- Chap. 3-2. Methods to designF" , : II. Flux Difference Splitting

e Riemann Problem and Its Properties
An IVP of (1-D) Euler eqns. with discontinuous initial data of two constant state
8U+6F(U) U, ifx<0
Ot Ox . ifx>0"
At t > 0, solution can be composed of four different states.

=0 with U(x,O)z{ U, #U,

Depending on initial condition, four sub-cases can be considered.

(RW-CD-SW), (SW-CD-RW), (SW2-CD-SW1), (RW2-CD-RW1)  gparetaction !| cp

SW: shock-wave, CD: contact discontinuity, RW: rarefaction wave Waves o // v Shock

Shock-tube problem is a special case of Riemann problem. ‘ / )
Solution of Riemann problem is self-similar, or, U(x,t) = U(x/t). Y > 2 o -

Solution is constant along x/¢ = const. in (x,t) plane.

Solution of Riemann problem for F._, = Godunov Scheme

Firstly introduced by Godunov to obtain a cell-interface flux at x,,,,, by (0,0) =(x,,,,,,")

For the case of (RW-CD-SW),
« Region (U,, U,): from conservation relations across a right moving shock,

* *2

To ¢ _Po +D/r=D+pe/pe - _ G Pe! Py -]
R R

T, i pe L+ +D)/(r=D)py/ py) Y Py pa—D((+ 1)/ 2y +1

S =ty + (P! Pp ~D((7 +1)/ 7)) +1

L
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- Chap. 3-2. Methods to design F’

For the case of (SW-CD-RW), (cont’d)
« Region (U;, U}): conditions across contact discontinuity

: II. Flux Difference Spllttln

+1/2 °

*_ * *_ *
U, =Up, P; = Pp

« Region (U,, U)): from the MOC of R* across left moving centered expansion waves,
* * * \7 * z _ * 27 _
ML+2CL :l/lZ‘i‘ % ) pL:[pL} :(T—Lj41=(C—Lj4l
y—1 y=1 p. \p I €y

From the Region (U,, U*) and Region (Uz, U;),

(71/ (71/ /
2y 2y _ (r-1
uZ:uL+2CL 1- (pL] :uL+2CL 1- (pRpR} %pR:pf[ler 1(uL—uR)}

y—1 )2 y—1 P, Pr P P 2¢,

Thus, from the Region (U, U,), we have

« \—1 " /7 1]
&{ﬁj | P/ Py~ |
P\ Pr 2¢, Y (P! pr=D((y+1)/27) +1

This is a nonlinear algebraic equation in terms of (p,, / p,), which can be obtained by a iterative

root finder, such as Newton's method. -

Pr Or p./ pp —> all flow variables in Region (U,, U,) — F,_,,(U,,,.(0,))

| o
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2 Chap 3-2. Methods to design .’ : II. Flux Difference Splitting

e Linear Riemann Problem for Small Fluctuation

If A=0F/0Uis (globally or locally) constant,
ou oU U, ifx<0,

+A—=0, with U(x,0)= .
Ot Ox . 1fx>0

From hyperbolicity, eigenvalues are real and distinct with 4, , and linearly
independent right/left eigenvectors withr, -1, =5,.

FromR'U=[1.,1,,..1 ' U=0=|0]__,Eq.(*) becomes

but U, = U, +6U & |6U| < |U, || Eq. (*)

A !
=R'U, ifx<0, ’ s Aoy
9, A%2 -0 with o(r0)= @ =8 Ve 1 k ;
ot ox o, =R"U, ifx>0 4 "
ow, ow. , '=1'U, ifx<0,
N + A, Y~ 0 with o' (x,0) = @ Lt 1 *

Ot ox o =LU, ifx>0 Left data U, /W, Right data U / W,
Thus, the exact solution is simply a superposition of n linear advection 0 !
equations for @, with a wave speed of A.. And, the exact soln. of @, is given by

'ifx—At<0(x/t< A
o =0 (-2 =17 7 (/1= 4).
o ifx—At>0 (x/t>/1)
« If x/t is located at [4,, 4,,,], U(x,t) = Ro = Z rl+2a)r :
= i=1+1 1

o If (x/1) < A, U(x/t) = Za)r—Rm =U, andlfx/t>,1 U(x/t) = Za)r—Rc) =i

i=1 i=1

Advanced Computational Fluid Dynamics, 2019 Spring Aerodynamic Simulation & Design Laboratory, SAUS



= %‘
E:Chap. 3-2. Methods to designF’ , : II. Flux Difference Splitting

' +1/2 °
k-1 n k n
< If (x/1), <A <(x/1),, U(x,t)| =D @t +) o, and U(x,t)‘b =Y or,+ D o,
i= i=k i=l1 i=k+1

— ajump across 4, characteristic wave: U, —U_ =AU, = (a),: -, )rk =Aorx,
and from F = AU, AF =F, —F =4AAU, = 4, Aa,r,
« FromA=RAR"' = 4" + 4~ with4* = RA*R™', A~ =min(0,4,) and 4" = max(0, 1),

the cell-interface flux, F,,,,, = AU(0), can be expressed as

r n P
AU, +Y A Awr, = AU, + 4 (U, -U,) ool A Ay
Foin =1 l:l of A (x (xj 4,
t o A
AU, =Y A'Awrx, =AU, - 4" (U, -U,)
i=1
1 1 Leftdata U, /w, Right data U, /w,
Fi+1/2 = 5 A(UL +UR )— Di+1/2 - 5 (FL +FR )— Di+l/2 0 x

. 1, 1 1 . L
with D, , =§(A ~-A")U,-U)) :5|A|(UR -U,) :5R|A|R ‘AU, =) |4 |Aor,.
i=l

e Approximate Riemann Solver
From the original work by Godunov, a flux at a cell-interface can be obtained
by exactly solving the local Riemann problem defined atx,,,,, x, <x=<x,,.
Computationally expensive due to iterative computation of the non-linear algebraic eqn. n:

In many cases, local fluctuation across a cell-interface is small.
P
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hap 3-2. Methods to designF’ , : II. Flux Difference Spllttln

+1/2 °

Local linearization by approximating the flux Jacobian matrix at x,,,,
See the works by P. Roe(1981)

CWwl1

SR . P W2
UL // UR UL U;
// RW : CW3
/
U, =1, // U,=U_, U, =1, U,=U,,
i+1/2 X i+1/2 X
U + 'A (U) ' U _ 0 small fluctuation N U + 'A yU _ 0
t x lou|<|u] ” t i+1/2 x
Design 4,,,, = A(U,,U,,,) satisfying

1) consistency: 4,,, = (S—EJ = (S—E] = A(U), if U;=U,, =U

i) conservation: 4., (U,,, —U,)=F,, -F, or 4,,,AU,,, =AF, ., if U #U,_,

* Note that this is exactly the extension of upwinding of SCL (u, + f(u),. =0) into Euler system.

Upwinding for SCL

Foru, + f(u), =u, +a(u)u, =0 with a(u) =a or u,upwind differencing changes the
direction of discretization depending on the sign of the local wave speed.

n+l

e )

ai|a|

—u;’)}zO with a* =

|
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= Chap. 3-2. Methods to designF”  : II. Flux Difference Spllttln

Linear case with a(u)=a

o FL, - F
: At St +1/2Ax 2 -0 with F Fip = 621(” +”z+1) |2|A”z+1/2 _(f fz+1) | |Aul+1/2 i

Nonlinear case with a(u) = f"(u) o |
n A if u,, =y,
Hl/z‘ n . Ou u=u; or u,,
Fiop = (f )= Aul', witha,,, = A P
i+1/2 — Jitl i lf ui+1 ” Z/ll.
kAum/z U, —u

« From the mean value theorem, a,,,,, = a(¢) for & €[u,, u, .
« Note that this is a secant approximation of the true flux function.
Sw)=f, + iy (u—u)or f,, + iy (u—u,,) > u +a,,,u =0
« Can we realize the above observation for Euler system? If so, which one is most desirable?
Afi+1/2 = ai+l/2Aui+l/2 - AFi+l/2 = Ai+1/2AUi+l/2
Construction of 4,,,, = A(U,,,,)
Define a parameter vector as q = \/;[1, u, H]T =4, ¢, q3]T

| 99> |
4, 1 2
U= 9,4, and F=|q + KILER yz—[%j — u, and f, are quadratic function of g,.
4 v -
09 7-1(4 —
= ! (_2] i 9,49 .
VA 2y \ 2

[ S

R
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- Chap. 3-2. Methods to design F’

: II. Flux Difference Spllttlngg

For any quadratic product uv {

+1/2 °

ﬁ:u+Au/2:[u+(u+Au)}/2

\3=V+AV/2=[V+(V+AV);|Q et

A(uv) = (u + Au)(v + Av) —uv =uAv+vAu with

Thus, if Q(ql.,qj) is quadratic in ¢'s,

o9
oq i

Aq. +a—Qqu,

AQZQ(%"'A%:%'+qu)_Q(qf’qf): oq

o0 o0
dq, g,

If 4 —>q+Aq,
U(q) - U(q) + AU(q) and F(q) = F(q) + AF(q) with quadratic components of g,

J

where are evaluated by the mean values of (¢,,¢; + Ag;) and (¢,,q, + Aq,).

Thus, AU and AF can be exactly computed.

AU(q) = (8_Uqu and AF(q) = [a—F]Aq by evaluating v , o with the mean values of
oq oq oq  0q

_ -1
qandq+Aq. > Aq= 6_U AU and AF = oF | U AU = (aFjAU
oq 6q oq ou

Thus, conservation requirement can be satisfied by evaluating S_U by the average values of

the parameter vector q and q + Aq. ol

Ifq=q,, q+Aq=q; +(q,, —q;)=q,,, wehave K, —F =AF_, , = ;17'+1/2AU1'+1/2 with
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Chap 3-2. Methods to design F’

+1/2

~ oF ~ u -
A,'+1/2 = (%j = A(U) = (7/ _3)7 (3 —]/)M 7/_1 - AF;’H/Z = Ai+1/2AUi+1/2'
i+1/2

L 2 di+1/2

From direct computations of AF ,, = 4, »AU,,,,, we have two relations to identify  and H as

\/71 z+1 _\/71—[ +\/j i+1

o T Jorios -

. q|ﬁ .. areconvex combination of ¢, and g,,,, g =6qg, +(1-60)q,,,, with & = \/7 p\’/i
101+1

« With p=./p.p.,, & =(y - 1)[ :} ]/; but & = \/;\’/CLJF\/@%” 2_\/; \/7
i+l i i+l

— & #0a’ +(1-0)a’,
Ex) Construction of /1,.+1/2 for isothermal 1-D Euler eqns.

. I pu
U,+F(U) =0with U= [pu} and F(U) = [,ouz +pcz}

0 1

1 1
A(U) = , —u—c,ut+candr,, = ,
( ) Lz—uz Zu} /11’2 b2 L{—c] |:M+C:|
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- Chap. 3-2. Methods to design F’

+1/2 °

1 2
Define the parameter vector qz{ql}z\/;{ } - Uz{ % } and F(U)z{ ,

u 9,9,

PP

2

And arithmatic average of q, q = {%} ; (q q,+1 {

9,

oq oq |9, 49| Jq

1

\/ u + p1+1u1+1

2. 0 g,
Then, AU = (aU]Aq AF = (ZFqu with a_U:{ % } a_F{ij h
q C

9 29,

) 0
(8Fj_ F\au) 1@ aqlfa 0] v
oU oq )\ oq 2q7 | 2c%g, 29, || -9, 2g, Cz_[z_zj 292

9,

l+1 l+1

V i+1

Thus, we have A, =
/2 LZ —u° 24

0 {} with ﬁ—%=\/7
i \m

A, 1, 1s identical to 4 (U) except that each component is evaluated with the arithmatic

average of g,(or Roe-averaged variables: p, i, H)

Flux at a cell interface 3

« Split the flux difference using eigenvalues of 4, ,

AF'+1/2 = Ai+1/2AUi+1/2 = A:H/zAUm/z + Ai:—l/2AUi+l/2 = AF:H/z + AF;l/z

(AR + AR

with ;&1/2 = (ﬁ[\iﬁ_l)mu - U7 =10 -

Advanced Computational Fluid Dynamics, 2019 Spring

q,

AFitl/Z — >

AH
4—

AF_

i-1/2

i-1/2

i-1/2

9,9,
9, +czq12

e

: II. Flux Difference Splittin

D AFi:rl/Z

AF‘+1/2
—>

AF,),
i+1/2

-
[ gt
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2 Chap 3-2. Methods to design .’ : II. Flux Difference Splitting

« Numerical dissipation at a cell-interface

1 Iy~

K= ) (F + E+l) D, withD,,, =~ Ai+1/2‘AUi+1/2 (matrix dissipation)

==l . i X AF, . AF},,
« Characteristic wave splitting (three-wave approximation) : -
~ -~~~ -~ ~ A =i-a A =1
-1 _ -1 3
AFi+1/2 = Ai+1/£Ui+1/2 = (RAR )i+1/2 A'Ji+1/2_(R/\)i+1/2 (R AU)HI/Z U ! /// . %
T A~ =~ T A~2 T A~3 1 2 3 v/ s L =ii+a
= //LIAWHIE/ZII + /12AW1'+1/2r2 + 13Awi+1/2r3 = AF, vz T AF, vz T AF1+1/2 /
/
U / U
— F,, =F, + Y LAV F or Fo= > 4 AW, F, — —
A4, <0 4,>0

e Characteristics of FDS (vs. FVS)

+ Split the flux difference by defining a cell-interface state followed by

upwinding - wave interaction between left and right states through 4, = 4(U)
=7 and |4,,,|= 4., >F,, =05(F +F,,)-054,,,AU,,, =05(F, +F,,)-0.5(F,, - F,)=F,
Capturing discontinuities

‘K, =F - AE,, = Am/z i+2 = =0= Z/I% z+1/2 =0 > /11( 0 or AM{:—I/Z

Thus, D, =0.5 ‘Am/z iya =0. SZ‘/?%‘ AWH/2 =0, or more generally,
AF,,=A4,,AU,,=SAU, , — 5= A, and AU, ,, =F,. FromAw=R"AU=1,-F, =3,
only non-zero wave strength is Aw ,, indicating that /IJ is an only non-zero characteristic wave allowing —

transition from U, to U.,,.— Exact capturing of shock/CD and Good for N-S computations
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