E Chap. 2-3. High Resolution Monotonic Schemes

[

e ENO Schemes
o Essentially-monotonic, arbitrary higher-order interpolation to overcome

the shortcomings of TVD (or 2"-order monotonic) methods
See the works by Harten, Enquist, Osher, Chakravarthy(1987, 1989), and others

e TVDvs. ENO

(TVD) Locally first-order accurate across all extrema to strictly enforce monotonicity
- accuracy loss across smooth extrema due to excessive diffusion (~ O(Ax'*) error,

minmod) or clipping (~ O(Ax?) error, superbee)
(TVD) A fixed stencil = 2"-order monotonic schemes with 5-point flux evaluation in
general (j-2 ~j ~ j+2) = difficult to realize higher-order TVD schemes

Harten’s 3-point explicit/implicit TVD schemes can be generalized into multi-point counterparts
(Jameson and Lax, 1986)

(ENO) Allow the increase of local extrema up to the order of truncation error to achieve
higher-order accuracy across smooth extrema

(ENO) Use locally adaptive smooth stencil for higher-order interpolation
o Procedure to construct piecewise smooth polynomial

« Start from, 1) cell-averaged value(u,) or primitive function(U) with U (x) = jx u(x)dx,u =dU/dx 2

i) flux function ( f;) -

Advanced Computational Fluid Dynamics, 2019 Spring Aerodynamic Simulation & Design Laboratonfym



—
—

Chap. 2-3. High Resolution Monotonic Schemes

ENO polynomial reconstruction for u:
Basic idea: Newton’s divided difference and Newton’s polynomial
FOr u;, 1, Uy, consider u[x,]=u,, u[x,x,,]={u[x,]-u [xl]}/Ax = (u—u,)/Ax,
u [‘xi’ Xivto xi+2] = {u [xm > Xiy2 ] —u [xi’ Xiv1 ]}/(2Ax)= {(”i+2 —2u,,, +u, )/Ax - (”i+1 —U; )/Ax}/(ZAx),
v u[xi’le’“"an = {u [xl.+1,xl.+2,...,xi+n]—u [xi’xiﬂ’“"xiw*n]}/(nAx)

With u, at (n+1) grid points x, ..., and the sequence of divided differences,

we have the n —th order Newton's polynomial of p , (x) to approximate u(x) as
p,(x)= ”[xi]+“[xiaxi+1](x_xi)+u ['xi’xi+1’xi+2](x_xi)(‘x_xi+1)+“'

+ulx, X, 0 X, (0= x ) (x—x,, ) (x =X, ) With p(x) =1,

k
« If u(x) is sufficiently smooth (e C"*"), u[x,x, ..., x| = %fl Z and thus
! dx
¢
1 d" My

e,(x)=u(x) = p,(x) = (x=x)(x =2, )2~

withx, <& <x,, .

X.
o) (n+1)! dx"*V :
Thus, the magnitude of u [x,,x,,,,...,x,,, | can be exploited to measure e,_, (x).

« If the / —th derivative of u(x) has a discontinuity at x = x, it can be shown that

dl + dl -
u[xiaxi+1a"'sxi+k]:OLAxlk1[ z;i);p)_ Z)(C)ZCP)JJ with X; S)Cp < Xpge

— By checking the magintude of u[x,,x,,,,...,x,,, |, stencil can be chosen adaptively =

to minimize both the interpolation error and to avoid a discontinuity.
s
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Chap. 2-3. High Resolution Monotonic Schemes

ENO polynomial reconstruction u: (cont’d)
Implementation: compare Newton’s divided difference for each candidate stencil

< ‘u [xl._1 ,xi]‘

. i+1 if ‘u[xl.,xm]
« (S1) Starting from the cell i, take

> ‘u [xl._l,xl.]

i—1 1if ‘u[xl.,xl.ﬂ]

— u(x)=u,+u [xj,xj+1 ] (x-x), x,, <x<x,,, (minmod linear reconstruction)

. i iaf ‘u[xl.,xm]
with j =
i—1 i1f ‘u[xl.,xl.ﬂ]

< ‘u [xl._l, xi]‘

> ‘u [xl._l, xl.]
« (S2) Repeat (S1) to select a piecewise parabolic and cubic interpolation polynomial

u(x)=u, —|—u[xj,xj+1](x—xi)+u[xk,xk+1,xk+2](x—xj)(x—xj+l) (parabolic)

' j if ‘u[xj,xj+l,xj+2]‘ﬁ‘u[xj_l,xj,xjﬂ}
with k =
j—1 1if ‘u[xj,xj+1,xj+2] >‘u[xj_1,xj,xj+1]
Similarly for a piecewise-cubic reconstruction,
u(x) =u, +u[xj,xj+l](x—xl.)+u[xk,xk+1,xk+2](x—xj)(x—xj+1)
Tu [x;,x,+1, Xi42s xl+3]('x — X )(x = X4 )(x — X2 )

) k if ‘u [xk s X0 Xpi2s 'xk+3] < ‘” [xk—l > Xp s X xk+2]
with [ =

k-1 if ‘” [xkaxk+1’xk+2=xk+3] > ‘” [xk—1>xk7xk+l’xk+2]

—
L
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E Chap. 2-3. High Resolution Monotonic Schemes

Implementation: compare Newton’s divided difference for each candidate stencil (cont’d)
« (S3) ENO stencil obtained by a recursive manner

For 0 <m <n—1with [, (i) =1, select ], (i) as | TR
lm (Z) if ‘u[xlm(i)’xlm(i)ﬂ’ )+m+1

L (i)=1 if ‘u[xlm(i)’xlm(i)ﬂ’ X (i)em+1

* (S4) ENO polynomial in Newton form

‘” (i) X1, i) 000 (')+m]

‘u RERUNOIE "xlm(i)+m:|

L1 (Z) -

\/

From the ENO stencil of [xln 2% (#1573 % (e ], construct a n —th order ENO polynomial

in Newton form as

0 (6) = ulx, o T, %, 0 (3= )00 3 00, s 5 | (=0 ) (200 )
+ u[x 2% (127X (e ] (x =X, ) )(x —X; (i )(x =X, (iynei )

j-1

- ug(x)= Z”[ X)X, (i)12 00> l()+]:|H(x_xln(i)+k)’ X SXS X0,

j=0

Or more hierarchically, we have
u,(x)= u[xlo(i)] + ”[le(i) s X ()1 ] (x =X, ) ) +u [xlz(i) s X ()15 X1, (1152 ] (x =X ) (x =X, ()1 ) +...
FUlX, 0%, e ’xz,,(f)w](x L0 (" ERAGR ) (" A, (i 1)
- u,(x)= Z u [xlj(l.), X, (oo X (i) } ]:)(x =X i)k )
&_i .
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E Chap. 2-3. High Resolution Monotonic Schemes

Flux evaluation using the interpolated values of ENO subcell recfonstruction

(i+1)R « For each cell, we obtain u, and u, from u,(x).
P
Following the MUSCL approach, we replace the cell-averaged values.
iR
-- /l> (DL U > U =Ug (xi+l/2)’ Xy SXS X

T
Uiy Uiy, =Ug (‘xi+l/2)’ Xip SXS X5
1

- — Finally, evaluate F;, , = F,,,, (4, ) to update u"
i i+

e Characteristics of ENO scheme
Choose the locally smoothest stencil to avoid stiff gradient or discontinuity
Adaptive interpolation(not limiting) to preserve/maximize accuracy across smooth extrema

By construction, arbitrary higher-order reconstruction is possible if stencil is available.

« (Stability) With the conservation constraint of J‘xm/z u, (x) =u,,1t can be shown 'numrically’

Yooy
that TV (u"") < TV (u") + O(Ax") for r —th order ENO interpolation if there are at least
(r +1) smooth points.
— Strictly speaking, TVB stability(there is a finite M such that 7V (u") < M for all n.).
Thus, oscillation/monotonicity can be controlled essentially but not strictly.
+ (Choice of stencils)
- Behavior near boundaries where proper candidates for ENO stencil is not available. ‘

- Cells between two discontinuities approaching each other
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= Chap. 2-3. High Resolution Monotonic Schemes —

e WENO schemes
Adaptive smoothest stencil of ENO scheme susceptible to a small perturbation
at round-off level = convergence problem
See the works by Liu, Jiang and Shu(1994, 1996), and others

In smooth region, ‘free adaptation’ of candidate stencils may cause loss of accuracy by
choosing unstable stencils.

Single higher-order polynomial = Convex combinations of lower-order (or
more local) interpolations 2 A sophisticated smoothness indicator to
determine non-linear weighting for each local polynomial

WENO polynomial reconstruction using cell-averaged value, u
(ST) Interpolation on local and global stencils

« Reconstruct & - th order local polynomial p;(x) on S; and (2k) - #h order global polynomial Q on T= ZS

Xit141/2

:_j x)dx, =~k+j,...j and u,,, —k,...k
Xisi-1/2 Xivl-1/2
« Convex combination of local polynomial
with linear y; weights such that S,
k k < SO ) > g -
Z7jpj (xiil/Z) = Q(xiirl/Z) with 27/' =1 . . X775 - . -
5> /=0 Xiz  Xig X; i+l X2 Xigs
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(S2) For each stencil S, local smoothness is measured by the indicator. (by Jiang and Shu)
k Xit1/2 _ Xit1/2 ' " -
B, = i A (P (x)) dx(z _[ (Ax(pj (X))’ +Ax* (p; (X)) +...+ A (PP (x))° )dx) |
j=1 ° 2 Xi-1/2

« The sum of L, norm of all derivatives of p, (x)

(S3) Design non-linear weights ; to satisfy the following ENO property
« If the stencil S, is in smooth region : @, = O(1)

« If the stencil S, is in non-smooth region: @, < O(Ax")

— Compute the locally adaptive nonlinear weights using the smoothness indicator

7 @

0 =—"— 0=
Lo(e+p)y 251
« Huge variants of WENO schemes depending on, among others, the design of o,
— WENO, 'WENO-JS', WENO-(M/Z/CU6/PMk/NS/Zn/IM/P/Z+/RM/RIM...)

Hybrid/Hybrid-compact WENO, etc
(S4) (2k+1)-th order accurate WENO reconstruction via convex combination with the

with £ 2107°

non-linear weights

k k
. Z}/jpj(x) — Uy (x)= Za)jpj(x) = U =y (X)), Uy =y (X)) forall i
=0 =0

n+l
- E+1/2 :F;'+1/2(uiR9u(i+1)L) - U !
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1 7 11
Py ('xz'+1/2) = E”i—z _gui—l +€uz
1 5 1
P (‘xz'+l/2) = _gui—l Tou g”m
\
1 1
P> (xi+1/2) = gui +gui+1 _gui+2
1 13 47 9 1
X, =—U ,——1U. U +—u,_ , ——u,
Q( 1+l/2) 30 i-2 60 i- 1 60 u; 20 i+1 20 l+2)
Smoothness indicator
13 1 2|
B, = 12( —2u, , +u, ) +Z(ul._2 —4u, +3ui)
13 1 2
b= 12( —2u, +u1+1) +Z(ui—l_ui+1)

13 1
IBZ 12(” _2u1+1+u1+2)2+2(3

N

—4u.  + ul+2)

i+1

Cell interface values and fluxes

j=0
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Ex) Construction of 5-th order WENO scheme
For k = 2, local/global polynomials of p;(x) and O(x)

From Q(xiil/Z) = 22:7/ij (‘xiil/z)With i?ﬁ =1,
j=0 J=0

we have y, = — —i —i
7/0 ’ 7/1 10) 7/2 10
. Y 0,
W, =" "35> 0; =7
(e+5) Sa
=0

Uy (x) = Za) p,(x) = Uy =y (X)), Uy =uy(x,_,,) —> evaluate F ) = z+1/2(qu’u(z+1)L)

o
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Chap. 2-3. High Resolution Monotonic Schemes

o Example

Linear advection problem with smooth and discontinuous profiles
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