationships between generalized  

 

coordinates obscure the distinction between the two  

 

momentum ! 

 



Energyconcept ! 

 

Virtual Work due to the actual forces is defined as  

 

( 1... )i iW F r i N        (2.28) 

where i ixF F i  

 

Applying the chain rule, 

 

( 1... )i
i j

j

x
x q j n

q
 


  



(2.29) 

 



Virtual displacement is defined for time is fixed 

 

0t   
 

The objective is to examine the instantaneous effect of a  

 

force on the generalized coordinates.  

 

Each actual force drives the physical coordinates, which  

 

in turn will induce some resulting action on the  

 

generalized coordinates  



Kinetic Energy and Generalized Momenta 

 

- Physical coordinate :Generalized(~Mathematical) !  

 

Space fixed and Body fixed ; Final goal ? 

 

 EX: 
( , , ) ( , , )r z and r   : orthogonal coordinate system 

 

 

Eqn(2.17) <~>Eqn(2.19) 

 

 



T=T( q, dq/dt , t) 

 

       T = T2 + T1 +T0 

 

  Homogeneous Quadratic + Linear + Constant 

 

: Coordinate transformation does not dependent on t 

T1=T0=0 

 

Generalized Force  ~Work 

 

Energyconcept ! 

 

Virtual Work due to the actual forces: 



 

( 1... )i iW F r i N        (2.28) 

where i ixF F i  

 

Chain rule, 

 

( 1... )i
i j

j

x
x q j n

q
 


  



(2.29) 

 

Virtual displacement :time is fixed 

 



0t   
 

Objective 

 

Examine the instantaneous effect of a force on the  

 

generalized coordinates.  

 

~Each actual force drives the physical coordinates - 

 

Some resulting action on the generalized coordinates. 

 

 



( 1... )i
i j

j

x
x q j n

q
 


  

  
 

:virtual displacement of the physical coordinate  xi 

 

~simultaneous virtual displacements of the  

 

generalized coordinates  qj 

 

 A virtual displacement of a single coordinate, xi,  

 

~ produce a simultaneous virtual displacement in  

 

some or all of the generalized coordinates.  



 

As a result: 

 

Virtual work done by a physical component of  

 

forceFix under a virtual displacement  xi 

 

~virtual work done under the simultaneous  

 

combinations of virtual displacements  q j : 

 

( ) ( ) ( )

( )
i x i i x

i

j

j

x
F x F q

q


  

 (2.30) 



 

Individual terms in the summation ~ 

 

Contribution of the physical component Fix along the  

 

directionof the generalized coordinate q j. 

 

Rearranging the terms  and factoring out  q j: 

 

Total virtual work : 

 

1 1

(
n N

i i i
ix iy iz j

j i j j j

x y z
W F F F q

q q q 

   
     

    
  (2.31) 



N = ?   n = ?  :  N  =  n ? 

 

In terms of the simultaneous virtual displacements of  

 

the generalized coordinates, can be written as 

 
j jW Q q  for  j=1..n 

 

  What is jQ  ? 

 

~ This means what? 

 

 Generalized force Qj is determined by computing the 



virtual work done under an infinitesimal change qj 

 

whileleaving the other independent generalized  

 

coordinates fixed.  

 

Imagine the system frozen at an arbitrary instant.  

 

: Consider an arbitrary configuration of the system.  

 

Rewriting the virtual as 

 

.( 1.. )i iW Q q i n     



A generalized force Qj contributes to W only if the  

 

corresponding generalized coordinate qj is given a virtual  

 

displacement. ( independent !) 

 

:Virtual work W  of the actual forces for each  

 

individual variation of only one of the generalized  

 

coordinates at a time.  

 

Since the transformations are invertible, a single  

 



variationq jwill induce a simultaneous variation of one  

 

or more of the physical coordinates. 

 

 A virtual displacement of a generalized coordinate   

 

inphysical space ~ 

 

A combination of virtual displacements subjected to the  

 

constraints of the system. 

 

 

 



Generally, the corresponding virtual work done by the  

 

physicalcomponents of the forces can be computed and  

 

set equal to Q(i)q(i).  

 

Example: Figs.2.9, 2.10 

 

Consider a spring-loaded cart with a swinging pendulum  

 

attached to it.  

 

This system has two degrees of freedom.  

 



Chosen x and as generalized coordinates. 

 

Since x  and are independent variables, 

 

x x   ,      (2.34) 

 

And  0x  ,  (2.35) 

 

are two sets of admissible virtual displacements.  

 

Now compute the corresponding virtual work done by 

the external forces under each of the designated virtual 

displacements: 



If 0x  and    

sW F x    (2.36) 

 

If 0x  and 0  (Fig. 2.10), 

 

 
sinW mgl      (2.38) 

 
sinQ mgl    (torque)               (2.39) 

 

 

Then for an arbitrary combination of virtual  

 



displacements, the total virtual work is 

 
sinW kx x mgl        (2.40) 

 

 

Note: 

 

Physical interpretation of a generalized force depends on  

 

the significance of the related generalized coordinate.  

 

Once a given set of generalized coordinates are specified, 

the generalized forces can in principle always be 



determined, regardless of the physical interpretation of  

 

the generalized coordinates.  

 

~Holonomic systems, the computation of generalized  

 

forces is very simple. :Virtual work done byholonomic 

 

constraint forces under a set of arbitrary virtual  

 

displacements compatible with the constraints is equal  

 

to zero.  

 



Therefore, in the computation of generalized forces,  

 

only the applied forces need to be considered. 

 

 

This results in a considerable benefit in the formulation  

 

of the equations of motion in terms of the generalized  

 

coordinates. 

 

Special consideration may be given to conservative forces. 

Suppose that all the forces acting on a system of N 

particles are conservative. Each physical force is 



derivable from a potential function.  

 

Suppose : a single potential function :  

 

1 1 1 2 2 2 ,( , , , , , , , , )N N NV V x y z x y z x y z  

 

The force on the ith particle may be obtained as 

 

i iF V   

 

 

Where the gradient i  denote the operator 

 



ˆ ˆ ˆi+ j ki

i i ix y z

  
  

    

Substituting the physical components of the forces (2.42)  

 

into Equation (2.31) results in the characterization of the  

 

virtual work as the negative of the variation of the  

 

potential function : 

 

1

( )
N

i i i

i i i i

V V V
W x y z V

x y z

  
        

  
 (2.44) 

 

Thus the virtual work done by a collection of 



conservative forces, under specified virtual 

 

displacements, is given as the negative of the variation of  

 

potential energy.  

 

Principle of Virtual Work: 

 

A conservative system is in static equilibrium iffthe  

 

totalpotential energy of the system is stationary 

 

0V   
 



Suppose :Single potential function   

 

1 1 1 2 2 2 ,( , , , , , , , , )N N NV V x y z x y z x y z  

 

Force on i-th particle may be obtained as 

 

i iF V  (2.42) 

 

in here  

 
ˆ ˆ ˆi+ j ki

i i ix y z

  
  

    

 



SubstituteEqn.(2.42) into W  : Eqn.(2.31) ,  

 

1

( )
N

i i i

i i i i

V V V
W x y z V

x y z

  
        

  
 (2.44) 

 

: Virtual work done by conservative forces ~ 

 

Negative of the variation of potential energy. 

 

 

Principle of Virtual Work: 

 

A conservative system is in static equilibrium iffthe  

 



totalpotential energy of the system is stationary 

 

(MINI ?MAX ?) 

 

0V   
 

Principle of Stationary Potential Energy~ 

 

Necessary and sufficient condition for static equilibrium  

 

of a conservative system. 

 

 

 



Transforming to generalized coordinates : 

 

Total P.E. of a conservative system as 

 

1 2( , , , )nV V q q q (2.46) 

 

Consequently, the variation of the P.E. function in terms  

 

of jq is: Eqn(2.47) 

 

or 

 

1

,
n

j j j

j j

V
W q V q q

q


      


 ( for j=1..n)(2.48) 



 

For a conservative system: 

 

Generalized forces ~ also derivable from a potential 

 

function in terms of the generalized coordinates qj.  

 

That is,  

j

j

V
Q

q


 

 (2.49) 

 

Therefore the determination of generalized forces for  

 

conservative systems is very easy (?) 



Usingtransformation of coordinates 

 

~As a final step in the derivation of equations of motion  

 

After the change of variables has been consummated, we  

 

will only need to keep the final result. 

 

LAGRANGE‟S EQUATIONS OF MOTION 

 

Up to now, we consider the connection between physical  

 

variable and generalized coordinates based on the  

 



geometric configuration of a system( admissible !).  

 

Especially, generalized coordinates compatible with the  

 

constraints make the kinematics much more manageable 

 

forholonomic systems 

 

 

We are now in a position to make the transition between  

 

vector mechanics and analytical mechanics.  

 

 



Instead of using free-body diagrams : 

 

Based on the variation of energy and the minimum  

 

number of coordinates needed to characterize the  

 

dynamics of the system ( always possible ?).  

 

 

: Lagrangiandynamics !! 

 

Kinetic energy, potential energy, and virtual work are all  

 

scalar quantities. Thus, the transformation of these  



 

quantities is rather straightforward.  

 

Based on a system qjinstead of the physical coordinates ri.  

 

-A unified approach in a way that is independentof any  

 

particular coordinate system or set of generalized  

 

coordinates. 

 

For a system of N particles subjected to only holonomic 

 

constraints. The more general casewill be considered 



later.  

 

Assume a system withn degrees of freedom and that  

 

there is a transformation : 

 

For the i th particle ina vector form as 

 

miai= Fi
(2.50) 

 

or 
pi

i

d
F

dt
                                (2.51) 

 



: linear momentum of the i-th particle as 

 
p ri i im                                (2.52) 

 

Find out how the equations of motiontransform under  

 

the transformation to generalized coordinates.  

 
(..)

d

dt
? :  

 

Generalized momentum corresponding to the k th 

 

generalized coordinate is given by 



 

( ) ( )k k

k

d d T
p p

dt dt q


 

 (2.53) 

 

By definition, the total kinetic energy of the system is 

 

2 2 2

1

1
( )

2

N

i i i i

i

T m x y z


   (2.54) 

 

then the generalized momentum pk as 

 

1

( )
N

i i i
k i i i i

ik k k k

x y zT
p m x y z

q q q q

  
   
   

 (2.55) 

 



Remember the chain rule : 

 

1

N
i i

i j

j j

x x
x q

q t

 
 

 
  

 

Then take derivative wrt kq : 

 

i i

k k

x x

q q

 


  (2.57) 

 

Thus, each component pkcan be expressed as Eqn.(2.58) 

 

 



Taking the total time derivative of Eqn (2.58) and  

 

applying the product rule to the terms in the summation  

 

( Remember : ( )
d

x y x y x y
dt

   

   ) 

 

1

( ) ( )
N

i i i
i i i i

ik k k k

x y zd T
m x y z

dt q q q q

  
  

   
  

1

[ ( ) ( ) ( )]
N

i i i
i i i i

i k k k

x y zd d d
m x y z

dt q dt q dt q

  
  

  
  

 

Remind the terms in the first summation as  

 



the Newton‟s Second Law 

 

i i ixm x F
i i iym y F

i i izm z F  

 

Thus the terms can be rewritten as 

 

1 1

( ) ( )
N N

i i i i i i
i i i i ix iy iz

i ik k k k k k

x y z x y z
m x y z F F F

q q q q q q 

     
    

     
 

 

where the right-hand side ~ generalized force Qkgiven by 

the transformation equations.  

 



To interpret the second summation terms in Eqn(2.59),  

 

note that  

 
2 2

1

( )
n

i i i
j

jk j k k

x x xd
q

dt q q q t q

  
 

    


 

 

,

1

[ ]
n

i i
i i kj

jk j k

x x
q x x

q q t q

 



    
   

      
  

i

k

x

q





Thus the time rate of change of the kth generalized  

m



momentum is given byEqn(2.60) 

 

Finally, the equations of motion in terms of qk: 

 

( ) k

k k

d T T
Q

dt q q

 
 

  1,2, ,k n (2.61) 

 

: General form of Lagrange‟s Equations of Motion 

 

 There is one equation corresponding to each qk. 

 

The system of equations represents a coupled system of  

 



T

Thusthe time rate of change of the kth generalized  

m

momentum is given byEqn(2.60) 

 

Finally, the equations of motion in terms of qk: 

 

( ) k

k k

d T T
Q

dt q q

 
 

  1,2, ,k n (2.61) 

 

: General form of Lagrange‟s Equations of Motion 

 

 There is one equation corresponding to each qk. 

 



The system of equations represents a coupled system of  

 

ordinary equations governing the evolution of the  

 

dynamical system in terms of the n generalized 

 

coordinates. ~ Finite D.O.F ! 

 

   Continuous system ( such as beam, plate and shell ):  

 

PDE ! 

 

Alternatively, Lagrange‟s equations of motion may be  

 



written in terms of the generalized momenta as  

 

( )k k

k

d T
p Q

dt q


 
 ,  1,2, ,k n  

 

This means that Newton‟s Second Law (2.51) is  

 

transformed under a change of variables to generalized  

 

coordinates 1 2, , nq q q .  

 

Hence Newton‟s Second Law is notinvariant under an  



arbitrary change of variables. The extra term represents  

 

inertial effects induced by the coordinate  

 

transformations.  

 

Lagrange‟s equations allow the formulation of the  

 

equations of motion, independent of the physical  

 

significance of the variables. 

 

Note that the dynamics of the system is thus  

 



characterized by the kinetic energy and the virtual work  

 

done by generalized forces.  

 

The hallmark of the Lagrangian formulation is that the  

 

energy contains the dynamic information.  

 

The use of generalized coordinates, compatible with the  

 

constraints, results in the minimum number of variables  

 

needed to completely describe the motion.  

 



Furthermore, for generalized coordinates adopted to the  

 

constraints, the forces of constraint do not contribute to  

 

the virtual work.  

 

Hence the reactions do not appear in the resulting  

 

equations of motion.  

 

 

Ex: a simple pendulum (Fig 2.11).  

 

Assume that a particle of mass m is attached to a 



massless rod that is free to rotate in a vertical plane  

 

about a frictionless pin.  

 

The motion of this single-degree-of-freedom system may 

be described by the generalized coordinate  .  

 

The Kinetic energy of the system is given in terms of the  

 

generalized velocity   as 

 
21

2
T mv 2 21

2
ml 

 



 

From a previous example, the generalized force  

 

associated with the rotational coordinate of a pendulum  

 

was derived, based on virtual work, as 

 

sinQ mgl    

 

The equation of motion based on the Lagrangian 

 

formulation is therefore represented by 



( )
d T T

Q
dt


 

 
 

   

That is,  

 
2( ) 0 sin

d
ml mgl

dt
   

 

 

which can be set into the more familiar form 

 

sin 0
g

l
  

 

 

The systematic approach of the Lagrangian formulation  

 



is evident in this example.  

 

The formulation is based on the Kinetic energy and the  

 

virtual work.  

 

Since the variable  is adopted to the constraint of  

 

circular motion, the equation of motion has been set up  

 

without need to consider the force of constraint acting on  

 

the particle.  

 



The constraint force is in fact the tension in the cable.  

 

Ex : 

 

Consider the two-degree-of-freedom system consisting  

 

of two carts coupled by linear elastic springs. ( Fig. 2.12) 

 

The generalized coordinates q1 and q2 represent the  

 

displacements of the carts from the unstretched 

 

configurations of the springs. The kinetic energy is  

 



readily formulated as  

 

1 1 2 2

1 1

2 2
T m q m q 

 

 

The generalized forces can be deduced by the method of  

 

virtual work.  

 

Then 

1 1 1 2 2 1( )Q k q k q q    , 2 2 2 1( )Q k q q    

 

 

 



 

1

1 1

( )
d T T

Q
dt q q

 
 

  ,       2

2 2

( )
d T T

Q
dt q q

 
 

  (2.62) 

 

The equations of motion (2.62) may be simplified and put  

 

in standard form as 

 

1 1 1 2 1 2 2( ) 0m q k k q k q     

2 2 2 1 2 2 0m q k q k q    

 

In a Matrix Form ? 



 

CONSERVATIVE SYSTEMS 

 

Lagrange‟s equations of motion represent a unified  

 

approach to deriving the governing equations of a  

 

dynamical system.  

 

Equations (2.61) are completely general, in that they  

 

apply generically to all mechanical systems.  

 

The governing equations are based on the total Kinetic  



 

energy of a system and the generalized forces derived by  

 

the method of virtual work.  

 

Only generalized forces directly affecting the generalized  

 

coordinates contribute to the virtual work.  

 

Lagrange‟s equations of motion may also be expressed in  

 

several alternate forms, depending on the nature of the  

 

generalized forces.  



 

For a conservative system, there exists a potential  

 

function in terms of the generalized coordinates 

 

1 2( , , , )nV V q q q  

 

from which the generalized forces can be derived as 

 

k

k

V
Q

q


 

 (2.63) 

 

Substituting the generalized force (2.63) into  



 

( )
k k k

d T T V

dt q q q

  
 

   (2.64) 

 

Since the potential function only depends on the  

 

generalized coordinates,… 

 

Thus 
( )

k k

T T V

q q

  


   

 

Rewriting Lagrange‟s equations (2.64) results in 



( ) ( )
0

k k

d T V T V

dt q q

    
  

    
 

This version of the equation has a particularly simple  

 

form.  

 

The scalar quantity in the parentheses is defined as the  

 

Lagrangian function: 

 

( , , ) ( , , ) ( )L q q t T q q t V q   
 



It is a function of the generalized coordinates and  

 

velocities.  

 

The Lagrangianrepresents the difference between the  

 

totalKinetic energy and the total Potential energy of a  

 

conservative system.  

 

The equations of motion (2.61) can thus be written as 

 



( ) 0
k k

d L L

dt q q

 
 

   

 

which is the standard form of Lagrange‟s equations of  

 

motion for conservative systems.  

 

A formulation based on the Lagrangian is convenience 

 

that allows by-passing the determination of generalized  

 

forces from the method of virtual work.  

 



It is interesting to note that for a conservative system all  

 

the dynamics are characterized by a single scalar  

 

function, the Lagrangian of the system.  

 

The Lagrangian function simplifies the equations of  

 

motion and often aids in the understanding of the  

 

dynamics of the system. 

 

 

 



Practices! 

 

1. A particle of mass m is suspended by a massless wire  

 

of length  cos ..( 0)r a b t a b      to form a spherical 

 

pendulum. Find the equation of motion. 

 

Sol)  T ~ p.102,Eqn.(2.24), V = cosmgr   

 

2. A particle of mass m can slide without friction on  

 

the inside of a small tube which is bent in the form  



 

of a circle of radius r. The tube rotate about a vertical  

 

diameter with a constant angular velocity  .  

 

Write the equation of motion. 

 

Sol) T=
2 2 2 21
( sin )

2
mr   



 , V= cosmgr  , L=T-V 

 

3. A particle of mass m can slide on a smooth wire  

 

having the form 3y x 2 
, wherethe gravity acts in the  

 



direction of the negative y-axis.  

 

Obtain the equations of motion. 

 

Sol) T=
2 2

1
( )

2
m x y

 

 , V= mgy with 23y x  

Insert : y ~ Finally, 

 

4. Text : p.120 

 

 

 



LAGRANGIAN SYSTEMS  

 

Most dynamics problems ~  Holonomic ! 

 

 (:Not all systems are conservative ) 

 

Aconservative force -Derivable from a potential energy  

 

(Depending only on the spatial coordinates of a system) 

 

- Lagrangian can be constructed and the dynamics of  

 

the system is contained in the Lagrangian. 

 



But there may still be a scalar function from which the  

 

generalized components of a force may be derived.  

 

Suppose : 

 

A scalar function ( , , )V q q t for a generalized force Qkas 

 

in Text ! 

 

~ We call ( , , )V q q t as a generalized potential function.  

 

 



Substituting the generalized force (2.65), then 

 

Lagrange‟s equations (2.61) results in  

 
( , , ) ( , , ) ( , , ) ( , , )

[ ] [ ]
k k k k

d T q q t T q q t d V q q t V q q t

dt q q dt q q

   
  

    (2.66) 

 

Now, we can still define a Lagrangian function in terms  

 

of the kinetic energy of the system and the generalized  

 

potential function as ( , , ) ( , , ) ( , , )L q q t T q q t V q q t   

 



By setting all terms to the left-hand side,  

 
( , , ) ( , , )

[ ] 0
k k

d L q q t L q q t

dt q q

 
 

  (2.67) 

 

:Identical to Lagrange‟s eqns for conservative systems.  

 

Note:Unless the potential function depends onlyon the  

 

generalized coordinates, the system governed by  

 

Equation (2.67) is notconservative.  

 

 



Holonomic systemsderivable from a generalized poten-  

 

tial function ( , , )V q q t are known as Lagrangian systems. 

 

A well-known exampleof a velocity-dependent potential 

 

-A charged particle in an electromagnetic field. 

 

 The force on the particle is given by 

 

{ }
e

e A v curlA
c

    
 

 



: e - charge carried by the particle,  

 
 scalar potential,   

 

Avector potential of the field.  

 

The electromagnetic force field is derivable from the  

 

generalized potential  

 

( , ) ( )
ev A

V r r e r
c




 
 

 



Not all systems are Lagranian, although all generalized  

 

forces~Conservative or Non-conservative 

 

: Depending on the nature of the actual forces acting on a  

 

system.  

 

The virtual work done by a generalized force Qkunder a  

 

virtual displacement kq can be considered  

 

k

cons nc

k q k kQ W W     



 

Resultant generalized force associated with a generalized  

 

coordinateqkcan thus be spilt into two contributions: 

 

… 

 

Using conservative component such aspotential function,  

 

Then, each generalized force may be decomposed as  

 

nc

k k

k

V
Q Q

q


  

  



Construct the Lagrangian function L T V   and formulate 

 

Lagrange‟s equations of motion, in hybrid form, as 

 

( ) nc

k

k k

d L L
Q

dt q q

 
 

  ,     1,2, ,k n  

 

Here nc

kQ represent generalized forces not derivable from a  

 

potential function.  

 
 

 

 



DISSIPATIVE SYSTEMS 

 

Are all forces derivable from a potential function ? 

 

~ Forces due to dissipation of energy 

 

: frictionforce isnon-conservative,  

 

Nevertheless, some non-conservative generalized forces  

 

may still be derivable from yet another scalar function. 

 

 

 



 Components proportional to the velocities of the  

 

particles 

 

iix x iF c x  ,         iiy y iF c y  ,         iiz z iF c z 
 

 

 

The virtual work done by these dissipative forces  

 

under a set of virtual displacements is 

 

F r
i

W 
1

( )
i i i

N

x i i y i i z i i

i

c x x c y y c z z  


     



1 1

( )
i i i

N n
i i i

x i y i z i k

i k k k k

x y z
c x c y c z q

q q q


 

   
    

   
 

 
 

2 2 2

1 1

1
( )

2 i i i

N N

x i y i z i k

k k k

c x c y c z q
q


 

 
    

 
   

 

Generalized forces associated with the dissipation forces  

 

2 2 2

1

1
( )

2 i i i

N
nc

k x i y i z i

i k

Q c x c y c z
q


   


  

 

… 

 



 

Now, define a scalar function forgeneralized velocities 

 

2 2 2

1

1
( )

2 i i i

N

x i y i z i

i

D c x c y c z


    

 

Thus the dissipative generalized forcesin terms of D : 

 

1

n
nc

k k

k

W Q q 



1

n

k

k k

D
q

q





 




 
 

D: Rayleigh‟s Dissipation Function  

 



Finally,the most general form of Lagrange‟s equations of  

 

motionas 

 

*( ) : (2.68)k

k k k

d L L D
Q

dt q q q

  
  

    

 

where L T V  :Lagrangian,D:Dissipation function 

 
*

kQ :Generalized force not derivable from a potential 

function or a dissipation function. 

 

 



Note : Rayleigh‟s dissipation function ~one-half the  

 

rate at dissipated energy : average loss of power in a  

 

non-conservative system. 

 

Ex :A simple spring-mass system as in Fig.2.13 

 

Additional loading with a viscous damper,a harmonically  

 

applied forcing function  

 

Lagrangian of the system? L T V   

 



2 21 1

2 2
L mq kq   

 

The dissipation function for viscous damper : 

 

21

2
D cq

 

 

Another generalized force ~ applied harmonic force  

 

Substituting into Eqn (2.68) : 

 

( ) ( ) cos f

d
mq kq cq A t

dt
     



 

which can be put into standard form as  

 

cos fmq cq kq A t    

 

Ex:Simple pendulum with pin friction as  inFig 2.14 

 

Assume :Pin exerts a resisting moment proportional to  

 

the angular velocity of the pendulum: 

 

fM    

 



Instantaneous rate of energy loss  

 

fP M 
 

 

Dissipation function (average power lost) is  

 
21

2
D   

 

Since * 0Q  , the equation of motion is 

 

2( ) ( sin )
d

ml mgl
dt

        

 



FORCES OF CONSTRAINT 

 

Lagrangianformalism:Highlighted by two main features 

 

It has been demonstrated ! 

 

Part of the advantage:Constraint forces do no virtual  

 

work under a set of virtual displacements compatible  

 

with the constraints.  

 

Constraints reduce the number of degrees of freedom.  

 



The constraint forces themselves do not appear in the  

 

equations of motion : Symmetry of a system ! 

 

Holonomic systems can be described by a set of  

 

independent generalized coordinates free of constraints.  

 

Systems with non-holonomic constraints cannot be  

 

reduced to independent generalized coordinates.  

 

 

 



The equations of motion must be augmented by the  

 

Constraints ~>Forces of constraint are also established. 

 

Constraint forces in holonomic systemsmay also be  

 

analyzed. 

 

Only realize that constraints are enforced by reacting  

 

forcesin the directions normal to the constraint surfaces  

 

 

 



Physically, a constraint must be imposed in the form of  

 

forces or moments. Thus we associate constraints with  

 

additional generalized forces acting on the system.  

 

These forces depend on the motion and cannot be found  

 

priorto solving the equations of motion. 

 

 

Each holonomic constraint can in principle be replaced  

 

by a reacting constraint force. Additional degrees of 



freedom may be introduced onto the problem by adding  

 

generalized coordinates corresponding to the violation of  

 

the constraints.  

 

These additional coordinates are called superfluous  

 

coordinates. The generalized forces associated with the  

 

superfluous coordinates are the forces of constraint. If  

 

the original coordinates and the extra coordinates are  

 



FORCES OF CONSTRAINT 

 

Lagrangianformalism: 

 

Generalized coordinateMinimum set of Eqns 

 

Part of the advantage:Constraint forces do no virtual  

 

work under a set of virtual displacements compatible  

 

with the constraints. Generally, 

 

Constraints reduce the number of degrees of freedom.  

 



The constraint forces do not appear in theeqns of  

 

motion : Symmetry of a system ? 

 

~Holonomic systems can be describedin terms of 

 

independent generalized coordinates free of constraints.  

 

~Non-holonomic constraintscannot be reduced to  

 

independent generalized coordinates.  

 

 

 



Eqns of motion must be augmented by theConstraints 

 

~>Forces of constraint are also established. 

 

*Constraint forces in holonomic systemsmay also be  

 

analyzed. 

 

: Constraints are enforced by reacting forces in the 

 

directions normal to the constraint surfaces  

 

 

 



Physically, a constraint must be imposed in the form of  

 

forces or moments. ~>Constraints with additional  

 

generalized forces acting on the system. These forces  

 

depend on the motion and cannot be found prior to  

 

solving the eqns of motion. 

 

: Should be solved simultaneously 

 

  Problems with or without constraint ? 

 



~Holonomic constraint can in principle be replaced  

 

by a reacting constraint force. - Additional dof may be  

 

introduced onto the problem by adding generalized  

 

coordinates(superfluouscoordinates)corresponding to  

 

theviolation of the constraints.  

 

The generalized forces associated with the superfluous  

 

coordinates are the forces of constraint.  

 



In case, original coordinates and the extra coordinates 

 

are considered as independent, then the resulting  

 

eqns of motion will contain the constraint forces. 

 

 These forces will only be in the eqns associated with the  

 

superfluous coordinates. After the eqns of motion are set  

 

up, the superfluous coordinates are set to constant values.  

 

 

 



Setting up the problem this way results ineqns involving  

 

the constraint forces and also gives the values of these  

 

forces necessary to enforce the given constraints.  

 

For non-holonomic constraints, the eqns of motion are  

 

formulatedusingLagrange multiplier method. 

 

Suppose:n generalized coordinates 1 2, , , nq q q
 

 

isrestricted(?) by anon-holonomic constraint: 



 

1 1 2 2 0 0n nAdq A dq A dq A dt      

 

Since the variations take place without increment in  

 

time, 0t   , the resulting eqn of constraint for the virtual  

 

displacements becomes  

 

1 1 2 2 0n nA q A q A q      (2.69) 

 

Geometrically, Eqn (2.69) defines a direction orthogonal  

 



to the virtual displacement q . (Vector form ?) 

 

Thus the constraint force is a scalar multipleof the vector  

 

1 2( , , , )nA A A . This scalar is a function of time ( )t . 

 

Total generalized force acting on the generalized  

 

coordinateqk, including applied and reacting forces, is 

 
k kQ A  

 

The resulting eqns of motion for non-



holonomicsystemsare: 

 

( ) k k

k k

d T T
Q A

dt q q


 
  

  ,     1,2, ,k n    (2.70) 

 

Eqns (2.70) together with (2.69) represent n+1 equations  

 

inn+1 unknowns, including the Lagrange multiplier **.  

 

These eqns are solved simultaneously. In addition to  

 

solving for the generalized coordinates, the solution gives  

 

the component of the reacting constraint force **.  



Generalization: System is subjected to Jnon-holonomic 

 

constraints given by 

 

1 1 2 2 0 0j j jn n jA q A q A q A     (2.71) 

 

or equivalently as 

 

1 1 2 2 0 0j j jn n jA dq A dq A dq A dt      

 

wherej ranges from 1 to the number of such constraints  

 

J.Coefficients jkA  may be functions of the generalized 



coordinates and time. Introduce J Lagrange  

 

multipliers, ( )j t , one for each constraint eqn (2.71).  

 

~Total generalized force driving the k-th generalized  

 

coordinate is 

1

J

k j jk

j

Q A


  

 

Thus,eqn of motion for each generalized coordinate qk: 

 

1

J

k j jk k

jk k

d T T
Q A q

dt q q
 



   
    

   
 (2.72) 



 

The set of eqns (2.72) together with the J eqns of  

 

constraint (2.71) constitute n + Jeqns in n + Junknowns.  

 

These eqns must be solved simultaneously for the  

 

generalized coordinates and the J Lagrange multipliers  

 
( )j t . The generalized constraint force reacting on the  

 

coordinateqk: 

1

J

k j jk

j

R A


  



 

Method of Lagrange multipliers may also be applied  

 

to systems with holonomic constraints. Recall that a  

 

holonomic constraint 1( ,.... , )nf q q t const  

 

may be converted to differential form as  

 

1 2

1 2

0n

n

dqdq dqdf f f f f

dt q dt q dt q dt t

   
     
     

 

This is the same form as a non-holonomic constraint 



 

(2.71), with the coefficients 

 

jk

k

f
A

q





0j

f
A

t



  

 

Thus holonomic systems with constraints can also be  

 

analyzed, as well as systems having constraints of both 

 

types. 

 

As an example, (p.120):Consider the dynamics of a 



particle constrained to slide on a frictionless wire. This  

 

wire is in the shape of a parabola that is rotating about  

 

its axis of symmetry with constant angular velocity   

------------------------------------------------------------------------ 

Cylindrical coordinates are intrinsic to this problem.  

 

There is only one degree of freedom, namely the position  

 

of the mass on the wire. The two constraintsare
2z br ,  

 

wherebis some constant, and   . These constraints are 



holonomic, which imply constraints of the form (2.71)  

 

as 

 

1 2( 2 ) 0  and 0z br r        
 

The coefficients in (2.71) are seen in matrix form as  

 

0
2 01

0
0 10

0

r
br

z







   
     

     
     

     
 

Hence there will be two Lagrange multipliers – one for  



 

each constraint. The Lagrangian of the system is  

 

2 2 2 21
( )

2
L m r r z mgz     

 

The equations of motion are  

 
2

1

2

2

1

2

( )

mr mr b r

d
mr

dt

mz mg

 

 



  



   
 

Now since   , there are four unknowns ( )r t , ( )z t , 1( )t , and  



 

2 ( )t . :Three eqns of motion and theconstraint eqn 2z br .  

 

Eliminating the multiplier  

 

1( )t results in the equation 

 
2 2 ( )r r br z g     

 

Differentiation of the constraint 2z br  results in 

 
22 2z br brr   

 

and so we end up with the single differential equation for  



 
( )r t as 

 
2 2 2 2 2(1 4 ) 4 ( 2 ) (2.73)r b r b rr r bmg      

 

The entire analysis reduces to the solution of Eqn (2.73).  

 

The coordinate ( )z t  is obtained from the constraint  

 

eqn. The two Lagrange multipliers are also given in  

 

terms of r and z from the eqs of motion.  

 



Finally, the torque required to maintain the uniform  

 

rotation is 

 

2 2m rr   

 

And the components of the reacting constraint force  

 

exerted by the wire on the mass are 

 

1 12 ( ) ( )   and   ( )r zR b t r t R t     

 

Practice !  



 

As an example, (p.120):Consider the dynamics of a 

particle constrained to slide on a frictionless wire. This  

 

wire is in the shape of a parabola that is rotating about  

 

its axis of symmetry with constant angular velocity   

------------------------------------------------------------------------ 

Cylindrical coordinates are intrinsic to this problem.  

 

There is only one degree of freedom, namely the position  

 

of the mass on the wire. The two constraintsare
2z br ,  



 

wherebis some constant, and   . These constraints are 

holonomic, which imply constraints of the form (2.71)  

 

as 

 

1 2( 2 ) 0  and 0z br r        
 

The coefficients in (2.71) are seen in matrix form as  

 

0
2 01

0
0 10

0

r
br

z







   
     

     
     

     



 

Hence there will be two Lagrange multipliers – one for  

 

each constraint. The Lagrangian of the system is  

 

2 2 2 21
( )

2
L m r r z mgz     

 

The equations of motion are  

 
2

1

2

2

1

2

( )

mr mr b r

d
mr

dt

mz mg

 

 



  



   



 

Now since   , there are four unknowns ( )r t , ( )z t , 1( )t , and  

 

2 ( )t . :Three eqns of motion and theconstraint eqn 2z br .  

 

Eliminating the multiplier  

 

1( )t results in the equation 

 
2 2 ( )r r br z g     

 

Differentiation of the constraint 2z br  results in 

 
22 2z br brr   



 

and so we end up with the single differential equation for  

 
( )r t as 

 
2 2 2 2 2(1 4 ) 4 ( 2 ) (2.73)r b r b rr r bmg      

 

Solution of Eqn (2.73) ! 

 

The coordinate ( )z t  is obtained from the constraint  

 

eqn. The two Lagrange multipliers are also given in  

 



terms of r and zfrom the eqs of motion.  

Finally, the torque required to maintain the uniform  

 

rotation is 

 

2 2m rr   

 

And the components of the reacting constraint force  

 

exerted by the wire on the mass are 

 

1 12 ( ) ( )   and   ( )r zR b t r t R t     

 



Practice! 

INTEGRALS OF MOTION 

 

Up to now:Concern on formulating the eqs of motion.  

 

Lagragian formalism for a systematic way to apply  

 

Newton‟s laws of motion using generalizedcoordinates.  

 

What is the next step ?Actually analyzethe dynamics  

 

based on the eqns of motion. 

 

~Eqns consist of a system of n ode, each of the 2nd order! 



 

~Typically nonlinear. 

 

Except, the eqnsof motion are linear. 

 

Eqns of motions are sometimeslinearizedbased on the  

 

small displacements assumptions.  

 

This may have some utility in stability analysis,but 

 

linearization typically destroys the applicability of the  

 

eqns of motion. 



 

Generally, eqns of motion are too complicated ! 

 

 by integration based on elementary methods.  

 

For specified initial conditions, the eqns of motion are 

 

usually integrated numerically.  

 

Example, Runge-Kuttaalgorithms : good accuracy.  

 

Drawbackis that the resultant numerical solution is only  

 

valid for one set of initial conditions. 



 

Aim of analytical mechanics ? 

 

~Analysis of the eqns of motion themselves,  

 

without actually solving the system of eqns.  

 

Such qualitative analysis was introduced in Chapter 1  

 

with the energy analysis of conservative systems.  

 

Conservative systems are distinguished by conservation  

 

of total mechanical energy.  



 

- Allowed the partial integration of eqn of motion.  

 

This concept is readily extended to general systems.  

 

Suppose that a certain combination of the generalized  

 

coordinates and velocities remains invariant during the  

 

evolution of the system. : If there exists some function  

 

1 2 1 2( , , , ; , , , ; )n nG q q q q q q t thatremains constant over  

 

time, then  



 

1 2 1 2( , , , ; , , , ; )n nG q q q q q q t C (2.74) 

 

orequivalently 

0
dG

dt
  

 

The relation (2.74) is called an integral of the motion.  

 

C is called a constant of motion.  ~ An integral of motion 

 

represents a quantity that is conserved during the motion.  

 

There are only first derivatives in an integral of motion,  



 

so each integral of motion ~ a partial integration of the  

 

original system : used as reduction of the order of the  

 

system.  

 

Lagrange‟seqns represent nsecond-order (partial) diff.  

 

eqns. ~ Ideally, the solution of Lagrange‟s equations  

 

consists of finding 2n integral of motion (2.74), each  

 

containingonly the generalized coordinates.(?) 



 

This is typically not possible,but certain systems do  

 

admit some integrals of motion. 

 

For example, in a conservative system, the total  

 

mechanical energy is an invariant of the system.  

 
(q,q, )    (q)   =   constT t V  

 

isan integral of the motion. Value of the constant of  

 

motion is determined by initial conditions.  



 

A conservative system is a special case of a Lagrangian 

 

system. 

 

~ Eqs of motion for a Lagrangiansystem : 

 

 
( , , ) ( , , )

[ ] 0
k k

d L q q t L q q t

dt q q

 
 

                (2.75)
 

 

Total time derivative of (q,q, )L t  is 

 



1 1

(~ , , . . 1.. )

n n

k k

k kk k

k k k k

dL L L L
q q

dt q q t

L
L q q L q q for k n

t

 

  
  

  


  



 

 

 

*Lagrange‟s Eqns (2.75) we have 

 

k k

L d L

q dt q

  
  

  
 

 

this means 

 



1 1

1

     

n n

k k

k kk k

n

k

k k

dL L L L
q q

dt q q t

d L L
q

dt q t

 



  
  

  

  
  

  

 

  

 

Therefore  

1

..(2.76)
n

k

k k

d L L
q L

dt q t

  
   

  
  

 

Dimension of L is energy, the quantity in the parentheses  

 

is known as the Jacobi energy function 

 



1

(q,q, )
n

k

k k

L
h t q L

q


 


  

 

Eqn (2.76) can be written : 

 
dh L

dt t


 

  

 

~ If the Lagrangian does not contain time t explicitly,  

 

then the Jacobi energy function is invariant during the 

 

motion. ~ Energy function is an integral of the motion 

 



with 

 

1

cosnt
n

k

k k

L
q L h

q


  


  

 

 

 

 

 

 

 



~ If the Lagrangian does not contain time t explicitly,  

 

then the Jacobi energy function is invariant during the 

 

motion. ~ Energy function = an integral of the motion 

 

 

1

cosnt
n

k

k k

L
q L h

q


  


  

 

Generally :Energy integral into a more familiar form  

 

by referring to the kinetic energy expressionas 

 



2 1 0L T T T V     

 

If V depends only on the generalized coordinates, then 

 

2 1

1

2
n

k

k k

L
q T T

q


 


  

 

the Jacobi energy integral has  

 

2 0T T V h   (2.77) 

 

It is important to note here that the Jacobi energy  

 



integral is not in general the total energy, since the term  

 

T1is missing. It is still a constant of motion.  

 

Without moving coordinates, 1 0 0T T  ,energy 

 

integralis the total energy ~ Conservation of total  

 

mechanical energy: 

 

T V h   
 

~Kinetic energy is purely quadratic in the generalized 



coordinates are called natural systems. 

 

The cart-pendulum system is a natural system, ~ 

 

Jacobi energy integral is the total energy of the system.  

 

As a modification of this example,  

 

Suppose : 

 

Motion of the cart ~Aconstant speed 0x v
 

for1 DOF for the pendulum, .  

 



Kinetic energy : 

 
2 2 2

0 0

1 1
( ) cos

2 2
T m M v ml mv l       

 

Potential energy : 

 
cosV mgl   .  

 

Then, Lagrangian : 

 
2 2 2

0 0

1 1
( ) cos cos

2 2
L m M v ml mv l mgl         

 



 Kinetic energy is not purely quadratic, but 

 

Eqn (2.77) still gives the Jacobi energy integral as 

 
2 2 2

0

1 1
( ) cos : (2.78)

2 2
ml m M v mgl h      

 

Constant h is specified with initial conditions ! 

 

Setting 0t t  in Eqn (2.78), then 

 
2 2 2

0

1 1
( ) cos

2 2
o oh ml m M v mgl      

 



Hence Eqn (2.78) may also be written as 

 
2 2 2 2

0 0

1 1
cos cos

2 2
ml mgl ml mgl       

 

Eqns (2.78) and (2.79) : Equivalent forms of the energy  

 

integral for the system.  

 

It should be note:  

 

This system is not conservative, since work must be done  

 

in order to maintain the constant speed of the cart.  



 

Hence the total mechanical energy is not conserved. The  

 

integral of motion (2.79) represents conservation of the  

 

energy as computed by an observer riding on the cart. 

 

The Jacobi energy integral is one type of invariant of  

 

motion associated with conservative systems. Certain  

 

forms of the Lagrangian admit other integrals of motion.  

 

These results when the Lagrangian does not contain  



 

some of the generalized coordinates. 

 

IGNORABLE COORDINATES 
 

Lagrangian system (n dof) and generalized coordinates 

 

1 2, , , nq q q .  

 

Suppose:There are m coordinates 1, ,n m nq q  ,  

 

donot appear in the Lagrangian, but the  

 

corresponding generalized velocities do.  



 

1 2 1 2( , , , ; , , , ; )n m nL L q q q q q q t  

 

Eqns of motion for the first n m  coordinates are 

 

( ) 0,          1,2, ,
k k

d L L
k n m

dt q q

 
   

   
 

and the eqns for the remaining m coordinates are  

 

( ) 0,          1, ,
i

d L
i n m n

dt q


   

              (2.80) 

 



Eqn (2.80) :Last mcoordinates 1, ,n m nq q  do not  

 

appearin the Lagrangian.  

 

Define it as ignorable coordinates or cyclic coordinates. 

 

Or inactive coordinates. 

 

Anyway,for 1, ,i n m n   , eqns (2.80) can be as 

 

i

i

L
C

q




                                (2.81) 

 



~ Generalized coordinates and velocities :conserved,  

 

 Eqns (2.81) are also referred to as conservationeqns. 

 

Potential function V does depend on generalized  

 

velocities,  

 

0
i

V

q




  

 

then, 

 



i i

L T

q q

 


   

 

Thus the integrals of motion (2.81) can be  

 
..(2.82)i ip C  

 

:Generalized momenta conjugate to the ignorable  

 

coordinates are conserved. ~ The individual  

 

conservationeqns may be physically interpreted based  

 

on the physical significance of each ignorable  



 

coordinate. 

 

The striking result :Eqns of motion corresponding to the  

 

ignorable coordinates have been partially integrated.  

 

n m eqns remain to be analyzed. 

 

Moreover, Eqns (2.81) do not contain any ignorable 

 

coordinates. So (2.81) or (2.82) can be solved for  

 

the generalized velocities of the ignorable coordinates  



 

1, ,n m nq q  withremaining coordinates.  

 

: For only n m eqns of motion in the non-ignorable  

 

generalized coordinates 1 2, , , n mq q q  .   

 

Remaining eqns of motion contain the constants iC , but  

 

these are determined from initial conditions.   

 

~ Analysis of the system reduces to the analysis of only  

 



n m degrees of freedom. 

 

A more systematic approach for the elimination of  

 

ignorable coordinates is to eliminate the ignorable  

 

variablesbefore the eqns of motion are formulated.  

 

Introduce a new function of the generalized coordinates  

 

and velocities.  

 

As above, the m conservation eqns associated with each  

 



of the ignorable coordinates, 

 

,             1, ,i

i

L
C i n m n

q


   

                    (2.83) 

 

are solved for 1, ,n m nq q   in terms of the remaining  

 

coordinates and the constants iC .  

 

Routhian function is defined as, 

 

1

n

i i

i n m

R C q L
  

   

 



: Generalized velocities iq  are replaced by the  

 

expressions obtained by solving Eqns (2.83) for iq .  

 

The result is a function in the non-ignorable coordinates 

 

?? 

 

:Partial derivatives of the Routhian function w.r.t the  

 

Non-ignorable coordinates and velocities, then 

 



,           1,2, ,

,           1,2, ,

k k

k k

R L
k n m

q q

R L
k n m

q q

 
   

 

 
   

 
                 (2.85) 

 

Substitution eqn(2.85) into Lagrange‟s eqns for non-  

 

ignorable coordinates results in the n m eqns of motion 

 

( ) 0,           1,2, ,
k k

d R R
k n m

dt q q

 
   

                  (2.86) 

 

Once again, ignorable coordinates have been effectively  

 



eliminated to reduce the problem to a mere n m d.o.f 

 

-Reduced system of n m eqns contains the m constants  

 

of motion 1, ,n m nC C  .  

 

Finally, the ignorable coordinates of Routhian 

 

 

...(2.87)i

i

R
q

C



  

 

: Constant iC  in (2.87) is considered arbitrary until  

 



the initial conditions are invoked. ~ Eqn (2.87) can be  

 

integratedas 

 

0

( ) ,        1, , , , , , (2.88)
t

i
t

i

R
q t d i n m n

C



   

  

 

 

 

 

 



RouthianFunction : 

 

A particle moving in a plane under to a central force  

 

derivable from apotential function ( )V r . 

 

~ Conservative!and a Lagrangian expression  

 

in polar coordinates as 

 

 

2 2 21
( ) ( )

2
L m r r V r  

 



-   is ignorable; conjugate momentum is constant,  

 
2p mr C    

 

>>Angular momentum of the particle is conserved.  

 

Furthermore, the Routhian function: 

 

2 2 2

2 2

1 1
( , , ) { ( ) ( )}

2 2

C C
R r r C C L C mr mr V r

mr mr

 
       

 

 

>> 



2
2

2

1
( , , ) ( )

2 2

C
R r r C mr V r

mr


    

 

 

: Cyclic Coordinate is Removed !: Single DOF !! 

 

Thus, Eqn becomes (2.86) for k=1…n-m as 

 
2

3
'( ) 0....(2.89)

C
mr V r

mr

  
 

 

Note :Eqn (2.89) denotes an entire 

family!ofdesparameterized by the constantC .  



C , : Conserved angular momentum>>Eqn(2.89) for  

 
( )r t : Non-linear >>Numerical solution! 

 

*Jacobi energy function:Additionalintegral of motion.  

 

 Energy integralfrom the Routhian function R 

 

      Eq.(2.89) * dr ~  

 
2

'

3
( '( ) 0) ....(2.89)

C
mr V r dr

mr

  
 

>> 



2
2

02

1
( )

2 2

C
mr V r E

mr

   (2.90) 

 

In this case, denote conservation of total mechanical  

energy.  

 

Furthermore, since the ignorable coordinate   has been  

 

suppressed, the KE associated with   can be combined  

 

with the actual PE, ( )V r , to define an effective potential: 

 
2

eff 2
( )

2

C
V V r

mr

   



 

Hence, construct the phase curves based onEqn (2.90)  

 

2

0 0

1
( ) ( 2( ( )) / :

2

......!

eff eff
dr

mr V r E r E V r m
dt

dt

      

 
 

 

andthen the solution  

 

0
0

0 eff
2

r

r

m dr
t t

E V
 


  

 



Also,  2

C

mr

   

 

thus 

 

0
02

( )
t

t

C
t d

mr

     

 

:Motion of the system has been entirelysolved ! 

 

STEADY MOTION 

 

An important and interesting class of motion : 

 



Ignorable coordinate related to steady motion.  

 

This type of motion :when the generalized velocities and  

 

conjugate momenta of the non-ignorable coordinates are  

 

zero.  

 

That is, 0....(2.91)k kq p   

 

>> 

 

for the 1,2, ,k n m   of non-ignorable coordinates.  



This means that each of the non-ignorable coordinates  

 

has a constant value.  

 

>>Routhian becomes only a function of the constants of  

 

motion 1, ,n m nC C   and does not depend on timet.  

 

Hence, generalized velocities of the ignorable coordinates  

 

are constant. : solution for the ignorable coordinate 

 

results in  

 



( ) const,      1, ,i iq t v t i n m n      

 

Hence the characterization of steady motion. These  

 

constant values of the non-ignorable coordinates are not  

 

completely arbitrary. Conditions on the non-ignorable  

 

coordinatesqkare obtained from the equations of motion  

 

(2.86). Conditions for steady motion are obtained by  

 

substituting 



 
0     and     0k kq q   

 

into the eqns of motion (2.86). It is actually more  

 

convenient to first insert the conditions (2.91) into the  

 

Routhian.Eqns of motion, and hence the conditions  

 

for steady motion, become 

 

0,             1,2, , ....(2.92)
k

R
k n m

q


  

  

 



Eqns (2.92) are solved for the constant values qk0 

 

corresponding to steady motion.  

 

One way to consider the situation is that 

 

Non-ignorable coordinates are effectively in equilibrium,  

 

whilethe motion is maintained in a steady manner by  

 

conservation of momenta of the ignorable coordinates. 

 

Once the conditions for steady motion are established,  

 



the next important consideration is the stability of these  

 

motions. That is, what happens to the steady solutions 

 

under small disturbances? The nature of the motion near  

 

the steady solutions is analyzed by setting 

 

0( ) ( )k k kq t q s t   

 

These expressions are substituted into the Routhian 

 

(2.84), which gives 

 



1 2 1 2( , , , , , , , )n m n mR R s s s s s s   

 

Localized eqns of motion about the steady motion are  

 

( ) 0,             1,2, ,
k k

d R R
k n m

dt s s

 
   

   

 

For small disturbances about steady motion, these  

 

Eqn may be linearized, and then using standard methods 

 

tocharacterize the stability of steady solution 

 

 



Ex:A spherical pendulum (Fig. 2.16).  

 

Using the spherical angles  and  , the Lagrangian: 

 
2 2 2 21
( sin ) cos

2
L ml mgl       

 

>>Coordinate   is ignorable ~ conjugate momentum 

 
2 2sin ....(2.93)p ml C     

 

: An integral of motion.  

 

 



The analysis is reduced to a single degree of freedom  

 

with the Routhian function 

 
2

2 2

2 2

1
( , , ) cos

2 sin 2

C
R C ml mgl

ml
   


    

 

and therefore the eqn of motion,  

 
2

2

2 3

cos
sin 0

sin

C
ml mgl

ml


 


   (2.94) 

 

Spherical pendulum is a conservative system, and then 

 



an effective potential: 

 
2

eff 2 2
cos ....(2.95)

2 sin

C
V mgl

ml



   

 

Eqn of motion (2.94) can be equivalentlywritten as  

 
2 eff 0

dV
ml

d



   

 

Condition for steady motion : 

 
2

2 3

cos
sin 0

sin

C
mgl

ml





   



 

or 

 
2 2 3 4cos sinC m gl   

 

From the conservation of angular momentum (2.93), the  

 

condition for steady motion reduces to  

 
2

0 0secl g   (2.96) 

 

So if the initial conditions 0  and 0  satisfy (2.96), the  

 



angle  and the angular velocity   will remain constant  

 

and the tip of the pendulum will execute uniform circular  

 

motion. To investigate the stability of perturbations from  

 

this steady motion, we set 

 

0 ( )s t    

 

andsubstitute into the eqn of motion (2.94). After  

 

linearization based on small values of ( )s t , we obtain the  



 

DE for the perturbation: 

 

0 0(3cos sec ) 0
g

s s
l

     

 

The stability may also be determined by analyzing the  

 

effective potential Veff (2.95) in the neighborhood of 0  . 

 

 

 

 

LAGRANGE‟S EQUATIONS FOR IMPULSIVE 



FORCES 

 

Principle of Impulse and Momentum >> 

 

Generalized in the Lagrangian formalism. 

 

During impact :Very large forces are generated  

 

over a very small time interval. ~ Not a practical matter  

 

to record these forces over the very small time  

 

>>>Instantaneous form of Newton‟s Second Law is of 

little use in impact problems.  



 

>>>Eqns of motion are integrated over the time  

 

interval of impact.  

 
0

0

F̂= F( )
t t

t
t dt



  

 

By the Principle of Impulse and Momentum,   

 

velocities change by a finite amount over the time  

 

interval t . As long as the time interval is taken  

 



infinitesimally small, the displacements do not change  

 

and hence remain continuous.  

 

Therefore, Impulsive force ~ Finding velocity 

changeimmediately after the 

impact..withoutdisplacement change 

 

Integrating Lagrange‟s eqns of motion for 

holomicsystems over the time interval between 1 0t t and 

 

2 0t t t  , we have 

 



2 2 2

1 1 1

,         1,2, ,
t t t

k
t t t

k k

d T T
dt dt Q dt k n

dt q q

  
   

  
   (2.97) 

 

Now letting 0t  ,  

 

2 1

ˆ          1,2, ,k

k k

T T
Q k n

q q

 
  

  (2.98) 

 

Second term on the left-hand side of Eqn (2.97) vanishes,  

 

since the generalized coordinates are continuous and the  

 

generalized velocities remain bounded during the impact. 

The integral on the right-hand side of Eqn (2.97) is the  



 

generalized impulse ˆ
kQ .  

 

The impulsive form of Lagrange‟s eqns (2.98) can also be  

 
ˆ ,          1,2, ,k kp Q k n   (2.99) 

 

relating the change in generalized momentum pkto the  

 

applied generalized impulse ˆ
kQ . Since the generalized  

 

momenta are polynomials in the generalized velocities,  

 



there is no need to solve any differential equations to  

 

obtain the velocities immediately after impact. 

 

Computation of the generalized impulses is formally  

 

identical to finding generalized forces. At any instant, the  

 

virtual impulsive energy acquired by the system under 

 

virtualdisplacements compatible with the constraints is 

 



1

ˆˆ
n

j j

j

W Q q 


  

 

As with generalized forces, the independent degrees of  

 

freedom are incremented one at a time to determine the  

 

individual contributions to Ŵ . 

 

Ex:A four-bar linkage constrained to slide smoothly  

 

along the thex-direction  

 



(Fig. 2.17). The system has two degrees of freedom and as  

 

generalized coordinates we can take the location of the  

 

center of mass, 1x , and the angle  . We assume that the  

 

mechanismis at rest when an impulse F̂  is suddenly  

 

applied, at point A, in the x-direction.  

 

Solving this problem by vector methods involves  

 

calculation of the linear and angular momenta of the  

 



system and invoking the momenta are easily derived  

 

from the kinetic energy of the system.  

 

The generalized impulses are formally computed as if  

 

they were generalized forces. 

 

The kinetic energy of the system is  

 
2 2 2

1

8
2

3
T mx mb    

 

The generalized momenta conjugate to 1x and  ,  



 

respectively, are 

 

2

1 1

16
4 ,        

3
xp mx p mb  

 

Similar to computing virtual work, we consider the  

 

independent virtual displacements 

 

1 1 1 1,  0    and    0,x x x x            

 

The virtual impulsive energy becomes 

 



1 1
ˆ ˆˆ

x xW Q Q     

 

in which the generalized impulses are 

 

1
ˆ ˆ

xQ F ,
ˆ ˆ2 sinQ b F 

 
 

Since the system starts from rest, substitution of the  

 

above into Lagrange‟s equations for implusive systems  

 

(2.99) results in the acquired generalized velocities 

 

1

ˆ

4

F
x

m
 ,

3sin ˆ
8

F
mb


   



 

Practice !  

 

A horizontal rod of mass m and length 2L falls under 

gravity and strakes a knife edge loaded one half of the 

way from the center to end of the rod. It‟s velocity just 

before impact is v . Coefficient of restitution between 

rod and knife edge is e. 

 

a. Velocity of the center of mass 

b. Angular velocity immediately after the rod strikes 

the ground. 

 

Sol: Assume the impulse is applied at the impact. 



 

 

Total enegy at any instant :
2 2 2

1 1
( )

2 2
c cT m x y I    

 

Virtual work of impulse :
1 ˆ ˆ ˆˆ ( )
2 c cc x c y cW F y L Q x Q y Q           

 

 ~ 
1ˆ ˆ ˆˆ ˆ0, ,
2c cx yQ Q F Q LF  

 
 

 

Change of generalize Momentum: 

 



2

( ) 0 (1) : 0

ˆ( ) ( ) (2)

1ˆ( ) (3) : ( )
2 3

.. (4)
2 2

2 ˆ(4) : ( ) (3) ...

6
: (4 ).. (1 )
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c
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L
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L
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 





      

    
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      

     

   

 

 

ELECTROMECHANICAL ANALOGIES 

 



The Lagrangian formalism is based on energy and 

therefore has applicability that goes far beyond simple 

mechanical systems (Fig. 2.18). A very practical extension 

of the theory is to electrical circuits and combined 

electromechanical systems. A direct application of 

Lagrangian‟s equations to electrical circuits is based on 

the parameters given in Table 2.1. Energy carried by an 

inductor coil is 

 

 

 

 



CHAPTER THREE: 
CALCULUS OF VARIATIONS 

 
INTRODUCTION 

EXTRMA OF FUNCTIONS 

NECESSARY CONDITIONS FOR AN EXTREMUM 

SPECIAL CASES OF THE EULR-LAGRANGE EQN 

THE VARIATIONAL OPERATOR 

NATURAL BOUNDARY CONDITIONS 

GENERALIZATIONS 

SEVERAL INDEPENDENT VARIABLES 

VARIATIONAL PROBLEMS WITH CONSTRAINTS 

HAMILTON‟S PRINCIPLE 

 

 

INTRODUCTION 

Lagrangian formulation of eqns of motion: 

~ Energy of a system and work done by external forces.  



: Dynamical system with inertial properties– 

: Kinetic energy  

Also,conservative generalized forces ~Derivable from  

: Potential energy 

*Non-conservative part ~  

Applying virtual workprinciple ! 

Most systems can be synthesized by the construction 

ofa Lagrangian ~ 

Theoretical & Experimentally Verified ! 

oPrimary feature of Lagrangian dynamics ~ 

Independent of any coordinate system 

 

Physical coordinates~>Generalized coordinates  

:More intrinsic to the constraints 



~ Associated analytical approach : Possible to use a 

system approach in deriving the governing eqns.  

Concept of a configuration spaceusing generalized 

coordinates. 

 

Evolution of a dynamic system :A single point in the 

configuration space 

 

As in Fig. 3.1,a system of N particles moving freely in 

space is described by 3N generalized 

coordinatesq1…q3N.: Configuration space is thus a 3N-

dimensional space.  

As the system undergoes its motion between fixed 

times t1and t2, the evolution is traced out by a unique 



path in the configuration space. 

 

For a conservative holonomic system, the action is 

defined as  
1

[ ] ( ) ......(3.1)
t

to
I q T V dt   

Many(?) dynamical systems evolve toextermize the 

valueof the action integral (3.1).  

~ Of all possible ones,anextremum relative to the values 

for the other paths. Therefore, the action integral 

assigns a number to each possible path in 

configuration space. 

Evidently, we can followanother way of analyzing the 

motion of a dynamical system. ~ Advantage to this new 



point of view :Formulation is also independent of the 

particular generalized coordinates used.  

Also,the ideas will directly extend to systems of infinite 

degrees of freedom, such as bodies composed of a 

continuum of points. 

 This is in contrast to the Lagrangian formulation,  

which by derivation is restricted to systems with only  

a finite number of degrees of freedom ! 

~ Focus on the mathematics involved with finding 

extrema of integrals that depend in specific ways on 

functions as inputs. This objective is the essence of the 

area of analysis known as the calculus of variations. 

 



:Differential calculus is full of standard tools available 

to analyze the extreme values of ordinary functions. 

Fortunately, there are many parallels between the 

calculus of variations and the ordinary calculus of 

functions.  

Define some concepts and terminology 

:A function is usually taken as an assignment of real 

values. A function of one variable ( )f assigns to each x 

a given value ( ) .f x R . A function of several variables 

assigns a value to a point given by real-valued 

coordinates 

 

1( ,...... )Nx x 1( ,... ) .Nf x x R  



Graph of a function of one variable is a curve  

~ Graph of a function of two variables is a surface. 

Generalization of a function is called a functional.  

An assignment of a real value to a point, to avector, or 

to an entire function. 

Now concern here with functionalsthat are defined on 

some suitable space or set of functions.  

: Functionals~Integral functionals. 

- Functionals defined by the integration of some 

expression involving an input function: 

( ) [ ( )]f x I f x  

Integral functional [..]I  may be of the form (3.1).  

Ex: integral functionals include area under the graph of a 



function and arclength of a curve between two points.  

Ex might look like … 

where ( )p x and ( )q x  are specified. 

Integral functionals may be defined as integrals over 

some interval or as integrals over some region in space. 

Integration interval is the domain of the input function. 

Argument or input of an integral functional may be a 

single function or several functions.  

It all depends on the context of the problem. It is 

important to distinguish between the domain of the 

input function and the domain of the functional itself, 

which is comprised of some class of admissible 

functions. 



Consider afunctionals of the form  
1

0
[ ( )] ( , ( ), ( ))

x

x
I y x F x y x y x dx  (3.2) 

and its natural generalizations.  

 

Integrand in (3.2) is called the Lagrangian of the integral 

functional~Fundamental objective of the calculus of 

variations is to establish conditions under which an 

integral functional attains an extreme value.  

These conditions evidently depend on the form of the 

Lagrangian of the functional ~ will lead to the 

conditions on the particular input functions that 

make the integral a maximum or minimum.  

An input function that renders the value of the integral 



functional a maximum or minimum is called an 

extramal. 

Now many interesting problems can be formulated in 

terms of integral functionals. 

Geometry of curves and surfaces. 

Most of the physical applications are based on 

mechanics. We will begin with several motivating 

examples.  

Fig.3.2: Given two fixed but arbitrary points 1P  and 2P  

in a plane, we can connect these two points with a 

curve that is the graph of a continuous function ( )y x . 

Now if we consider the collection of all continuously 

differentiable functions passing through the points 1P

and 2P , we can consider the associated arclength of 



each curve. The arclength of each curve is given by 

the integral functional  
2 2

2 2 2

1 1
[ ] ( ) ( ) 1 ....(3.3)

x x

x x
L y dx dy y dx      

Ex :Of all the continuously differentiable curves passing 

through point 1P  and 2P , find the function whose 

arclength is minimal. That is, of all smooth functions 

passing through 1P and 2P , find the one that has the 

smallest length. We intuitively know the correct 

answer, but it would be nice to have a formal way to 

decisively solve this problem. 

Brachistochrone problem(Fig. 3.3). 

A particle is free to slide down a frictionless wire with 

fixed endpoints at 1P and 2P  . 



Assuming wire has finite length, then determine the time 

t* it takes for the particle to slide along the wire. 

Given that the particle starts from rests, it would be 

interesting to find the shape of the wire for which the 

time of travel between the two endpoints is as small 

as possible.  

We can formulate this problem as follows: Applying 

the Principle of Work and Energy,  

1 2 2 1W T T    

at any point ( , ( ))x y x  along the curve,  
2 2

0

1 1

2 2
mgy mv mv   

Starting from rest, the speed of the particle is given as 
2v gy  



Now since 
ds

v
dt

  

We have the differential relation 

2

ds
dt

gy
 (3.4) 

Integrating both sides of Eqn (3.4),  
2

1
2 1

2

x

x

ds
t t

gy
    

Thus the total time of travel along the curve is obtained  
2

1

2

* 1 [ '( )]

2 ( )

x

x

y x
t dx

gy x


   

Notice that in each of these problems the quantity to be 

minimized was formulated in terms of an integral.  

Given an appropriate function ( )y x  that satisfies certain 

conditions, the function is entered as an argument 



and the resultant integral evaluated. This assignment 

of a scalar value to an entire function is the operation 

assigned to an integral functional. Symbolically, the 

value of a functional associated with a specified input 

function ( )y x is expressed as [ ( )]I y x . Integral functionals 

are a special case of such evaluations.  

The domain of a functional, that is, the collection of 

functions satisfying certain conditions, is defined as 

the associated set of admissible functions. In the case 

of integral functionals, admissibility typically 

requires certain differentiablility conditions and 

specified boundary conditions. These conditions are 

usually specified with the problem.  

The problem of finding a function ( )y x  out a set of 



admissible functions that minimized (maximizes) a 

given functional [ ]I y  is called a variational problem. 

The actual value of the functional, or even if it is a 

maximum or a minimum, is of little concern. The 

important thing is that the value of the extremal is 

stationary.  

A representative integral functional, as in the examples, 

has the form  
1

0
[ ( )] ( , ( ), ( ))

x

x
I y x F x y x y x dx  …(3.2) 

in which the Lagrangian '( , , )F x y y  is a smooth function of 

three variables. The Lagrangian is the integrand of 

the functional [ ]I y . The function of three variables 

( , , )F    specifies the relationship of all the variables in the 



integrand of the functional. 

For the minimal length problem : 

For the branchistochrone problem: 

 

EXTREMA OF FUNCTIONS 

An extremum problem consists of finding the largest or 

smallest value of a quantity. For functions of one or 

two variables, the function can be graphed and we 

immediately see where the function attains its 

extreme values. These may be inside of a domain, or 

the extrema may be located at points on the boundary. 

For functions of more than two variables, graphing is 

not possible, so we must report to performing a 

comparison of the values at a point with neighboring 



values. That is, we examine the local rate of change of 

a function. These ideas carry over directly to finding 

extrema of integral functionals. 

To find the extrema of a function inside an interval, we 

look for local stationary behavior. At a point x  where 

a function attains a local extremum, given an 

infinitesimal change, the value of the function should 

remain the same; otherwise we do not have an 

extremum. This is the same as examing the local 

linearization of the function. At an extremum, the 

function should be flat. The rate of change in every 

possible direction must be zero. Since there are only 

two directions, this is easy. Analytically, this means 

that the differential of of the function is equal to zero. 



Hence, a necessary condition that the function ( )f x  be 

stationary at a point 0x  is that the derivative 
0( )f x  is 

equal to zero. The location where this happens is 

called a critical point. This condition is only necessary, 

since the condition implies that at the critical point 

the function can have a local maximum, a local 

minimum, or an inflection point. Further 

examination is required, namely checking out the 

local curvature at the critical point. This involves the 

second-derivative test. For functions defined on finite 

intervals, the values at the endpoints must be checked 

separately, since the derivates are not defined there. 

For functions of two variables, say ( , )f x y , let us assume 

that a point 
0 0( , )x y  is a critical point. In order for the 



function to be stationary at this point, we must 

examine the variation of the function as we move an 

infinitesimal amount in any possible direction. So let 

r = x i+ y j be any vector that will denote some fixed 

but arbitrary direction. We can use a small parameter, 

 , to test the variation of the function under a 

infinitesimal displacement: 

Now the function 
(f r, 0 0) ( , )f x x y y        

is a function of a single variable  . This can be 

thought of as cutting a slice through the surface 

defined by ( , )f x y  along the direction of the vector r. 

This curve is parameterized by  . Note that at  =0, 
(f r, 0 00) ( , )f x y . Thus we have reduced the analysis to 



searching condition that (f r, )  is stationary at  =0 is 

that (f  r,0)=0. The rate of change with respect to   

is 
df f f

x y
d x y

 
   
 

 (3.5) 

Setting  =0 in Eqn (3.5), we find that  
0

f f
x y

x y

 
   

 
 (3.6) 

in which the partial derivatives are evaluated at the point

0 0( , )x y .The left-hand side of Eqn (3.6) is equal to zero 

for an arbitrary direction specified by x and y if and 

only if the partial derivatives are equal to zero at 0 0( , )x y . 

That is, 

**(3.7) 

The condition (3.7) give a necessary and sufficient 



condition for local stationary behavior of ** at the 

point **. 

These conditions extend to higher dimensions for 

functions of n variables **, as 

** 

We now generalize these concepts to establish criteria for 

stationary values of scalar quantities that depend on 

entire functions as arguments. Before formally 

developing the theory, let us consider a simple 

motivational example. 

 

 



 

Remember : , d ,  

Lagrangianeqn in hybrid form   :  Page.115 

 
1

0
[ ( )] ( , ( ), ( ))

x

x
I y x F x y x y x dx  (3.2) 

 

Lagrangian of the integral functional~Fundamental 

objective of the “calculus of variations” is to establish 

conditions under which an integral functional attains 

an “extreme” value.  

: Maximum or minimum.  

Ex :Of all the continuously differentiable curves passing 

through point 1P  and 2P , find the function whose 



arclength is minimal.  

Thus the total time of travelalong the curve is obtained  
2

1

2

* 1 [ '( )]

2 ( )

x

x

y x
t dx

gy x


 

  : F(y, y`) !
 

Notice that in each of these problems the quantity “to be 

Minimized” was formulated in terms of an integral.  

 

EXTREMA OF FUNCTIONS 

NECESSARY CONDITIONS FOR AN EXTREMUM 

Establishing local stationary behavior of a functional is a 

generalization of locating the critical points of a function. 

:Local maxima and minima are found by setting the  

derivative of the function w.r.t independent variable  

equals to 0 ~ slop =0 (Fig.3.4) !  



-Value of the function is stationary.  

 

:  At a critical point aninfinitesimal variation of the 

independent variable results in no change in the value 

of the function. ------ Function space ! 

 

For integral functionals, the arguments or inputs are  

entire functions belonging to a specified admissible set.  

~we must rely on the notion of local stationary behavior.  

 

Fundamental Lemma : Calculus of Variations.  

 
( )G x :Continuous function in 1 2[ , ]x x  



2

1

( ) ( ) 0

x

x

G x x dx   

for all smooth functions ( )x with 1 2( ) ( ) 0... .. ( ) 0x x then G x     

for all points( Goveringeqn ! for example G = T-V ) 

 

Focus: Minimizing(Maximizing) the functional  
1

0
[ ( )] ( , ( ), ( ))

x

x
I y x F x y x y x dx  with BC 

~Apply the local stationary behavior of a functional.  

 

Let ( )y x :Admissible function that minimizes [ ]I y .  

Suppose ( )y x  : Another admissible ftnas in (Fig. 3.5) 

 “close” in some sense to ( )y x  

Admissible~ ( )y x : continuously differentiable withBCs. 



Then  
( ) ( ) ( )y x y x x    : ( )x Differentiable 

 

: Perturbing function ( )x :Variation of function ( )y x .  

Since *( )y x  is extremal~ Local minimum value of 
[ ( )]I y x  , 

: [ *( ) ( )] [ *( )]I y x x I y x  for all   near 0. 

 

Once a variation ( )x  is fixed, but arbitrary, then 
[ *( ) ( )]I y x x  

actually becomes a function of a singlereal variable!  

 

: Reduced the problem to a single real variable for 



local stationary behavior with thezero-slope criterion 

for functions.  

0[ ( * )] 0
d

I y
d




   

 

~> 
1

0
[ * ] ( , * , * )

x

x
I y F x y y dx       (3.8) 

 

:Derivative of Eqn (3.8) wrt the   is 

 

(or
1

0
( ) ( , , )

x

x
I F x y y dx   ,  

1 1

0 0

( )
[ ] [ ]

x x

x x

dI F y F y F F
dx dx

d y y y y


 

  

     
   

         



 

1

0

.. 0,

( )
] [ ]

x

x

For

dI F F
dx

d y y




 





 
 

   

=  
1

0

[ * ]
[ ]

x

x

dI y F F
dx

d y y


 



  
 

   

Integrating by parts and (applying the BCs) 

 
1

2

1
0
[ ( ) ]

x
x

x
x

F d F F
dx

y dx y y
  

  
 

     

 

For an extreme value of the functional,  
1

0
[ ( )] ( )

x

x

F d F
x dx

y dx y


 


   



: ( )x  is an arbitrary function that vanishes at the 

endpoints of the interval, the Fundamental Lemma of 

the Calculus of Variations allow us to conclude  

 

( ) 0....(3.9)
F d F

y dx y

 
 

   

~An ordinary differential equation that represents the 

necessary condition for an admissible ( )y x  to be a 

minimizing function.  

: Euler-Lagrange equation 

Back to the future ! P. 115 

 



, ,

x t

y y q q

 

      ! 

 

Ex :  (3.10) : p.169 

 

SPECIAL CASES OF THE EULER-LAGRANGE 

EQUATION 

 
( , , )

( , )

( , )

( , )

( )

F F x y y

F F x y

F F y y

F F x y

F F y











 

Eqn(3.13)! Jacobi energy integral  



 

      ? 

 

THE VARIATIONAL OPERATOR(?) 

NATURAL BOUNDARY CONDITIONS(?) 

GENERALIZATIONS(?) 

SEVERAL INDEPENDENT VARIABLES 

VARIATIONAL PROBLEMS WITH CONSTRAINTS 

 

 

 

HAMILTON‟S PRINCIPLE 

 



THE VARIATIONAL OPERATOR(?) 

NATURAL BOUNDARY CONDITIONS 

 

…. 
2

1 0...(3.15)x

x

F
y

y



 

  

 

as in Fig.3.6 

 Then, at 2x for 0I  , Euler-Lagrange Eqn. is satisfied  

with  
F

y




=0 : Natural BC or Force BC.(ex: ICBM…) 

 ( y =0 :Essential BC or Geometric BC) 

GENERALIZATIONS 
( , , ) : . !F F x y y most simple  

 ~> For more generality with several functions ! 

As in Eqn.(3.16) 



   y =( 1,..., ny y ): independent Ftns 

Ex : ! 

 

If ( , , , )..?F F x y y y   : ?I   ~ page 172. 

Ordinary Differential Eqn ! 

Partial Differential Eqn(x,t) 

:Beam bending problem: 
4 2

4 2

( , ) ( , )d y x t d y x t
EI m

dx dt
  

 ~  
2

2 2

2

1 ( , ) 1 ( , )
( ) , ( )

2 2

y x t y x t
T m V EI

t x

 
 

   

 

SEVERAL INDEPENDENT VARIABLES 

 

 



 

 

VARIATIONAL PROBLEMS WITH CONSTRAINTS 

 

Two Types of Constraint! 

 

~ Integral constraint                                  

Eqn(3.20)         

          Isoperimetric problem 

 
  ', [( ), ], 0......(3.23)y y xF G F G      

 

- More general isoperimetric problem 



Eqn(3.24) 

 

~Eqns of constraint 

 

(Non~) holonomic ! 

 

1( , ..., ) 0.....(3.25)

. ,

, 0

n

yi i

G x y y

or

Taking variation

G y




 

 

 

 



THE VARIATIONAL OPERATOR(?) 

NATURAL BOUNDARY CONDITIONS 

GENERALIZATIONS 

Beam bending problem: 
4 2

4 2

( , ) ( , )y x t y x t
EI m

x t

 


 
 

 ~  
2

2 2

2

1 ( , ) 1 ( , )
( ) , ( )

2 2

y x t y x t
T m V EI

t x

 
 

   

SEVERAL INDEPENDENT VARIABLES 

VARIATIONAL PROBLEMS WITH CONSTRAINTS 

~ Integral constraint : 

More generalisoperimetric problem 

~Eqns ofconstraint :(Non~) holonomicconstraint ! : Boat : 

 

HAMILTON‟S PRINCIPLE 

 



Aim:  

? Lagrangian formulation ~ Calculus of Variation? 

 

For a Particle (p.108) : 

i i i iF R m x   
Energy concept : T, W 

 

Total virtual ( time : fixed) work :  

 
: ( ) ..( 1,,,3 )i i i i i iW F R x m x x i N      

 

Remember !  
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( ) [ ]..( 1,,3 )

2
i i ii i i i i i i i

d
m x x m x x m x x W m x i N

dt
        

 

Eqn(3.28): 

( ),ii i tT W m x x   
 

 Integrating over the time domain and 

applying BC in time 

0 1( ) ( ) 0i ix t x t    

Finally,  
( ) 0...(3.29) :T W dt  

 

„Hamilton‟s Principle‟ 

Advantage of variational point of view: 



 Hamilton‟s principle may be extended to continuous  

systems with infinite number of DOF ! 

 

Wave eqn : , , ( , )tt xxu u f x t    

 

Euler beam vibration : , , ( , )tt xxxxu EIu f x t    

 

 

 

 

 

HAMILTON‟S PRINCIPLE 

 


