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~ Chap. 3-1. Mathematical and Physical Aspects of Euler Eqns.
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e One-dimensional Euler Equations

Conservative vector form of 1-D Euler Equations
From mass/momentum/energy conservtions neglecting effects of viscosity and heat conductivity,

we have
'y u, pu N 2 2
F )
U LFW) g withU=| pu |=|u, |, FQUY=| pu+ p |=| £, |, E=e+ ' H == e+ 2y + 2
or  ox 2 P2
PE | | u, puH /s

Assuming calorically perfect gas/air (y =¢, /¢, =14, ¢, —c, =R),p= pRT =(y 1) p(E —u*/ 2).

oU oF oU o0U oU
+ = + 4 =0,
ot oU ox ot ox

A is a quasi-linear function of U.

From

0 u, 0 U,
F(U)=uU+| p =Z—2 u, [+ (r=D(uy—u3 / 2u)) or |, /u, +(y = D)(us —u,® / (Qu,))
up 1 U, (u, /u,)(y —1)(u3 —u22 /(2”1)) (uy fu )(yu; — (v _1)”22 / (2u,))
OF 1 0 ’ 0 0 0 ! :
AU)=—=ul + p| u L I (fl’fz’f3)= (y =3’ /2 B —y)u y—1
oU 0 oU O(u,,u,,u,) 3 ) N
H u (y—Du —yuE yE-3(y—-Du"/2 yu |

with (y =Du’ —yuE =(y —=Du’ /2 —uH and yE -3(y —Du’ /2 =H —(y = Du’
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« Buler system is hyperbolic since it can be diagonalizable with a set of real eigenvalues and

independent right eigenvactors.
From det(A—A1)=0=(A—u)(A> —2ud+u’ —a®), A, =u—c, u, u+c

1 1 1

FromAr,=Arx,, r,=| u—c |,r,=| u |, r,=| u+c

H —uc u’/2 H +uc
H+——(u—-c) —u- <

y—1 y—1
. . -1 7_1 4 2
Using R=[r,r,,r,| withR™' =-— c-2H 2u -2
2c y—1

u—c 0 0
R'"4R=A=| 0 u O
0 0 u+c
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o Conservative form

Differential form obtained by applying integral mass/momentum/energy conservation

! () 4
P pu
oU OF(U) : ) L=l +
Y + o =0 withU=| pu |, F(U): pu - +p L state
pE puld

Rankine-Hugoniot relation R state
From jj(a_U+a—Fjdxdt=0 on Q =[x,,x,]x[t,t,], h ~

S\ 0t Ox -

X, Xp =X, +Ax

LXR U(x,1,)dx — J':R U(x,t,)dx = J':Z F(U(x,,1))dt —I ‘F (U(xg,1))dt

I
Ax(U, —U,)=At(F, —F,) or [F]=S[U] with S = Ax/ At
Conservative form is meaningful only if it is consistent with physical laws of
conservation.

« Isothermal form of 1— D Euler equations with y =C, / C =1, ¢’ = }/£ = yRT = const
P

P pu _
1-D Euler eqns. become + , 5, | =0
pu, [pu F+cp],
If flow is smooth, momentum equation becomes

—

} =0 but, u is not a conserved quantity.

X

2
c u
u, +uu, +—p +—(p,+up +pu)=0 - ar ) puz
! yo, yo, ul |u / 2+c’Inp
g
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Primitive form, symmetric and symmetrized form
Measurable quantities for U = more intuitive and simpler in smooth flow

B el
| g . ou, U, ok |o 7
WithU=U, =| u |, conservation laws become 8;] +4, P E=0with 4, =——=|0 u 1/p]|.
p g P00 pct u

ou ouU
ou _ ou Iy ou r _o
Ox 8Up ot 8Up Oox

From conservative form with chain rule, we have (2—[; + A(U)

10 0 U ! 0 0
- a@({Jj Eﬁa(ul,uz,%)zpz . p 0 | p= aUp =l —u/p 1/p 0
,  O(p.u,p) )2 pu 1(y-1) (y-Du’/2 =(r-Du (r-1)

U oU ou, . au,
Thus, P 2+ AP L —-0= 2+ P AP 2 with P AP = A .
ot ox ot ox P

Since 4 is similar to 4, eigenvalues are the same and eigenvectors are linearly independent.

—ple| [1] |plec
« From det(4,—A1)=0, 4, =u—c, u, u+c, andr, = 1 |, 0], 1
pc 0 pc
« If no shocks (or isentropic flow), energy equation becomes s, +us, =0
r oU

Thus, U =| u | is possible to have —%+ 4 £ =0 —
i ot Pox ”

S
| o
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u p 0 1 —0p / Os 1
with 4, = lp u (I/p)op/os |, A, =u—cuu+c, r,=|—c/p|, 0 , lelpl.
0 0 u 0 ¢ S

(Symmetric form) Starting from the primitive form, simple and useful symmetric form

can be obtained.

ou oU y
Pid —L=0 - a—'0+1,¢—'0+,08—u=0 L Ly Lop, udp, ou_,
ot P ox ot Ox Ox d=(dp=cidp)ip - = pe Ot pc Ox  Ox
L i8—p:0 a—u+ia—p+ua—uzo
ot ox p Ox ot pcox  Ox
P 28—M+ua—p=O G_p_cza_p+u 8_p_cza_p):0
ot ox  Ox ot ot ox Ox
dp/ pc dp/c’ u c 0
: : ow ow :
By introducing dw = du or | (p/c)ydu |, 8ts A 3 *=0withd ={c u O
dp—c’dp dplc*—dp * 0 0 u
Now, from 8_U+A6_U:0: U ow, A U ow, , we have ow, +P AP W, =0
ot Ox ow, Ot ow, Ox ot ‘ T Ox
with
1 0 -1 yu'l/2  —yu -y
oU -1 -1 — 2
Psza—: u c -u |,P"=| -ulc 1/c 0 |,P'AP =A,and7=(y-1)/c*. |
W H cu -u’/2 yw'-H) —-yu 7 .

g
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Symmetric form (cont’d)
Since A, is symmetric, we have orthonomal eigenvectors with R7'4 R = A, where

—1/42 0 1/42] B e |
R =[r,r,r]=| 1/N2 0 1/\2|, R =R’
0 1 0

From P'AP, = A = R_AR_', we have (P. R,) "' A(P. R,) = A.
It is noted that symmetric form can be utilized to obtain symmetrized hyperbolic form with any set

of dependent variables.

g@ Ozawsa_UJrA?awsa_U_RlaU ARlaU
8t © Ox ou ot ~oU ox = ot SoOx
we have P/ 7' P %—U+ P4 P! 2—U =0= Qa—U A, (Z—U where O =(P.P")™ is symmetric and
t X
positive definite, and 4, = P’ _1ASPS 1s symmetric.
ou ou ou ou
« (Primitive variables) Fro 6W _ow, 2, + A, oW, _ 2+ A, 2,
Gt o U , Ot "oU, Ox ot S Ox
0o 0 1/¢
r 0U, ou, au, au,
we have M" M —2+ M " AM ’ =0,where M =| 0 p/c 0 |,
ot 8x ot ? ox | o e o
- c

N = M"M is symmetric and positive definite, and A,=M "AM is symmetric.

| o
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Symmetric form (cont’d)

« (Entropy variables) By introducing a suitable form of entropy function/flux/variables, symmetrized hyperbolic

o(ps) + O(pus) = (0 obtained from energy and continuity equations,

t ox
consider the generalized entropy function, U, and entropy flux, G..

(The case of SCL: u, + f(u), =0 > U(u), + F(u), =0 with Uf" = F" and U" <0)

form can be obtained. Motivated by

For U Aa—U =0, we seek U, (U) and G, (U) such that U, oF _2G, with U_ being a convex function of U.
o Ox oU oU oU ‘
From oU, ( oU 4 oU _0, : : . oU,, N oG, o
ou \ ot ox ot ox

Define entropy variable vector as 8" = , 7(S)=S"F-G,(U)

b 04 _yr grU_QU AU\ ow 0 [aqj: 0 [an:auj oU

= - = — ——(=N,) 1s symmetric.
oS oS JU oS oS, 0o§,\0as,) 05,(0S,) 05, oS

. of.
ii)@:FTJrST@F@U_@GSaU:FT N 8fl: o [ or _ o | or _ f,
oS oU oS oU oS oS, 0§;\0dS,) 0S\asS,) 08,
- oF = ey (= AN,) is symmetric.
oS oU oS ‘
Thus, from ou + A4 6U v GS 8_U@_S =0, we have a symmetrized form of N, ) + AN, & =0.
ot ox  0S 8t oS Ox ot ox
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F Chap. 3-1. Mathematical and Physical Aspects of Euler Eqns.

Symmetric form (cont’d)
The convexity of U, (U) can be treated as a generalized energy since U, is unbounded

as U is unbounded. It can be shown that — ps is a convex function of U, and thus we take

P _ T plog p— Ll plog p as a generalized entropy function.

y—1 y-1

U, =

From direct calculation, S and N 1s given by

_ 2
ST — 8Uc _£|:7/ Su_ u’ _1:|’

ou  ply-12°
yo, pou pE 0 0 0
ou ) 1 r
N, =—=|pu pu +p pul =—UU +p|0 1 u
oS Yo,

pE  puH  pEH+ pu’/2 0 u E+u’/2
Characteristic form
Wave nature of the Euler equations can be best analyzed by utilizing characteristic form.

If A(U) = const. (locally or globally),

From QUL OF)_U 000U o p0U_,
ot ox ot ox Ot ox
) ) .. . 1 oM oM .
by introducing characteristic variables @ = R~ U, we have = + Aa— =0 or a family of scalar
X
-~
equations, a;)" + 4, 860),. =0 with A,,=u—c, u, u+c. Thus, U=Ro =) ar, r
X i

I
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If A(U) is not locally constant,

oM oM

By defining differential characteristic variables as 0w = R'0U, we still have EJF A s =0 or
ot Ox |
ow, o,
a family of scalar equations, E'F A 8— = 0. Here, A, depends on all characteristic variables.
X
do, dx
With ? =0, o, = const. along each characteristics I = A, yielding limited domain of
dependence/influence. The compatibility relation (or dw, = 0 along dx = A.dt) is then
do,, =du$d—p=0 - o, =u$_[d—p=c0nst. along dx = (usc)dt, ']
: pe :

dw —dp—d—p 0 — from da)zz—ﬁds, s = const. along dx = udt.
¢ 4

Assuming s = const. everywhere (homentropic flow) and calorically

perfect gas, all dw, become integrable, and three wave equations are
obtained. This formulation is quite useful in implementing far field BCs to
2c
y—1

minimize wave reflection. With the Riemann invariants of R =u F , we have

OR* OR* 0s os
1 T =0 along dx = Fc)dt, —+u—=0 along dx = udt.
y (u+c) ™ gdx=(WuFc) Py u ™ gdx=u

— ®,(=R") and w,(= R"): equations for acoustic waves with the sonic speed of ¢ w.r.t. u o

@, (= s): equation for entropy wave with the local flow speed of u
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Simple waves
The flow physics of the 1-D Euler equations is rather complicated by the 'nonlinear interaction' of

the three elementary waves. And, overall properties are not the same as those of scalar conservation
law. For example,

- Total variation of 1-D Euler equations is not, in general, decreasing.

- From shock/contact interactions, new local maxima/minima can be easily produced.
In order to understand the nature of each wave equation clearly, additional assumption is introduced.

- For each wave with the path of dw, =0 along dx = 4, d¢, the other two waves are assumed to

be constant. - @, = const. (actually, all @,!) along the straight characteristic line of x = 4,1 + const.
« Example of simple waves
oV FxC)
X

equation leading to the formation of shock discontinuity/expansion waves

- Simple acoustic waves: +(VFCO)

G(V—TC) =0 along x = (V ¥ C)t +const. — Burgers'

: Os s : : :
- Simple entropy wave: 2 +V F™ =0 along x =Vt + const. — linear advection equation and
t X

contact discontinuity

Genuinely nonlinear and linearly degenerate field
Linear and nonlinear nature of each wave is often identified in phase space (u,,u,,u,) rather than
in physical space (x, ). -
« o, = const. along dx = A dt in physical space — o, = const. along an integral curve u(&) in phase
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Genuinely nonlinear and linearly degenerate field (cont’d)
space such that u'(&) = (ul' (f),uZ' ((f),u3' (£)) oc r; with some parameter &.

5 90 90 v (@) =0=Va, .
dé  ou, 0&

By checking the behavior of 4, along the integral curve u(<), we define

Thu

- Genuinely nonlinear: ci’/;’ =VA-u(E) #02VA 1]

- Linearly degenerate: CZ;—/ZZ =VA-u(E) =0=VA r

This is an extension of convexity condition into Euler systems since, in SCL, VA -r" =—=-1=

Example: Euler equations in primitive variables of (po,u, p)
—plc| (1| |p/c
From A =u—c, u, u+c, andr, = 1 |, |0}, 1 |,

pc 0 poc

0
- linearly degenerate: VA, =| 1 |—> VA, r, =0
0
tc/2p
: . y+1
- Genuinely nonlinear: VA4, = 1 —>VA;1;= =N #0
Fc/2p

g
-
Advanced Computational Fluid Dynamics, 2019 Spring

dA
du

d’f
du’

#0.

Aerodynamic Simulation & Design Laboraton‘y,mi



