Control of 2D movement signal by a noninvasive BCI in humans

paper review

Arseny Povolotsky

PIL

-

Outline

1 Methods

- Study protocol
- Control of cursor movement
- Adaptive algorithm

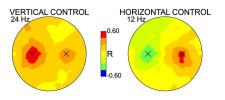
Results

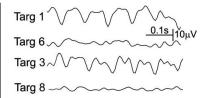
- Comparison with previous non-invasive studies
- Comparison with invasive studies

B Potential improvements

4 Conclusion

-


Methods Study Protocol


- Target appeared at one of the 8 locations on the periphery of the screen
- Target location were block-randomized
- One second later, the cursor appeared in the center of the screen
- Cursor was controlled by the user's EEG activity
- If cursor reached the target within 10 s, target flashed as reward
- Otherwise, cursor and target just disappeared
- The screen was blank for 1 s and next trial began

ELE DOG

Methods Control of Cursor Movement

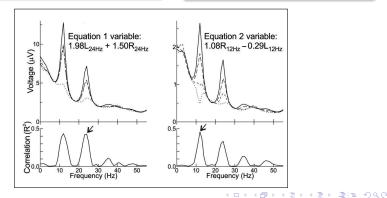
Correlations of rhythms with target levels

Samples of EEG activity

(日本)(四本)(日本)(日本)(日本)

Cursor moved every 50ms and was controlled as follows:

- Last 400 ms signal from C3, C4 locations
- Spatially filtered with large Laplacian filter
- Frequency analysis to determine the amplitudes in specific mu (8–12 Hz) and beta (18–26 Hz) bands


Used EEG features

- R_V , L_V amplitudes for vertical control
- R_H , L_H amplitudes for horizontal control

Cursor movements

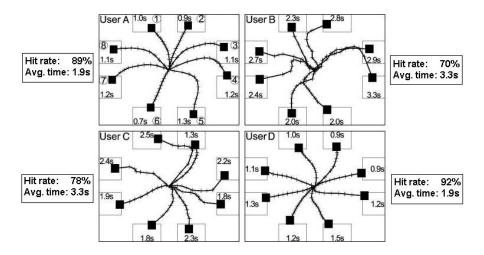
•
$$M_V = a_V(w_{RV}R_V + w_{LV}L_V + b_V)$$

•
$$M_H = a_H(w_{RH}R_H + w_{LH}L_H + b_H)$$

Initial weights

- $w_{RV} := +1; w_{LV} := +1$
- $w_{RH} := +1; w_{LH} := -1$

Tuning step


- Each of the 8 possible target locations expressed as one of 4 possible vertical and one of 4 possible horizontal levels
- Least-mean-square algorithm to adjust the weights to minimize for past trials the difference between the actual target location and one, predicted by movement equations

Adaptation effect

- Optimizing the online translation of EEG control
- Encouraging improvements in user's EEG control

Results

Cursor trajectories

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

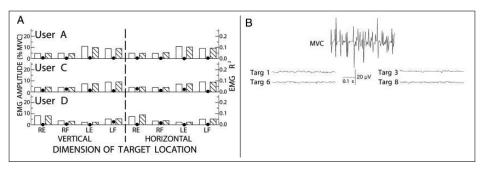
Correlation	User A	User B	User C	User D
$M_X \leftrightarrow X$	0.48	0.29	0.27	0.54
$M_X \leftrightarrow Y$	0.00	0.00	0.01	0.01
$M_Y \leftrightarrow X$	0.00	0.00	0.01	0.01
$M_Y \leftrightarrow Y$	0.44	0.31	0.40	0.54

Each user developed two independent control signals: one for horizontal and one for vertical movement

12

경에서 편에 포

$P_{XY} \approx P_X * P_Y$

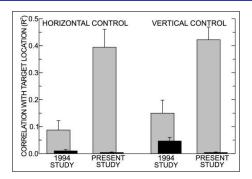

- P_X possibility of correct X-movement
- P_Y possibility of correct Y-movement
- PXY possibility of correct both X-movement and Y-movement

Users controlled movements

in both directions simultaneously

Results

EMG activity is low and not correlated with target location


• EMG amplitude is low

(< 10 % of maximum voluntary contraction)

• EMG amplitude is not correlated with vertical or horizontal levels of target locations

Results

Comparison with Previous Non-Invasive Studies

Two critical advances

- Changes in signal processing
- Adaptive algorithm

$$\Rightarrow$$

Significant improvement

- Correlation with appropriate dimension is much higher
- Correlation with wrong dimension is almost absent

	Movement time,	Movement precision,	Hit rate,
Study	s	target size as % of workspace	%
Serruya et al.	1.5	2.3	
Taylor et al.	1.5	1.3	86
Carmena et al.	2.2	7.7	89
Wolpaw et al.	1.9	4.9	92

Non-invasive BCI shows nearly the same results as invasive ones

★ 문 ▶ ★ 문 ▶ 문 범 = ♥ Q @

- Refining user training protocol
- Additional EEG recording locations
- Additional frequency bands and/or time-domain EEG features
- Improving the translation of EEG features into cursor movements
- Recording activity from cortical surface

EEG activity can reflect convey user's intent

People can learn to use scalp-recorded EEG rhythms to control 2D cursor movement

Real-time efficiency

In movement time, precision and accuracy, the results are comparable to those with invasive BCIs

A skill that user and system master together

- Control develops gradually over training sessions
- User acquires better EEG control
- BCI system focuses on rhythms user is best to control

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ のへの

User A

- A man age 41
- Complete T7 spinal cord injury since age of 15
- Participated in several studies of 1D cursor control

User D

- A man age 23
- Incomplete C6 spinal cord injury since age of 16
- Participated in one study of 1D cursor control for years earlier

User B

- A woman age 27
- No disabilities
- Participated in one study of 1D cursor control

User C

- A man age 31
- No disabilities
- No previous experience with BCI

- 64 standard electrode locations distributed over the entire scalp
- Channels are referenced to the right ear
- Bandpass 0.1 60 Hz
- Signals amplified by 20000
- Signals digitized at 160 Hz

< ∃> 3