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 One-dimensional Euler Equations
 Conservative vector form of 1-D Euler Equations
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Assuming calorically perfect gas/air ( / 1.4,  ), 1 ( / 2). 
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2 2 2
1,2,3

 Euler system is hyperbolic since it can be diagonalizable with a set of real eigenvalues and

  independent right eigenvactors.

  From det( ) 0 ( )( 2 ),  ,  ,  
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 Conservative form
 Differential form obtained by applying integral mass/momentum/energy conservation

 Rankine-Hugoniot relation

 Conservative form is meaningful only if it is consistent with physical laws of 
conservation.
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 Isothermal form of 1 D Euler equations with 1,   

  1-D Euler eqns. become 0
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 Primitive form, symmetric and symmetrized form
 Measurable quantities for U  more intuitive and simpler in smooth flow
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With ,  conservation laws become  with  0 1 .
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Let  

p p
p p p

p

p p

p p

u

u A A u
t x

p c u

A A
t x t x

 




   
               

      
    

   
     




U U F
U U 0

U

U UU U U U
U 0

U U

U

U        

11 2 3

2 2

1 1

1 0 0 1 0 0
( , , )

0 ,   1 0
( , , )

2 1 1 1 2 1 1

Thus,   with .

Since  is similar to , eigenvalues are the same

p

p

p p p p
p

p

u u u
P u P u

u p
u u u u

P AP P AP P AP A
t x t x

A A

  


    



 

   
                       

   
    

   

U

U

U U U U
0

 and eigenvectors are linearly independent.

1

 From det( ) 0,  ,  ,  ,  and 1 ,  0 ,  1

0

 If no shocks (or isentropic flow),  energy equation becomes 

p i i

t

c c

A I u c u u c

c c

s u

 
 

 

     
                
          



r

 0

  Thus,  is possible to have 0

x

p p
p p

s

u A
t x

s




 
       

  

U U
U

Chap. 3-1. Mathematical and Physical Aspects of Euler Eqns.



Advanced Computational Fluid Dynamics, 2019 Spring Aerodynamic Simulation & Design Laboratory, SNU

 (Symmetric form) Starting from the primitive form, simple and useful symmetric form 
can be obtained.

 2

2

0 1 / 1

  with 1 ,  , , ,  / ,  0 ,  / .

0 0 0 0
p i i

u p s

A c u p s u c u u c c c

u c


    

        
                     
              

r

2

log( / )

( )/  ...

1
  0      0

1
                                      0                                   

p p s p const
p ds dp c d p

u p u p u
A u c

t x t x x c t c x x

u u p
u

t x x




  
 



 
 

       
         

       
   

  
  

U U
0

2 2 2

2

2

0

                                      0                                ( ) 0

/ /

By introducing  or ( / )

/
s

u c p u
u

t c x x

p u p p p
c u c u c

t x x t t x x

dp c dp c

d du c du

dp c d dp c


 






 
  

  
      

      
      

 
   
  

w
2

1

2

1

2

0

,   with 0

0 0

Now, from ,  we have 

with 

1 0 1 / 2

, / 1 / 0

/ 2

s s
s s

s s s s
s s

s s

s s
s

u c

A A c u
t x

d u

A A P AP
t x t x t x

u u

P u c u P u c c

H cu u



  







   
                

      
     

       

   
       

  

w w
0

w w w wU U U U
0 0

w w

U

w
1 2

2

, , and ( 1) / .

( )
s s sP AP A c

u H u

 
 



 
     
   

Chap. 3-1. Mathematical and Physical Aspects of Euler Eqns.



Advanced Computational Fluid Dynamics, 2019 Spring Aerodynamic Simulation & Design Laboratory, SNU

 Symmetric form (cont’d)
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 Symmetric form (cont’d)
 (Entropy variables) By introducing a suitable form of entropy function/flux/variables, symmetrized hyperbolic 
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 Symmetric form (cont’d)

 Characteristic form
 Wave nature of the Euler equations can be best analyzed by utilizing characteristic form.

 If A(U) = const. (locally or globally),

  The convexity of ( ) can be treated as a generalized energy since  is unbounded 
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 If A(U) is not locally constant,
1By defining differential characteristic variables as  ,  we still have  or 

a family of scalar equations, 0. Here,  depends on all characteristic variables. 
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obtained. This formulation is quite useful in implementing far field BCs to 
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minimize wave reflection. With the Riemann invariants of ,  we have
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 ( ) and ( ) :  equations for acoustic waves with the sonic speed of  w.r.t. 
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 Simple waves

 Genuinely nonlinear and linearly degenerate field

The flow physics of the 1-D Euler equations is rather complicated by the 'nonlinear interaction' of 

the three elementary waves. And, overall properties are not the same as those of scalar conservation

law. For example,

   - Total variation of 1-D Euler equations is not, in general, decreasing.

   - From shock/contact interactions, new local maxima/minima can be easily produced.

In order to understand the nature of each wave equation clearly, additional assumption is introduced.

   - For each wave with the path of 0 along ,  the other two waves are assumed to 

     be constant. . (a
k k

k
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 Example of simple waves
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  - Simple entropy wave: 0  along .  linear advection equation and

    contact discontinuity
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1 2 3Linear and nonlinear nature of each wave is often identified in phase space ( , , ) rather than 

in physical space ( , ). 

 . along  in physical space  . along an integral cui i i
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 Genuinely nonlinear and linearly degenerate field (cont’d)



1 2 3   space such that ( ) ( ( ), ( ), ( ))  with some parameter . 

   Thus, ( ) 0 .

   By checking the behavior of  along the integral curve ( ), we define
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This is an extension of convexity condition into Euler systems since, in SCL, 1 0
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Example: Euler equations in primitive variables of ( , , )
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