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Chap. 4-8. Boundary Conditions
 Finite computational domain

 Evaluation of numerical fluxes at wall and far boundary

 Ex) 1-D finite computational domain

 For subsonic/transonic compressible flows around airfoil, far-field distance (l) can change 
from O(10c) to O(100c) depending on the nature of far-field BCs.

 Ex) Velocity correction at far field boundary

 Improper BCs (wall and far-field) will spoil numerical accuracy and convergence 
characteristics.
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  and  cannot be updated without the knowledge of fluxes at boundaries.
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 Steady subsonic/transonic flows around 2-D airfoil

  - the flow in the far field can be modelled by the P-G equation as (1 ) 0.

  - the perturbed far field velocity induced by a point vortex

xx yyM    



2
2 2 2 2 2 2

 approximation of airfoil is given by 

    ( ) ,  ( )  with 1 ,  .
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  - the total velocity component at far field can be modelled by
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Chap. 4-8. Boundary Conditions

 Wall Boundary Condition
 For 2-D Euler eqns.,

 Flux evaluation at a cell (i, j) adjacent to the wall

 Estimation of wall pressure

   or  dS dy dx
t x y t
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 Direct flux evaluation using ghost cell

   - define quantities at the ghost cell  0  by

     , , , ,  and compute the interface flux like a normal cell
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Chap. 4-8. Boundary Conditions

 Estimation of wall pressure (Cont’d)
 Direct flux evaluation using ghost cell

   - O.K. for flat wall or mildly curved wall, but not for wall with steep curvature

     such as the airfoil leading-edge
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 Extrapolation

   - Estimate the wall pressure from pressure distribution inside the computational domain

   - First-order approximation: / 0  with error

   - Second-order approximation: 
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     with error, but this may not always provide expected accuracy if there is numerical

     oscillation near wall.
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 Apply force equilibrium from the normal momentum eqn.: pressure force centrifugal force
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  and  is computed using neighboring grids ( 1,
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 Far-field Boundary Condition
 2-D non-conservative form of Euler eqns. with primitive variables of 

 Assume waves are propagating normal to the local    -dir.  and no shocks
 Local 1-D isentropic flow with 
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2 2
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0,  and Eqs. (3), (4), (9) and (10) can be approximately expressed as
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Chap. 4-8. Boundary Conditions

 With Eq.(11), far-field BC can be specified by the sign of the locally 1-D wave-
speed and the corresponding invariant.
 Supersonic flow with |u| > c
 pure extrapolation from the inner computational cell, or specify everything as free    
stream values

 Subsonic flow with |u| < c
1( , , , ) ( , , , )  or ( , , , )N Nv s R R v s R R v s R R     
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cal variables at far-field boundary can be determined.


