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Chap. 2-1. G-W Phenomenon, Godunov’s Theorem and Monotonicity

 Gibbs-Wilbraham Phenomenon
 Approximation of a profile including discontinuity by Fourier Series (or 

interpolating techniques using basis functions) 
 Oscillations occurs across discontinuity with O(1) It never dies out even if the number 

of basis function is increasing.

 Henry Wilbraham (1848), J. Willard Gibbs (1899)

 Magnitude of overshoot/undershoot: 

 Locally converge (or L1, L2 convergence) but not uniformly (L∞ convergence)

 warning to naïve capturing discontinuities by simply increasing the number 

of interpolating function or mesh point

<Animation of the Gibbs phenomenon>
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Chap. 2-1. G-W Ohenomenon, Godunov’s Theorem and Monotonicity

 First-Order Scheme and Numerical Diffusion
 For                     with Upwind or L-F scheme

 Modified equations

 Leading error term is numerical dissipative  smooth transition across 
discontinuity without oscillations 
 Excessive numerical dissipation

 Unacceptable loss of accuracy  Too many grid points

 Viscous computation and resolution of boundary layer requires at least 2nd-order accuracy.

 Second-Order Scheme and Numerical Dispersion
 With L-W or B-W scheme
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 Second-Order Scheme and Numerical Dispersion (cont’d)
 Modified equations 

 Numerical dispersion relation :                  
For each Fourier component with ω, group velocity 

 Observation
 Numerical oscillations across discontinuity occurs regardless of differencing 

type (central or upwind) once the order of accuracy is greater than one.
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 Godunov’s Barrier Theorem on Monotonicity
 General form of one-step numerical schemes for 

 Upwind : 

 L-W : 

 Conditions for consistency and accuracy
 For

 Consistency :  

 First-order accuracy :

 Second-order accuracy :

Chap. 2-1. G-W Phenomenon, Godunov’s Theorem and Monotonicity

 

1 1 1

Linear mapping 1

 with   .   can be uniquely obtained (or B )

 ,   , ,

n n n n n
q j q q j q q j im ex

q q

n n
j jq j q jq jq

q

u u st u A

u c u c c x t a

    
 




 

    

 



u u

1n n
j q j q

q

u c u


 22 2
2... ... ...

2 2 2j t tt j x xx q j x xx
q

q xt t
u u t u u au t a u c u q xu u

  
              

  


1q
q

c 

q q
q q

x qc a t qc        
2 2 2 2 2 2

q q
q q

x q c a t q c      

Eq. (*1)

Eq. (*2)

Eq. (*3)

1
1 1

1 1
( | |) (1 | |) (| | )

2 2
n n n n
j j j ju u u u    

      

1 2
1 1( 1) (1 ) ( 1)

2 2
n n n n
j j j ju u u u

   
      

0 xt auu



Advanced Computational Fluid Dynamics, 2019 Spring Aerodynamic Simulation & Design Laboratory, SNU







Chap. 2-1. G-W Phenomenon, Godunov’s Theorem and Monotonicity

1(Godunov's barrier theorem) For the fully discretized  scheme of ,

 it can not be better than first-order accurate if the scheme is not oscillatory.
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 Constructive implication of Godunov’s barrier theorem
 To obtain more than 2nd-order scheme without oscillations, the scheme should be 

‘non-linear’ even for linear equation.  Aside from the linear stability for the linear 
difference schemes, such as Von Neumann stability, the need to develop non-linear 
stability theory becomes apparent.
 Maximum-norm boundedness means that a computed result is non-oscillatory.

 Oscillation check of first- or second-order linear schemes from the view point 
of positivity condition
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