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• Low	temp.	(<0.5Tg)/	high	stress
• Localized	shear	band/	45° to	the	

loading	axis
• Strain	softening:	deformed	at	lower	

stress	and	higher	rate

Deformation	behavior
of	Metallic	glass

Homogeneous
Deformation

Inhomogeneous
Deformation

Catastrophically	Failure

• high	temp.	(>0.7Tg)	and	in	the	SCLR/	
high	strain	rate

• Viscous	flow	→ significant	plasticity
:	achieve	net‐shape	forming	capability

• Newtonian (high	temp.	&	low	stress)	vs	non‐
Newtonian	(high	temp.	&	applied	stress) :	
associated	with	the	precipitation	of	nanocrystals

Homogeneous	deformation
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Flow	Mechanisms

 Basic Modes of Deformation

 Homogeneous Flow
• Each volume element 

undergoes the same strain.

 Inhomogeneous Flow
• Strain is concentrated 

in a few thin shear 
bands.
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Homogeneous	deformation:	Liquid	Flow

 

Shear stress Viscosity Strain rate

 Newtonian Viscous Flow

 Homogeneous Flow 
 Low stress in liquid region 
 Strain rate is proportional to the stress
 Viscosity is not dependent on stress, 
but temperature.

 Liquid Region (above and near Tg)
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Inhomogeneous	deformation:	
Deformation‐induced	Softening

 Softening : Lowering  
of viscosity in the 
shear bands

 Structural Change :  
Creation of free 
volume due to high  
stress level



Multiple	shear	bands	=	Multiple	shear	planes



SB	nucleation	and	propagation	:	Multiple	serrations,	
observed	only	at	slow	strain	rates



8.4	Temperature	rise	at	shear	bands
Most	of	the	plastic	strain	is	localized	in	narrow	shear	bands,	which	form	approximately	on	the		
planes	of	maximum	resolved	shear	stress.	The	inhomogeneous	flow	in	metallic	glasses	appears	
to	be	related	to	a	local	decrease	in	the	viscosity	in	shear	bands.	One	of	the	reasons	suggested	for	
this	was	the	local	adiabatic	heating	that	could	lead	to	a	substantial	increase	in	the	temperature.





Atomic	bond	topology

• Network	of	atomic	connectivity	/	
topology	of	the	atomic	structure

Free	volume	theory																																				STZ	model

STZ:	basic	shear	unit	
(a	few	to	perhaps	up	to	100	atoms)

• Bond‐exchange	mechanism	of	
shear	deformation



Deformation	maps	for	metallic	glasses
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Thermal	Tg vs	Mechanical	Tg for	metallic	glasses



Limited Plasticity by shear softening and shear band
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What governs plasticity in metallic glasses?



interrupt the localization of stress and deformation

• Prevent propagation of single shear band            BMG matrix 

composites

• Multiple shear band formation

Plastic deformation in metallic glass
• No dislocation / No slip plane

• Inhomogeneously localized plastic flow in the shear band

Plastic deformation in metallic glasses



1) Casting : hard/ductile particle

2) Extrusion :  ductile powder

extrusion direction
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Max. compressive strength: 2.44 GPa

(Johnson et al., Acta Mater.,1999)

(Kim et al., J. Non-cryst. Solids, 2002)

Ex-situ BMG matrix composites



1) Solidification : formation of primary ductile phase 

(Johnson et al., Acta Mater., 2001)

In-situ BMG matrix composites

2) Solidification : precipitation of ductile phase

(Cu60Zr30Ti10)95Ta5

Ta rich particle (Johnson et al., Acta Mater., 2001)



TEM Image of a shear band

~20  nm

Shear bands are ~20 nm in width

Size of heterogeneity

• Prevent propagation of single shear band

Micro- or nanometer scale heterogeneity



Elementary flow event in an metallic glasses

Size of heterogeneity
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• Flow governed by localized defect (~10 atoms)

• Flow creates defects

• Shear bands form by accumulation of defects

Plastic deformation in metallic glasses

Understanding how shear bands form and propagate 
in metallic glasses

Shear

Crystal; constant volume

Amorphous: dilatation



Fragile network glass : Vogel-Fulcher relation

Strong network glass : Arrhenius behavior
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Slope of the logarithm of viscosity, η (or structural relaxation time, τ ) at 
Tg



Correlation between fragility and plasticity

)1/(1417  GBm)1/(2917  GBm

B/G

Polymer
Bulk Metallic Glass

4 5 6

Silicatem

Low G/B High ν
(poisson’s ratio)

(shear modulus / bulk modulus)

shear collapse
(multiple shear band)

Correlation between elastic constants and plasticity

Jan Schroers et al, , Phys. Rev. Lett. 93, 255506 (2004).

* J. Mater. Res.  23, 523 (2008)
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* Appl. Phys. Lett.,  91, 031907.



Enhancement plasticity in BMGs with atomic scale heterogeneity

a) Effect of quenched-in quasicrystal nuclei 



Effect of secondary phase in amorphous matrix

β-Zr dendrite in amorphous matrix

(b) Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5(a) Zr63Ti5Nb2Cu15.8Ni6.3Al7.9

3 mm rod
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[111] β-Zr [110] β-Zr

β-Zr
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I-phase particle in amorphous matrix
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Compression test

Effect of secondary phase in amorphous matrix
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I-phase

* unpublished (2008)



☞ Interface (I/amorphous) is not the site where the crack or SB initiates or goes along.

Continuous interface between amorphous and I-phase



50 nm

[2]-3mm

Before deformation After deformation

shear band

shear band

Shear band passes through icosahedral particle.
Icosahedral particle splits across with the plastic deformation of metallic glass matrix

☞ No distribution of icosahedral particle to blocking the propagation of shear band.
☞ No enhancement of plasticity in MGMC with icosahedral particle

50 nm

Role of icosahedral particle on the propagation of SB



Effect of quenched-in quasicrystal nuclei

Fully amorphous structureβ-Zr particle (~70 nm) in amorphous matrix

50 nm200 nm

β-Zr

(b) Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5(a) Zr63Ti5Nb2Cu15.8Ni6.3Al7.9

2 mm rod

I-phase particle in amorphous matrix

200 nm

I5 I3 I2

I-phase

3 mm rod
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f = 1.70 GPa, f= 2.37 %
f = 1.71 Gpa, f= 4.64 %

f = 1.72 Gpa, f= 2.05 % 

5 nm

HRTEM image in [b] alloy

Effect of quenched-in quasicrystal nuclei

Compression test * unpublished (2008)
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Kissinger’s equation

Effect of quenched-in quasicrystal nuclei

Activation E : driving force for nucleation
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Effect of quenched-in quasicrystal nuclei
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EXAFS analysis

Distinctive structural change around Ni atom
Intensity change due to microstructural change

(b) Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5

* unpublished (2008)

Effect of quenched-in quasicrystal nuclei



Enhancement plasticity in BMGs with atomic scale heterogeneity

b) Effect of element having positive enthalpy of mixing 
among constituent elements



* Enhancement of plasticity in monolithic BMGs
No clear explanations so far.

* Reports for enhancement of plasticity in monolithic BMGs

Compressive plastic strain, εp (%)

Zr59Ta5Cu18Ni8Al10
1

Zr57Ti5Cu20Ni8Al10

~ 6.1
~ 1.1

Ni59Zr16Nb7Ti13Si3Sn2
2

Ni59Zr20Ti16Si2Sn3

~ 6.2
~ 2.1

Cu47Ti33Zr7Nb4Ni8Si1 3

Cu47Ti33Zr11Ni8Si1 

~ 4.1
~ 1.5

Cu43Ag7Zr43Al7 4

Cu50Zr43Al7 

~ 4.1 
~ 1.5

1 Xing et al., Phys. Rev. B (2001)

2 Lee et al., Intermetalics (2004), BMG III

3 Park et al., J. Non-cryst. Sol. (2005)

4 Sung et al., Met. Mater. –Int (2004) and

Oh et al., Scripta Mater. (2005)

(Ta-Zr: +13KJ/mol, Nb-Zr: +17KJ/mol, Nb-Ti: +9KJ/mol,Cu-Ag: +5 KJ/mol)

: Effect of elements having positive heat of mixing

- Previous results on the effect of micro-alloying on plasticity

Improvement of plasticity in monolithic BMGs



* Substitution of Zr with Y in Cu-Zr-Al system

Cu-Zr-Al , Cu-Y-Al

Possibility of two phase !!! 

Indirect evidence of inhomogeneity
= Phase separationD. Xu, G. Duan and W.L. Johnson, Phys. Rev. Lett. 92, 245504 (2004)
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* Acta Materialia, 54, 2597 (2006)
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Temperature (K)

Exothermic peak which exhibit that Y rich amorphous phase crystallize

Thermal analysis : DSC results



Cu46Zr22Al7Y5

100 nm

Cu46Zr22Al7Y25

Cu53.4Zr31.8Y8.3Al6.5 (CuZr-rich) 

Cu35.7Zr12.8Y44.3Al7.2 (CuY-rich) 

As-melt-spun

- With increasing Y content,
Compositional inhomogeniety           Phase separation

Structural analyses : TEM results
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⇒ Enhancement of the plasticity with the addition of small amount (2~5 %) of  Y 
But, no nanocrystals and structural ordering  (conformed by HREM and HRND) 

Performed at HANARO, KEARI.

Compression test in Cu-Zr-Al-Y alloy system

20㎛

Cu46Zr42Al7Y5

A larger amount of strain along the shear band led to localized melting before fracture
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Relatively easy crystallization 

<Supercooled liquid region> <1st Crystallization behavior>

: nucleation and growth

Measurement of viscosity using TMA



As-melt-spun Heated up to 480℃

Cu46Zr42Al7Y5

* Acta Materialia, 54, 2597 (2006)

: nanocrystallization of Y rich amorphous phase due to relatively lower GFA

Structural analyses: HRTEM
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In-situ WAXS analysis of Cu46Zr42Al7Y5 during heating

(c) 495℃

(d) 525℃

(a) 435℃

(b) 465℃

Tg Tx

406℃ 498℃

Tg Tx

406℃ 498℃

Tg Tx

406℃ 498℃

Tg Tx

406℃ 498℃

Obtained from Argon National Lab.
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Effect of element having positive enthalpy of mixing

Abnormal behavior of supercooled liquid region



(a) As-cast (b) H876 (c) H897

Atom probe concentration depth profiles in Ni61Zr22Nb7Al4Ta6

easy crystallization 

Effect of element having positive enthalpy of mixing



Ordering in supercooled liquid region
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Effect of element having positive enthalpy of mixing



Enhancement plasticity in BMGs with atomic scale heterogeneity

c) Effect of element having significantly different 
enthalpy of mixing among constituent elements
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* Acta Materialia,  56 3120 (2008)

Effect of element having large different enthalpy of mixing

Cu-Zr-Be ternary alloy system
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Effect of element having large different enthalpy of mixing



(a) FIM image and (b)-(d) composition depth profile 
of the as-spun Cu47.5Zr40Be12.5 ribbon sample

3DAP-FIM results

Effect of element having large different enthalpy of mixing



Visualization of Atoms by FIM
Poralized gas 
atom

Gas ion

Microchannel plate

Phosphor screen

FIM tip
cooled to 20
~100 K
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Complementary structural analysis

Local Chemical Composition

Local Structure

Average Scale

SAXS or SANS



r (Å) N
Total N

σ2

Cu-Cu Cu-Zr Cu-Cu Cu-Zr Cu-Cu Cu-Zr

Cu60Zr40 2.49 2.69 3.0 3.7 6.7 0.0116 0.0233

Cu47.5Zr40Be12.5 2.51 2.70 2.5 4.8 7.3 0.0107 0.0227

Zr-Zr Zr-Cu Zr-Zr Zr-Cu Zr-Zr Zr-Cu

Cu60Zr40 3.10 2.68 6.9 4.4 11.3 0.0263 0.0124

Cu47.5Zr40Be12.5 3.12 2.69 6.2 3.5 9.7 0.0257 0.0130

Atoimic diameter in Å: Cu-Cu = 2.56, Cu-Zr = 2.88, Zr-Zr = 3.20.

Cargill-Spaepen short-range order parameters, η

ZAB <Z> Z*AB Z**AB η

Cu60Zr40 3.7 8.540 3.416 3.546 0.043

Cu47.5Zr40Be12.5 4.8 7.348 2.939 3.855 0.245

EXAFS analysis

 ZZZxZ ABBAB /**

Cargill-Spaepen SRO parameter
1/ **  ABAB ZZ

chemical ordering between AB nearest-neighbor pairs

-142

Zr

BeCu

-53

- 3

η > 0

Effect of element having large different enthalpy of mixing

* Acta Materialia,  56 3120 (2008)



Enhancement plasticity in BMGs with atomic scale heterogeneity

d) Effect of atomic scale heterogeneity on SB nucleation 



Effect of alloy composition on SB nucleation

Ni Nb
-143

-167
+15

Zr

Ni-ZrNi-Nb

Compositional inhomogeniety

2 nm

*Ni-Nb-Zr ternary alloy system

Ni60Nb40

Zr addition

(conformed by EXAFS)

Ni60Nb40 and Ni60Nb20Zr20 alloys



Experimental equipment

25 frames per sec
Interval : 0.04 sec

Normal camera



Effect of local favored structure on SB nucleation

Ni60Nb40: fully amorphous phase

100 μm

S=0.016 mm/sec 



Ni60Nb20Zr20: amorphous phase with local favored structure

Increased nucleation sites of shear bands
; evaluate the local heterogeneity in amorphous phase

100 μm

S=0.016 mm/sec 

Effect of local favored structure on SB nucleation



Alloy design                  +               Process control
atomic scale inhomogeneity generation Solidification under appropriate conditions

Enhanced plasticity in Ni60Nb32Zr8, Ni60Nb30Zr10 BMGs (σmax : 3.2 GPa, εp : 2.5 %)

Tailoring of structural inheterogeneity
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Comparison of Work-hardenability depending on 2nd PhasesComparison of Work-hardenability depending on 2nd Phases
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Deformation behaviors of BMGMC under compression depending on 2nd phase
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1) Work softening behavior by ductile secondary phase

High fracture toughness: > 10 % plastic strain in tensile test



Stress-induced phase transformation of secondary phase
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