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Chapter 3 Turbulent Diffusion

Taylor, Geoffrey – English fluid 

mechanician

Objectives

- Introduce kinematics of turbulence which affects the mixing of pollutants 

- Visualize spreading of particles due to turbulent motion

- Introduce the statistical concepts for the analysis of the turbulent mixing

- Derive turbulent diffusion equation using Taylor’ analysis (1921)
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3.1 Introduction

• Turbulent mixing

- Compared to molecular diffusion, turbulent diffusion is very efficient in

rapidly decreasing the concentrations of contaminants that are released

into the natural environment.

• Water quality analysis

- Water quality standards are usually written in terms of time-averaged

values.

- However, the contaminant signal consists of a small mean value with

intermittent fluctuations that range from zero to levels that are orders of

magnitude higher than the mean.
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3.1 Introduction

- Most mathematical models of turbulent diffusion predict only time-

averaged concentrations.

- Mathematical models usually do not predict higher order measures of

these signals such as their intermittency, peak values, probability density

functions, and spatial correlations.

- Thus, the statistical variations may sometimes be needed.

• In this chapter, we consider only the case of the turbulent diffusion,

that is, the spreading of a scalar quantity due to irregular turbulent

velocity excluding mixing (shear-flow dispersion) due to the combined

effect of diffusion plus shear in the mean velocity.
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3.1 Introduction

3.1.1 Basic characteristics of turbulent flows
· Turbulent flow: Irregularity, randomness, non-linearity

↔ coherent structure – large scale eddies

High diffusivity and mixing

High Reynolds number

3-D fluctuations and rotational eddies

↔ tend to be isotropic– small scale eddies

Transfer and dissipation of kinetic energy

Continuum phenomenon

Feature of flow ↔ property of fluid (ρ, µ, )

· Navier-Stokes and scalar transport equations can be used to describe

turbulent flows and mixing.
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3.1 Introduction

Isotropic 
turbulence

Fine grid

Non-isotropic 
turbulence

Coarse grid
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3.1 Introduction

3.1.2 Description of turbulent flows

The velocity at a point in a turbulent flow will appear to an observer to be

“random” or “chaotic.”

→ The velocity is unpredictable in the sense that knowing the

instantaneous velocity at some instant of time is insufficient to predict the

velocity a short time later.

→ Thus, we describe the motion through statistical measures.
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For a stationary (steady) velocity record, the instantaneous velocity can be 

decomposed into the sum of time-averaged and fluctuating contributions as 

shown in Fig. 3.1.
'u u u= + (3.1)

uwhere is a time-averaged value which is given as

0

1 T
u udt

T
= ∫

'u
where is a time much longer than the longest turbulent fluctuations in the 

flow, and   is the fluctuating component, i.e. the deviation from the mean 

values.

T

(3.2)
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3.1 Introduction

Fig. 3.1
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Higher order statistical quantities, such as the variance, are used to describe 

the magnitude (intensity) of the fluctuations:



22 2

0

1 ( )
T

u u u u dt
T

′= = −∫ (3.3)

uwhere  is the standard deviation and is defined as the turbulent 

intensity.

Actual velocity records obtained at two depths in the open channel flow 

photographed in Fig. 3.2 are shown in Fig. 3.3.

→ The time-averaged velocity is greater farther from the wall, but the 

turbulence intensity is significantly larger near the wall.
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3.1 Introduction

Fig. 3.2
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3.1 Introduction

Fig. 3.3
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3.1 Introduction

The variation of the time-averaged velocity and the turbulence intensity with 

distance, z, are shown in Fig. 3.4.

→ The time-averaged velocity increases monotonically from zero at the wall 

to be approximated into the logarithmic profile.

→ The turbulence intensity increases rapidly from zero at the wall to a local 

maximum near the wall and then monotonically decreases.

The turbulent fluctuations act to efficiently transport momentum, heat, and 

tracer concentration.

→ It is common to model the transport due to the fluctuations by defining

an effective diffusion coefficient called the eddy diffusivity.
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3.1 Introduction

Fig. 3.4

a) Mean velocity b) Turbulence intensity
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3.1 Introduction

3.1.3 Length Scales of turbulent flows
Motions in a turbulent flow exist over a broad range of length and time scales.

(1) Integral length scale

→ The largest scales are bounded by the geometric dimensions of the flow,

for instance the diameter of a pipe or the depth of an open channel.

ε

Eddies lose the most of their energy after one or two overturns.

→ Thus, because the rate of energy transferred from the largest eddies is

proportional to their energy times their rotational frequency.

The rate of energy dissipation, , is of the order:



 

3
2 u uu

l l
ε ∝ ⋅ ∝ (3.4)
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The rate of dissipation is independent of the fluid viscosity and only

depends on large-scale motions.

→ The scale at which the dissipation occurs is strongly dependent on the

fluid viscosity.

(2) Kolmogorov microscale

~ turbulent velocity field

Dissipation length scale (에너지를 소멸시키는 와의 크기) is
1

3 4νη
ε

 
∝  
 

(3.5)

ν = kinematic viscosity
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Time scale of the smallest eddies is
1
2ντ

ε
 ∝  
 

Velocity scale is

( )
1
4u νε∝

(3.6)

(3.7)

(3) Batchelor scale (molecular scale)
~ turbulent concentration field

1
2

B
DL
γ

 
∝  
 

(3.8)
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γwhere D = molecular diffusivity; = the strain rate of the smallest velocity

scale which is given as

( )
1 14 2

1
3 4

u νε εγ
η νν

ε

 = = =  
  

 
 

(3.9)

Therefore the Batchlor’s length scale can be recast into a form that include

both the molecular diffusivity and the kinematic viscosity.
1

2 4

B
DL ν
ε

 
∝  
 

(3.10)
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• Schmidt number

~ is defined as the ratio of the Kolmogorov and Batchelor length scales
2

c
B

S
L D
η ν   ≈ ≈   

  
(3.11)

50 ,u mm s=  5u mm s≈

1 100
2

l h mm≈ ≈

6 2 0 21 10 1 10 ;m s mm sν −= × = × 10 21 10 /D m s−= ×

[Ex] For the open channel flow,

· Integral length scale,

Water @ 20℃:;
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Solution:

· Kolmogorov scales

( ) ( )
( )

3 3 2

3

5
1.25

100
mm s mm
mm s

ε ≈ =

( )
1

3 40 21 10
1.25

 0.7 mm
mm s

η
 ×
 =
 


=


( )
( )

1
22

32

1

1.2
.
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 0 5 

mm s

m
s

m s
τ

 
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0.02B mL m=

· Batchelor scale

~ Batchelor scale is 35 times smaller than the Kolmogorov scale.

→ We would expect a much finer structure of the concentration field than

the velocity field.
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3.1.4  Energy cascade

- Spreading of kinetic energy of the fluid motion over a range of eddy sizes

through the non-linear interaction of the large and smaller scales of motion

- 난류는 크고 작은 와로 구성되어 있으며 이들은 서로 비선형적으로 연계

되어 있음

- 큰 규모의 와는 에너지 공급원, 에너지의 대부분은 포함하고 있음

- 아주 작은 와는 에너지 소멸의 주원인
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· Energy transfer

mean flow → large eddy → small eddy → heat

generation energy dissipation

of turbulence cascade by viscosity

Kolmogorov (1941): In equilibrium, transfer rate = dissipation rate
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• Turbulent kinetic energy is passed down from the largest eddies to the 

smallest through the process called the energy cascade.

~ To maintain turbulence, a constant supply of energy must be fed to the 

turbulent fluctuations at the largest scales from the mean motion.

~ At the smallest scales, the energy is dissipated into heat by viscous 

effects.
• The small scale motions tend to have small time scales.

→ These motions are statistically independent of the relatively slow, 

large-scale turbulence and of the mean flow. → isotropic turbulence

→ The small scale motion should depend only on the rate of energy 

transfer from the larger scales and on the viscosity of the fluid.
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3.1.5  Kolmogorov’s universal equilibrium theory of turbulence
The kinetic energy of the small and intermediate scale motions varies only at 

the rate at which the mean flow varies.

→ The behavior of the intermediate scales (inertial surange) is governed by the 

transfer of energy which, in turn, is exactly balanced by dissipation at the 

smallest scales.

~ In equilibrium, the transfer process must be in equilibrium with the energy 

dissipation rate. 

• The energy spectrum characterizes the turbulent kinetic energy distribution 

as a function of length scale. 

→ The spectrum indicates the amount of turbulent kinetic energy contained 

at a specific length scale.
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• The large turbulent length scales in the flow dictate the rate of dissipation.

~ These large scales draw energy from the mean flow, then transfer the 

energy to successively smaller scales until it is dissipated at the 

Kolmogorov microscales.

~ The energy distribution at the largest length scales is generally 

dictated by the flow geometry and mean flow velocity. 

~ The smallest length scales are isotropic in nature. 

( )Lη ≤ ≤ • For inertial subrange , the energy spectrum will only be a 

function of the length scale and the dissipation rate. 
2 3 5 3E kαε −= (3.12)

k = wave number ~ inverse of length
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3.1.6  Evolution equations

Turbulent flows must instantaneously satisfy conservation of mass and 

momentum.

→ The incompressible continuity and Navier-Stokes equations can be 

solved for the instantaneous flow field. 

→ However, to accurately simulate the turbulent field, the calculation must 

span from the largest geometric scales down to the Kolmogorov and 

Batchelor length scales. 
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In many situations, engineers are satisfied with an accurate assessment of 

the time-averaged flow quantities. 

→ The time-averaged flow equations, known as Reynolds-Averaged Navier-

Stokes (RANS) equations, read as 

0i

i

u
x
∂

=
∂

( )
2

2
i i i

j i j
j i j j

u u upu u u
t x x x x

ρ µ ρ
 ∂ ∂ ∂∂ ∂ ′ ′+ = − + −  ∂ ∂ ∂ ∂ ∂ 

(3.13)

(3.14)

( )i j
j

u u
x

ρ ∂ ′ ′
∂where   = Reynolds stress tensor; it physically corresponds to the 

transport of momentum due to the turbulent fluctuations.
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3.2 Mixing by Turbulent Motion

3.2.1 Mixing by turbulent motion

- Eddies range in size from the largest geometric scales of the flow down

to small scale where molecular diffusion dominates.

- These eddies are continuously evolving in time, and the superposition

of their induced motions leads to the fluctuating time records as shown

in Fig. 3.2.

- Large eddies transport the whole cloud of tracer while small eddies

distort the shape of the cloud.
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3.2 Mixing by Turbulent Motion

Kawahara (2016)
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3.2.2 Two approaches for analysis of turbulent mixing

1) In Environmental Fluid Mechanics, they try to model the transport due 

to the fluctuations by defining an effective diffusion coefficient called 

the eddy diffusivity.

1) In Turbulence Modeling, they model the turbulent motion first, and 

then relate the turbulent diffusion to the eddy viscosity.

→ use turbulent Prandtl (heat) or Schmidt number (mass), σt

t
t

t




 

i t
i

C
u c

x


  

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3.2 Mixing by Turbulent Motion

3.2.3 Mixing mechanism in turbulent flows
(1) Experiments of slugs of tracer

- Consider the spreading of a slug of tracer or a group of marked particles

in a steady turbulent flow.

- Suppose a mass M of tracer (or a total number M of marked particles) is

released at a fixed point in the stationary, homogeneous turbulent flow.

- Subsequent spread of the tracer is to be viewed by an observer moving

with the mean velocity of the fluid.

[Re] Stationary, homogeneous turbulence

~the variance of the velocity is steady and does not change with time and

position.
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- We can take a series of photographs using a camera traveling with the

mean velocity of the flow.

- The photos were taken at equal times after the release for two identical

experiments

- The experiment could be repeated many times

- The results of the two sets of experiments are quite different, and the

differences are two sorts: first, the small scale fluctuations, which are

different for each cloud; second, the large scale fluctuations.
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3.2 Mixing by Turbulent Motion
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3.2 Mixing by Turbulent Motion

① The small scale fluctuations 

~ distort the shape of the cloud and produce steep concentration gradient 

over short distances.

~ These local differences will eventually be smoothed out by molecular 

diffusion. 

② The large scale fluctuations

~ some of them are larger than the cloud itself.

~ transport the entire cloud

~ Each cloud of particles encounters a different set of large scale motions, 

so the motion of the center of mass of each cloud is different. 
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3.2 Mixing by Turbulent Motion

(2) Ensemble averages

- Now, suppose we release a large number of clouds of particles, one after

another, and watch the spread of each cloud over a long period of time.

- Since we subtracted out the mean motion, the average position of the

center of mass will be at the origin, but the center of mass of each cloud

may diverge from the origin because of the large scale eddies.

- If we wait long enough, each separate cloud will grow to be bigger than the

largest eddies and will average out their effects.

- The center of mass of each cloud will tend to return to the origin through

the process of averaging the random motions. We can use “ensemble

average” which is the average over all of the release.
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3.2 Mixing by Turbulent Motion

1st release

2nd release

Ensemble 
mean-LT 
(EALT)

Ensemble 
mean-ST
(EAST)
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3.2 Mixing by Turbulent Motion

- However, we also want to solve the problems of the turbulent diffusion

during short times. 

→ We try to follow each release separately.

 Two kinds of average 

1) Ensemble average for long times (EALT)

- average over all of the releases after long times

- However, the ensemble average concentration at a point in space and 

time is likely to be an average of a large number of zeros (times when 

the tracer cloud does not cover the point) plus a few large values.

- This type of average may be meaningless when high concentration is 

of concern.
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2) Ensemble average for short times (EAST)

- follow each release separately during short times

- superpose the centers of mass of each of the individual clouds and then 

average over the ensemble of releases.

- The average extent of each individual cloud is smaller than the extent of 

the ensemble average (EALT) because the EALT includes the 

distribution of the centers of mass. → CⅡ> CⅠ
- However, in applying this method, not enough is known about the 

turbulent flow to permit the computation of the spread of each individual 

cloud or the peak concentration at any instant. 

- use a statistical estimate of the size of an individual cloud
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3.3 Statistic Concepts

ξ


( , , )ξ η ζ

( ), ,X X Y Z


- Study various ways of computing averages, variances, and correlation 

coefficients of a random time series

3.3.1 Statistics of particle position
- Suppose that a particle in a turbulent fluid is, at time to, located at the 

point,  , in Cartesian coordinates  .                                           

- At a subsequent time t, the particle moves to a new point, 

- The trajectory of the particular particle is given as 

0( , , )X X t tξ=
   (3.15) 

0( , , , , )X X t tξ η ζ=

0( , , , , )Y Y t tξ η ζ=

0( , , , , )Z Z t tξ η ζ=

where   

(3.16) 
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Trajectories of three particles 
for a time T

Trajectory of a single particle 
for a time 3T



48/106

3.3 Statistic Concepts

X


• Two interpretations of Eq. (3.15)

i) For each release of a particle, there will be a different functional form of   

reflecting the random nature of turbulent flows.  → Fig. 3.8(a)

X


t τ+
t

ii) For any one release,   may be interpreted as a random variable in 

time since the position that a particle takes at some later time  may 

bear little correlation to the position at time  .  → Fig. 3.8(b)
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3.3 Statistic Concepts

X


• Two averages

ⅰ) Ensemble average

~ mean over many trials (releases)

~ average across the totality of experiments performed 

→ As shown in Fig. 3.8(a), a number of particles are released at different 

times, and the displacement  of each particle a time T after its release is 

observed.

T

ⅱ) Time series average 

As shown in Fig. 3.8(b), a single particle is released and followed through 

a large number of time increments each of duration   . 
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X


- The displacement  during each time increment is a random variable. 

- The statistical properties may differ from those obtained by an ensemble 

of many releases. 

- If the time series average and the ensemble average are the same, this 

process satisfies the ergodic property.
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X


X X dX+

t
t t− ∆

x

• Correlation 

Because of the correlation of turbulent motion, the probability that the value

of coordinate of the random variable is between and at time

will not be independent of where, the particle was at some previous

instant, .

1X 1 1X dX+ 1t

2X 2 2X dX+ 2t 3X 3 3X dX+ 3t

• Joint probability

= Probability that the value will be between   and               at     , between   

and   at                ,      between       and                at     , and so on. 

→ Two turbulent mixing processes are identical if all the joint probabilities 

are the same.

→ This does not mean that any two trials will produce the same position 

time history.
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① Ensemble mean of particle displacement 

~ average taken over a large number of trials

0( , , )Xp X t t dXξ
∞

−∞
〈Χ〉 = ∫ (3.17)

0( , , )p X t t dXξ X

X X

X dX+ t ξ 0t

where    is the probability density function of the process   

= probability that the random variable has a value between  and       

at time given that it was  at time   . 
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② kth moment 

0( , , )k kX X p X t t dXξ
∞

−∞
〈 〉 = ∫ (3.18)

③ Auto-covariance

1 2 0 1 2 1 2 1 2 0 1 2( , , , ) ( , , , )XXB t t t X X p X X t t t dX dXξ ξ
∞ ∞

−∞ −∞
= ∫ ∫ (3.19)
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④ Cross-covariance

0 0 1 2( , , ) ( , , )XYB t t XYp XY t t dX dXξ ξ
∞ ∞

−∞ −∞
= ∫ ∫ (3.20)

0( , , )p XY t tξ X Y

X

0t t−

where    is the joint probability density function for the   and    

components of particle displacement. 

The particle displacement     is stationary if all the moments of the 

distribution of the displacement are independent of the time origin and 

depend only on the time difference    , and in addition the covariances

depend only on the time difference.

X

X ξ− ξ

The    is homogeneous if the moments of the distribution of the displacement 

depend only on the relative displacement    , and not the initial position .
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( , )n x t

3.3.2 Statistical distribution of concentration
Ensemble average of the concentration measured at point x at time t

after many repeated trials in which identical cloud of particles are released

under the same statistical conditions is given as:

0
( , ) ( , ) ( , )C x t n x t np n x t dn

∞
= 〈 〉 = ∫ (3.21)

( , )n x t = x t
( , )p n x t dn

n n dn+ x t

where     concentration observed at point   and at time 

= probability that the concentration of tracer material has a value 

between  and              at the point   at time    .
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1x 2x 3x

1C

2C

3C

C

x
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〮Statistics of a single trial (cloud)
① Centroid of cloud

1 ( , , , )X xn x y z t dxdydz
M

∞ ∞ ∞

−∞ −∞ −∞
= ∫ ∫ ∫ (3.22)

Mwhere     is the total mass (= number of particles) in the cloud 

( , , , )M n x y z t dxdydz
∞ ∞ ∞

−∞ −∞ −∞
= ∫ ∫ ∫ (3.23)

x
② Variance of the cloud 

~ the mean square   displacement about the center of mass (centroid) of 

particles in a single cloud.

2 21 ( ) ( , , , )x x X n x y z t dxdydz
M

σ
∞ ∞ ∞

−∞ −∞ −∞
= −∫ ∫ ∫ (3.24)
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〮Statistics of an ensemble clouds of many trials

① Center of mass for the ensemble 

1 ( , , , )X xC x y z t dxdydz
M

∞ ∞ ∞

−∞ −∞ −∞
〈 〉 = ∫ ∫ ∫ (3.25)

② Overall variance of the concentration in the ensemble of clouds

22 1 ( ) ( , , , )x x X C x y z t dxdydz
M

Σ = − 〈 〉∫∫∫ (3.26)
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Expand Eq. (3.24) and then take the ensemble average (EALT)

2 2 2( )x x X XσΣ = 〈 〉 + 〈 − 〈 〉 〉 (3.27)

The variance of the ensemble distribution about its expected position is equal 

to the ensemble average of the variance of each cloud about its center of 

mass plus the ensemble mean square displacement of an individual cloud’s 

center of mass from its expected position.

We can define the size of an individual cloud as

( )
1

2
2 2 21( )

3 x y zt σ σ σ = + +  


(3.28)
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The size of the ensemble-average cloud is

( ) ( )
1
22 2 21

3 x y zL t  = Σ + Σ + Σ  
(3.29)

Combine Eqs. (3.27) ~ (3.29)

( )2 2 2 2 21( ) ( ) ( ) ( )
3

L t t X X Y Y Z =< > + 〈 − 〈 〉 〉 + 〈 − 〈 〉 〉 + 〈 − 〈Ζ〉 〉  (3.30)

→ The width of the ensemble mean concentration profile is larger than 

the average width of a cloud as indicated in Fig. 3.7 (c) and (d).
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FLOW

FLOW

2 ( )t< >

2( )X X〈 − 〈 〉 〉
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3.4 Diffusion of the Ensemble Mean Concentration

ξ

3.4.1 Taylor’s Theory (1921) of Turbulent Mixing

Assume a field of stationary homogeneous turbulence.

Consider a series of experiments with zero mean velocity where, in each 

experiment, mass m of matter is added to a single fluid particle at time to at 

point .

Overall variance

X X〈 〉

2 2 21( ) ( , , , )xL t x C x y z t dxdydz
M

= Σ = ∫∫∫

→   and         are zero.

→          (3.31)

MN
m

=where number of particles 
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3.4 Diffusion of the Ensemble Mean Concentration

m

( , )C x t

x

• The effects of molecular diffusion are neglected. 

→ The mass   allocated to each particle remains with that particle at all 

times.

→ The average concentration   measured at a fixed point in space will 

be proportional to the probability that the particle is at .

0( , ) ( , , )C x t Mp x t tξ= (3.32)

Substituting Eq. (3.32) into Eq. (3.31) and using Eq. (3.18) gives

2 2 2
0( ) ( , , )xL t x p x t t dxdydzξ= Σ = ∫∫∫

2 2
0( , , )x p x t t dxdydz xξ

∞

−∞
= = 〈 〉∫ (3.33)
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ξ

( , )C tξ 0t

Eq. (3.33) holds if all particles begin their motion at the same point  , but it 

can also be generalized to the case in which we begin with a cloud of 

particles having a spatial distribution at time  .

By superposition of the point source result Eq. (3.32), as discussed in 

Problem 1-3 in Chapter 2, we have 

0 0( , ) ( , ) ( , , )
V

C x t C t p x t t dξ ξ ξ= ∫ (3.32a)

By substituting Eq. (3.32a) into (3.31), the more general result follows:

2 2 2
0( ) ( )L t x L t= 〈 〉 + (3.33a)
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2
0( )L t

0t
where   is the ensemble mean square size of the cloud at the initial 

time  .

→ Thus, the problem of finding the ensemble mean size of the cloud is 

equivalent to finding the ensemble mean square displacement of the fluid 

particles.

→ This problem was solved by Taylor in 1921.

U

0ξ = 0 0t =

Let   be the velocity of the particle, with zero mean.

Take   and           , then the location of the particle, X(t) is

0
( )

t
X t Udt= ∫

( )( )2
1 2 1 2 1 20 0 0 0

( ) ( ) ( )
t t t t

X t Ud Ud U U d dτ τ τ τ τ τ= =∫ ∫ ∫ ∫ (3.34)
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The ensemble mean is 

2
1 2 1 20 0

( ) ( )
t t

X U U d dτ τ τ τ〈 〉 = ∫ ∫ (3.35)

1 2( ) ( )U Uτ τ〈 〉

1τ

2τ

1τ 2τ

The ensemble average     means the average over a large number of 

trials of the product of the velocity of a single particle at time     multiplied by 

the velocity of the same particle at time     .

→ Since the turbulence is stationary this can only be a function of the 

difference between   and     .
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Define a correlation coefficient as 

1 2
2 1 2

( ) ( )( )x
U UR

U
τ ττ τ 〈 〉

− =
〈 〉

(3.36)

( ) ( )2 0 0U U U〈 〉 = 〈 〉 =

xR
where   square of the turbulence intensity.

is called the Lagrangian autocorrelation function.

Substitute Eq. (3.36) into Eq. (3.35)

2 2
2 1 2 10 0

( ) ( )
t t

xX t U R d dτ τ τ τ〈 〉 = 〈 〉 −∫ ∫ (3.37)
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Changing the variables of integration to 

2 1

1 2( ) 2
s τ τ
τ τ τ
= −
= +

τ

2 2

0
( ) 2 ( ) ( )

t

xX t U t s R s ds〈 〉 = 〈 〉 −∫

Performing the integration with respect to   gives

(3.38)

For the case of diffusion in three dimensional flow
2 2

0

2 2

0

( ) 2 ( ) ( )

( ) 2 ( ) ( )

t

y

t

z

Y t V t s R s ds

Z t W t s R s ds

〈 〉 = 〈 〉 −

〈 〉 = 〈 〉 −

∫
∫
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( )xt T<<

1xR ≈

① For very short times after release of the particles,  

→ The particle velocity is nearby constant and   . 

Then, Eq. (3.38) is simplified as 

2 2 2X U t〈 〉 = 〈 〉 (3.39)

( )xt T>>

0xR →

② For very long times 

→    because motions become less and less 

correlated at longer and longer times.

2 22 xUX T t const→ 〈 〉 +〈 〉 (3.40)
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where

0
( )x xT R s ds

∞
= ∫ (3.41)

xT is known as the Lagrangian time scale which is a measure of how long 

the particle takes to lose memory of its initial velocity
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→ After some long enough time, the variance of the ensemble averaged 

concentration distribution for clouds dispersing in a stationary homogeneous 

field of turbulence grows linearly with time. → Fickian diffusion 

Differentiating Eq. (3.40) gives 

2 22 x
d X U T
dt
〈 〉 = 〈 〉 (3.42)
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[Case study] Field study using GPS floaters in Nakdong River
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Case Date Q (m3/s) U (m/s) H (m) W (m)
Wind speed

(m/s)
(Direction)

GF11 Sep. 12, 2012 547 0.19 6.0 383 0.15 ~ 0.22 (SW)

GF12 Sep. 15, 2013 681 0.21 7.1 308 0.50 ~ 2.00 (NE)

GF13 Sep. 15, 2013 697 0.22 8.5 360 0.50 ~ 2.00 (NW)

GF21 Oct. 11, 2013 169 0.29 3.4 263 0.16 ~ 1.25 (NW)

GF22 Oct. 12, 2013 352 0.32 5.6 480 0.82 ~ 1.90 (NW)

GF23 Oct. 12, 2013 352 0.32 5.6 480 0.82 ~ 1.90 (NW)
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Centroid =

4σ 4σ

x x

u
i −x x

Main flow

Eddies

C

Ct = t1 t = t1 + Δt

x

i −x x

C

x

y

C(x, y, t)

n(x, y, t)
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( )
2

2 1
2

i
i i I

d
K u t T

dt
σ′= =

( )2

2 1

N

i
i

i N
σ =

−
=
∑ x x

1

1 N

i
iN =

= ∑x x
Case (min) (m2/s) (m2/s) KL/KT

Pѐclet 
number

GF11 4.5 0.041 0.012 0.56 0.16 3.46 0.78

GF12 1.4 0.012 0.002 0.14 0.02 6.75 3.56

GF13 2.8 0.003 0.001 0.03 0.01 3.14 5.00

GF21 1.7 0.016 0.005 0.24 0.07 3.20 3.07

GF22 0.9 0.021 0.004 0.22 0.04 5.68 2.23

GF23 1.1 0.011 0.006 0.11 0.06 1.73 3.32

IT LK TK */LK Hu */TK Hu
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3.4.2 Derivation of diffusion equation for turbulent flows

Recall molecular diffusion 

→ Fick’s law led to the derivation of the diffusion equation.

→ The fundamental solution to the diffusion equation is the Gaussian 

distribution.

→ A property of the diffusion equation is that the variance of a concentration 

distribution always grows linearly with time.

2

2d D
dt
σ

= (2.22)
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After some start-up time, the random walk generates the Gaussian 

distribution.

→ The Gaussian distribution implies that the diffusion equation describes 

the process, and that the variance of a spreading cloud of molecules 

undergoing a random walk grows linearly with time. 

• Taylor’s analysis, Eq. (3.42), has shown that after some start-up time the 

variance of a spreading cloud of particles in stationary homogeneous 

turbulent motion grows linearly with time. 

→ We can define a turbulent mixing coefficient, analogous to the molecular 

diffusion coefficient, by the relationship 
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2 21
2x x

d X U T
dt

ε = 〈 〉 = 〈 〉 (3.43)

( )U t

0
( ) ( )

t
X t U t dt= ∫

However, linear growth of the variance is a necessary condition for the 

diffusion equation to apply, but it is not a sufficient one.

The velocity   is a random variable for any fixed time t, so that        

is the sum or integral of random variables. 
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t →∞ ( )U t

( )X t

The central limit theorem of probability theory tells us that such sums 

approach normality as     provided that the variable   satisfies 

certain weak independence requirements. 

→ Since a stationary homogeneous turbulent velocity field satisfies these 

requirements we may expect that  becomes a normal or Gaussian 

random variable for large time. 

→ If so, as provided in Section 2.3, the spread of the ensemble mean 

concentration may be described by a diffusion equation. 

→ The diffusion equation for zero mean flow velocity is 
2 2 2

2 2 2x y z
C C C C
t x y z

ε ε ε∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂
(3.44)
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→ If the fluid has a mean velocity, 

2 2 2

2 2 2x y z
C C C C C C Cu w
t x y z x y z

ν ε ε ε∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ (3.44a)

☞ Derivation by time-averaging the advection-diffusion equation:

For turbulent flow, the advection-diffusion equation which was derived from 

conservation of matter is given as

2 2 2

2 2 2

c c c c c c cU V W D D D
t x y z x y z
∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

(3.45)
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Now, neglecting molecular diffusion gives

0c c c cU V W
t x y z
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂ (3.45a)

U V W cwhere      ,    , and  are randomly varying velocities;   is the time-varying 

point concentration in turbulent flow. 

If this equation is averaged over a time long enough to average the turbulent 

velocity and concentration fluctuations, we obtain 

( ) ( ) ( )C C C Cu v w U C V C W C
t x y z x y z

∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′+ + + = − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂

(3.46)
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where U u U ′= +

V v V ′= +

W w W ′= +

c C C′= +

Comparing Eq. (3.46) with Eq. (3.44) gives

x
CU C
x

ε ∂′ ′ = −
∂

y
CV C
y

ε ∂′ ′ = −
∂

z
CW C
z

ε ∂′ ′ = −
∂ (3.47)
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, ,x y zε ε εwhere     are referred to as “Fickian turbulent diffusion coefficient”; 

since they are result from a process involving larger scale random motions 

they are often called “eddy diffusivities.” Then Eq. (3.46) becomes

x y z
C C C C C C Cu v w
t x y z x x y y z z

ε ε ε
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + = + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

(3.48)

→ This is the same as Eq. (3.44a).
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3.4.3 Requirements of Taylor’s analysis

We must now resolve the question of under what conditions a Fickian

turbulent diffusion equation like Eq. (3.48) can be used.

① Requirement in terms of time 

If we are dealing with a cloud of particles originating at a point, requirement 

given by Taylor’s analysis is that more time has elapsed than the Lagrangian

time scale. 
1 ( )
3L x y zt T T T T> = + +
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L

② Requirement in terms of the size of the dispersing cloud 

In many cases, the time of origin of the cloud as a point source may not be  

known. Then, use a Lagrangian length scale,    , defined by the relation

2 2 2
L LU T= 〈 〉 (3.49)

L

L

The scale    gives the order of magnitude of the distance a fluid particle will 

travel before losing memory of its initial velocity.

The size of the dispersing cloud,    , should substantially exceed the distance 

over which turbulent motions are correlated, which is given using Eq. (3.40)
2 2 22 2L LL U T t≅ 〈 〉 > 

(3.50)
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• Taylor’s analysis shows, by combining Eqs. (3.43) and (3.49) that 

2 1 2[ ]x L Uε = 〈 〉

(3.54)

2 1 2[ ]U〈 〉 = L =where    the intensity of the turbulence;   Lagrangian length 

scale which is a measure of how for a particle travels before it forgets its 

initial velocity. 

■ Summary 

• Taylor’s analysis has shown that there is such a thing as a turbulent 

mixing coefficient that is analogous to the molecular diffusion coefficient. 
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Lt T<3.5.1 Growth of clouds of particles for 

• Two ways of forming ensemble average concentrations

① Ensemble average of random clouds

~ average the concentration at each point in space at identical times 

( , ) ( , )C x t n x t= 〈 〉 (3.55)

( , )n x t x
t

where  is the concentration in one trial at point  and time  .  

The measure of the spread of the concentration distribution is given as

( )22 1 ( , )x x X C x t dx
M

Σ = − 〈 〉∫∫∫ (3.56)
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where 

1 ( , )X xC x t dx
M

〈 〉 = ∫∫∫

From the Taylor’s analysis, the size of the cloud changes with time.

(3.58)

(3.57)

2 2 2 21( ) ( )
3 x y zL t = Σ + Σ + Σ

② Ensemble average of superposed clouds

The ensemble mean concentration is formed by averaging the concentration 

at points equidistant from the center of mass of each cloud in the trial. 

The rate of growth of the ensemble of clouds with superposed centroid is
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2 21 ( ) ( , )x X n x t dxdydz
M

σ〈 〉 = −∫∫∫

(3.60a)

(3.60)

(3.59)

where 

1 ( , )X xn x t dxdydz
M

= ∫∫∫

1 ( , )X xn x t dxdydz
M

〈 〉 = ∫∫∫

The size of an ensemble cloud is defined as 

2 2 2 21( )
3 x y zt σ σ σ〈 〉 = 〈 + + 〉 (3.61)
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The ensemble concentration formed by aligning the centers of mass is 

( , ) ( , )x t n x X tψ = 〈 − 〉

(3.64)

(3.63)

(3.62)

where 

x x X= −

0x =By translating the origin    Eq. (3.63) becomes

2 21 ( , )x xx x t dx dydz
M

σ ψ〈 〉 = ∫∫∫

The mean concentrations by Eq. (3.62) are actually higher than those 

described by Eq. (3.55).

( )2 2 2 2 21( ) [( ) ( ) ( ) ]
3

L t t X X Y Y Z Z= 〈 〉 + 〈 − 〈 〉 + − 〈 〉 + − 〈 〉 〉 (3.65)
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3.5.2 Batchelor’s analysis

0 0( , ; , )Q s t s t ds =

0s 0 0s ds+ 0t s
s ds+ t

probability that a pair of particles separated by a distance 

between   and    at time     will be separated by a distance     and           

at time   .

• Batchelor’s analysis (1952)

If the pair of particles are not widely separated compared to the scale of the 

turbulent eddying motion, then only two length scales are important to the 

statistics of their relative motion. 

Consider the statistics of the separation of a particular pair of particles in a 

cloud. We define the probability density function 
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3.5 Relative Diffusion of Clouds 
1 43

.v
ε

 
 
 

1 2

.v
ε

 
 
 

0s

0t t−

Two scales are their initial separation    and Kolmogorov scale

Two time scales are important to the motion: scale    and Kolmogorov 

scale

Dimensional analysis implied that 

(3.66)
2 1 2

2 0
1 2 3 2 1 2,d s sf

dt v
τεετ

ε τ
 〈 〉

=  
 

0t tτ = −

2 2
0, 0( , ; )s s Q s t s t ds

∞

−∞
〈 〉 = ∫

where  

(3.67)
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① For very long times from release 

~ two particles will wander independently

2 22s X〈 〉 → 〈 〉

( , ) ( , )x t C x tψ → (3.69)

(3.68)

② For very short times 

~ the rate of increase is a function of viscosity and the initial separation.

s 3 4 1 4v ε −

0s

If  is much larger than the Kolomogorov scale    , the viscosity is 

not important. 

If enough time has passed that the initial separation of the particles   has 

been forgotten, Eq. (3.66) becomes
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2 2
2 1~ ( )d s C t

dt
ε τ〈 〉 − (3.70)

1t
2 3 1 3
0s ε −

2C

2 3~s t〈 〉

where    is proportional to    and       is a universal constant. 

Integrating Eq. (3.70) gives   so that we have

2 1 3 2 2 3~ [ ]d s s
dt

ε〈 〉 〈 〉 (3.71)

→ The rate of increase of the mean square separation of particles is 

proportional to the mean square separation to the power 2/3. 

→ Experimental results collected by Richardson (1926) showed that 
2

4 3d s s
dt
〈 〉

∝ (3.72)
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χ χ=

3.5.3 The 4/3 law of Diffusion

If the initial separation of pairs of particles in a cloud has been forgotten, 

and the turbulence is homogeneous, the description of the mean square 

separating of all pairs of point in an ensemble will be exactly the same as 

the description of the mean square displacement from the center of mass. 

If we let    then we have that       

2 2 21 ( , ) 3( ( ))x y zx t d d d t
M

χ χ ψ χ χ χ〈 〉 = =∫∫∫ 

2
1 3 2 2 3( ) ( )d t k t

dt
ε〈 〉

= 〈 〉




(3.74)

(3.73)
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( , )x tψ

From this result we postulate the existence of a differential equation 

describing   of the form 

x x y y z z

K K K
t
ψ ψ ψ ψ

χ χ χ χ χ χ
    ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + +     ∂ ∂ ∂ ∂     
(3.75)

where 
2 2 3K α χ= 〈 〉

2
2 2 31

2
dK

dt
χ α χ〈 〉

= = 〈 〉 (3.77)

(3.76)
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0χ =

2

2 22

1( , ) exp
22

nt χψ χ
χπ χ

 
= − 〈 〉   〈 〉 

The solution of Eq. (3.75) corresponding to a point source at the origin   

is

(3.78)

3n =

3
2 2

3
tχ α 〈 〉 =  

 

With    and 

(3.79)

This solution should only apply where 

2 2 3 1 3
0t χ ε −>> 〈 〉 (3.80)
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which implied that the original cloud size has been forgotten.

Experimental results of 2D field diffusion studies collected by Okubo (1974) 

showed that the 4/3 laws of Eq. (3.77) is valid over a much larger scale 

than the Batchelor-Kolmogorov theory would indicate as appropriate. 

2 30.002 ~ 0.0 ec1 scm

The constant    decreases with an increase in the scale of the diffusion.

→ However, unless the scale of the problem is very large a reasonable 

estimate for  for engineering purpose is given by taking the universal 

constant to have a value in the range of      , as shown 

by Fig. 3.11.

α

α
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3.6 Summary 

- This chapter introduces the kinematics of turbulence which affects the 

mixing of pollutants

- It discusses the ranges of scales of motion in turbulent flow, and how 

they interact with the size of a dispersing cloud of tracer 

• Three concentrations 

( , )n x t

x t

ξ

①

~ concentration observed at point   at time  after the release of a 

single cloud of particles from point 
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③

( , )x tψ②

x t

ξ

n x

t

~ concentration computed at point    at time    by releasing a large 

number of clouds of particles at point  , superposing the centers of mass 

of each cloud, and then averaging the values of    over all clouds.   is 

measured relative to the center of mass of the cloud and      is measured 

relative to the time of release. 

( , )C x t

ξ n
x t

~ the ensemble average obtained by releasing a large number of clouds 

particles at point    at various times and averaging the values of    

observed at point    for all clouds at time      after their release. 
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( , )n x t
• What to use?

From the point of view of pollution control,    is the most relevant 

concentration because it is what is actually seen by an organism in water. 

( , ).n x t

( , )x tψ ( , )C x t

→ Unfortunately we have not been able to give a general method for 

predicting values of    

→ We have seen, however, that spreading of both    and              can 

be modeled by Fickian diffusion equations.
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3.6 Summary 

ψ
( , )x tψ①

The average concentration we called    is not an observable concentration 

because it requires an averaging by superposition of center of mass that 

never actually occurs in the environment. It leads to the “4/3 law” which says 

that the diffusion coefficient is proportional to the 4/3 power of the size of the 

cloud. The 4/3 law is useful for studies in the ocean where turbulence is 

homogeneous.

• Their uses and limitations
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3.6 Summary 

C

( , )C x t②

The ensemble average concentration   is obtained by averaging at a fixed 

point over a large number of releases of tracer. It is likely that   is what 

will be observed after even just one release of tracer if the tracer has been 

in the flow longer than the Lagrangian time scale of turbulence. After the 

tracer has been in the flow longer than the Lagrangian time scale, further 

changes in    are governed by the Fickian diffusion equation with constant 

coefficients. 

C

C
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3.6 Summary 

• Stages of diffusion 

(i) Individual clouds grow at a rate which increases with their size, and which 

is different for each cloud.

(ii) In the intermediate stage, the average growth of the cloud can be 

described by the diffusion equation with a diffusion coefficient proportional 

to the 4/3 power of the size of the cloud, if the turbulence is homogeneous.
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3.6 Summary 

(iii) After the clouds reach a size larger than the largest scales of turbulence 

motion, the further spread is described by the Fickian diffusion equation 

with constant coefficients.

→ This theory can be used for practical problems of rivers and estuaries 

because the size of pollutant cloud is usually greater than the largest eddy 

sizes.
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