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Chapter 1. Review on ‘Introduction to CFD’
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Chap. 1-1. Topics Covered

= e Classification of PDE
Characteristics of 2"-order linear PDE - Elliptic, Parabolic, and Hyperbolic PDE

o Basic concept and linear stability

Finite difference approximation of spatial and temporal derivatives

Truncation error and consistency = Fourier error analysis

Modified equation = numerical dissipation and numerical dispersion

General concept of stability = Von Neumann stability and Lax equivalence theorem
Domain of dependence/influence = CFD condition and stability

o Discretization of Parabolic PDE
Basic explicit/implicit schemes, and stability analysis

Splitting or factorized schemes for multi-D problems > ADI/AF-ADI in terms of
delta/non-delta forms

Difference between delta and non-delta form for steady-state computations

o Discretization of Elliptic PDE

Relaxation methods depending on the choice of P with A = P+B - Jacobi/G-S/ADI, and
versions of over-relaxation

Similarity between relaxation method for elliptic PDE and time-marching method for
‘. parabolic PDE

Multigrid convergence acceleration = CGC strategy for linear elliptic PDE, V-/W-cycle
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o Chap. 1-2. Basic Theory of SCL

e Hyperbolic PDEs
Wave propagation problems with limited D of Dep. and limited D. of Inf.

Formation, propagation and interaction of linear and nonlinear waves

Convection-dominated flows, compressible flows, convective flows admitting
discontinuous solutions

Scalar conservation law
Linear convection equation (i, + au_ = 0)
Burgers’ equation (i, +uu, =0)

Euler Equations

e General Form of SCL

ou of(u) ou Ou
_ M_0 Eq(*l
P C) (")

u : conserved quantity, f (u): convex flux function, a(u)= af—(u): wave speed

With 1.C. of u(x,0) = u,(x), the exact soln. of Eq. (*1) is u(x,7) =u, (x —~ a(u)t).
u(x,t) = const along the 'charactersitic line' of x —a (u)t = const, with the wave speed of
-
o —
—=a(u ’
- =a(¥)
|
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Chap. 1-2. Basic Theory of SCL

Ex 1) Linear wave equation

i

Ifa(u)=a=const,f(u)=au and u, + au_=0
., dx
— u(x,t)=u,(x—at) with i a = const
— Initial profile moves with the same speed of a, and the initial shape is preserved.
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Ex 2) Nonlinear wave equation
2

If a(u) =u # const, f (u) = u? and u, +uu, =0

— u(x,1) =u, (x—ut) with Z”—): =u # const

— Initial profile moves with the local speed of u, and a 'discontinuous' solution can

be developed even with a 'smooth' initial profile.
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Chap. 1-2. Basic Theory of SCL

o Ex 2) Nonlinear wave equation (cont’d) \Jy
Problem of differentiability at discontinuity

A sinusoidal initial profile leading to a discontinuous saw-tooth profile
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e Behavior of the exact solution

Assuming convex flux function (f" (u) = a (1) = 0), extrema of the exact solution are
determined by the initial condition, and after forming a discontinuity, they are decaying to

-1/2 . . .
O(t""") to create wider expansion region.
This is true to the case of intersection of discontinuities to create a single discontinuity.

\ In case of non-convex flux function for real gas flows or two-phase flows in porous media, intersection of !
~ discontinuities creates multiple discontinuities along with a new monotonic wave profile bounded by the multiple
discontinuities.
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Chap. 1-2. Basic Theory of SCL

e Integration of SCL = Conservative Finite Volume Discretization

=0 +FAt

=0

at

j j( jdxdt -0
X X =X +Ax

JPuCo e[ o= [ (o) de= [ flu(xo0)de Bat)

X

4

— Conservation of u in (x,¢) stating that

change of u over (x,,x,) during A¢ = net flux across the boundary of x,, x, during A¢
Introduce a finite volume computational cell with (x,,x,) = (x,_,,,x,,,,) and (4,,2,) = (" "),

and define an apprommate quantity averaged over Ax=x,,, —x,_,, and Ar = "~

« cell-averaged value: — j xt )dx u;, e« cell-interface numerical flux: —I f ( ( X0 ))
-1/2

Then, Eq.(*2) can be discretized, called conservative finite volume discretization, as
n+ n n+ n At
Ax(u)" —u)=At(F Ly, —Fpy) =l =u] _E(

J J J

Fapn _Fj—l/z) Eq.(*3)

By applying the integral form of SCL (or using Eq.(*3)), problem of differentiability is avoided.
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o Integral conservative form and the condition for correct shock speed

A
f+ A

Chap. 1-2. Basic Theory of SCL

S

U, f

Ex) Correct behavior of discontinuities under various initial conditions

X, X +Ax
o Integral form and the problem of non-uniqueness

S =

(1

] 5l)
[u] uL_uR

I.C. 1: Compression shock
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From Eq. (*3),
(uL _“R)Ax = (fL _fR)At

(fx—J1) Z%(MR —u, ) =S(u, —u,) with § = shock speed

or [ f]=S[u] — Rankine-Hugoniout relation for SCL

« Note that § 1s the shock speed averaged over Ax, At.

=—(u, +uy) for Burgers equation
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I.C. 3: Rarefaction
shock and fans
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E Chap. 1-2. Basic Theory of SCL

o Flow physics from the 2" law of thermodynamics states that expansion shock is

not allowed. > entropy condition

Characteristics across discontinuity should converge. = For the right-moving shock with

u, >uy, u, >S=[f]/[u]>u,. Thus, case IIl 1s the physically correct solution.

More generally, the entropy condition by Oleinik can be considered to include non-convex

Casces.

(f@)=fu )/ (w—u)>S=[f1/{u]>(f(ug) = f W)/ (up —u)

1 ifx<0

Ex) Consider a SCL with u, (x) = {O P
if x >

What would be the expected entropy solution for convex and non-convex flux functions?

o How to implement ?

Solve a vanishing viscosity formu, +au_ = cu_ with some(?) & >0

Design a numerical flux such that it contains a proper form of numerical viscosity

Entropy function and entropy flux = entropy inequality
« Motivated by the entropy inequality of the Euler equations (ps), + (pus) =0,

Consider the entropy inequality of SCL as U(u), + F(u), 20
with U (u) : entropy function, F'(u): entropy flux.
dF_df dU d’U

Then, by requiring —=———— and <
Y 8 du du du du’

b can be obtained.
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— Chap. 1-2. Basic Theory of SCL

Conservation law and weak solution

2
Considerut+£u—j =0 vs. (uz) +(gu3) =0
2 £ \3
1 (u, _”R)2

U, /()]
S“_m_z u [uz} 2(uL+uR)+g u, +u,

1
—(u, +uy) vs. S, =F——===—
Mathematically both equations are the same in smooth region, but not, in discontinuous region

Note that U(u) = —u’ and F(u) = —%Lf are actually the entropy function and entropy flux, respectively.

e Conservative Scheme
Applying the integral form of SCL over (Ax,At)

n+ n At

ut = u; _E(F 2T Fj—l/z) Kl

For 1-D case with Q = JMAX x Ax

JMAX ' JMAX | JMAX At

Z (EQ- (*3)) g1ves Z u, — Z u; +E(FJMAX+I/2 _E/z): 0,
j=1 j=1 j=1

if each cell-interface flux is uniquely and consistently determined from cell-averaged values
— Change of u in the computational domain during At
= Net flux across the computational boundary during A¢

— Discrete realization of the integral conservation law over the computational domain -
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Chap. 1-2. Basic Theory of SCL

Ex) Non-conservative scheme and shock speed

) 1 ifx<0
For Burgers eqn. of u, +uu_ =0 with L.C. of u,(x)= 0 ifx>0 e
A ti ind sch Loontl _ om At n(n n ) - Exact
non-conservative upwind scheme : " =u/ ——u'\u} —u/| Eq. (*4)
1 if j<0
with w0 =] =7 - J
710 if ;>0
Non-conservative
From Eq. (*4), u;’ = u? for alln andj — S=0 solution
But from the R-H condition of SCL, S = %(l +0)=0.5 Sovee
e C(onsistency
o General form of conservative scheme
At
n+l n n n n n n n
f T _E(Fﬁl/z (uj—p’uj—p+1""’uj+q)_ Fiyp (uj—p—l’uj—p""’uj+q—1 )) Eq. (*5)
Eq. (*5) is called consistent with SCL if F, , goes to the true flux f(u) in the constant

flow.
F(u,u,...uu)=f (i)
A stronger condition to satisfy the consistency is the Lipschitz continuity of £/,,,, or
that there is some K >0 such that
o -

‘F(u u )—f(u)‘SKmax

J=p? T jmpH2 T g ~p<i<q
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