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Chapter 1. Review on ‘Introduction to CFD’
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Chap. 1-1. Topics Covered

 Classification of PDE
 Characteristics of 2nd-order linear PDE  Elliptic, Parabolic, and Hyperbolic PDE

 Basic concept and linear stability
 Finite difference approximation of spatial and temporal derivatives

 Truncation error and consistency  Fourier error analysis

 Modified equation  numerical dissipation and numerical dispersion

 General concept of stability  Von Neumann stability and Lax equivalence theorem

 Domain of dependence/influence  CFD condition and stability

 Discretization of Parabolic PDE
 Basic explicit/implicit schemes, and stability analysis

 Splitting or factorized schemes for multi-D problems  ADI/AF-ADI in terms of 
delta/non-delta forms

 Difference between delta and non-delta form for steady-state computations

 Discretization of Elliptic PDE
 Relaxation methods depending on the choice of P with A = P+B  Jacobi/G-S/ADI, and 

versions of over-relaxation

 Similarity between relaxation method for elliptic PDE and time-marching method for 
parabolic PDE

 Multigrid convergence acceleration  CGC strategy for linear elliptic PDE, V-/W-cycle



Advanced Computational Fluid Dynamics, 2019 Spring Aerodynamic Simulation & Design Laboratory, SNU

Chap. 1-2. Basic Theory of SCL 

 Hyperbolic PDEs
 Wave propagation problems with limited D of Dep. and limited D. of Inf.

 Formation, propagation and interaction of linear and nonlinear waves

 Convection-dominated flows, compressible flows, convective flows admitting 
discontinuous solutions

 Scalar conservation law
 Linear convection equation

 Burgers’ equation

 Euler Equations 

 General Form of SCL






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Chap. 1-2. Basic Theory of SCL 

 Ex 1) Linear wave equation


 Ex 2) Nonlinear wave equation


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Chap. 1-2. Basic Theory of SCL 

 Ex 2) Nonlinear wave equation (cont’d)
 Problem of differentiability at discontinuity

 A sinusoidal initial profile leading to a discontinuous saw-tooth profile 

 Behavior of the exact solution
 Assuming convex flux function (                         ), extrema of the exact solution are 

determined by the initial condition, and after forming a discontinuity, they are decaying to              

to create wider expansion region.
 This is true to the case of intersection of discontinuities to create a single discontinuity.

 In case of non-convex flux function for real gas flows or two-phase flows in porous media, intersection of 
discontinuities creates multiple discontinuities along with a new monotonic wave profile bounded by the multiple 
discontinuities.

'' '( ) ( ) 0f u a u 

1/2( )O t
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Chap. 1-2. Basic Theory of SCL 

 Integration of SCL  Conservative Finite Volume Discretization
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Introduce a finite volume computational cell with ( , ) ( , ) and ( , ) ( , ),

and define an approximate quantity averaged over  and 
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Then, Eq.(*2) can be discretized, called conservative finite volume discretization, as
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By applying the integral form of SCL (or using Eq.(*3)),  problem of differentiability is avoided.
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Chap. 1-2. Basic Theory of SCL 
 Integral conservative form and the condition for correct shock speed

 Integral form and the problem of non-uniqueness
 Ex) Correct behavior of discontinuities under various initial conditions

1t
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1x 1x x

S
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From Eq. (*3),
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Chap. 1-2. Basic Theory of SCL 

 Flow physics from the 2nd law of thermodynamics states that expansion shock is 
not allowed.   entropy condition
 Characteristics across discontinuity should converge.  For the right-moving shock with

 More generally, the entropy condition by Oleinik can be considered to include non-convex 
cases.

 Ex) Consider a SCL with

What would be the expected entropy solution for convex and non-convex flux functions?

 How to implement ?
 Solve a vanishing viscosity form

 Design a numerical flux such that it contains a proper form of numerical viscosity

 Entropy function and entropy flux  entropy inequality

, [ ] / [ ] . Thus, case III is the physically correct solution.L R L Ru u u S f u u   
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Chap. 1-2. Basic Theory of SCL 

 Conservation law and weak solution



 Mathematically both equations are the same in smooth region, but not, in discontinuous region

 Note that 

 Conservative Scheme
 Applying the integral form of SCL over 

 For 1-D case with 
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Non-conservative 
solution

Exact

Chap. 1-2. Basic Theory of SCL 
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 Ex) Non-conservative scheme and shock speed

 For Burgers eqn. of                       with I.C. of

 A non-conservative upwind scheme : 

 From Eq. (*4), 

But from the R-H condition of SCL, 

 Consistency
 General form of conservative scheme

 Eq. (*5) is called consistent with SCL if          goes to the true flux f(u) in the constant 
flow.

 A stronger condition to satisfy the consistency is the Lipschitz continuity of         , or 
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