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Objectives

- Introduce kinematics of turbulence which affects the mixing of pollutants

- Visualize spreading of particles due to turbulent motion

- Introduce the statistical concepts for the analysis of the turbulent mixing

- Derive turbulent diffusion equation using Taylor’ analysis (1921)

:

Taylor, Geoffrey — English fluid

mechanician
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Turbulent mixing
Compared to molecular diffusion, turbulent diffusion is very efficient in
rapidly decreasing the concentrations of contaminants that are released

into the natural environment. :|

Water quality analysis

Time (¢)

Water quality standards are usually written in terms of time-averaged

values.

However, the contaminant signal consists of a small mean value with

intermittent fluctuations that range from zero to levels that are orders of

magnitude higher than the mean.
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- Most mathematical models of turbulent diffusion predict only time-

averaged concentrations.

- Mathematical models usually do not predict higher order measures of

these signals such as their intermittency, peak values, probability density

functions, and spatial correlations.

- Thus, the statistical variations may sometimes be needed.

* |n this chapter, we consider only the case of the turbulent diffusion,

that is, the spreading of a scalar quantity due to irreqular turbulent

velocity excluding mixing (shear-flow dispersion) due to the combined

effect of diffusion plus shear in the mean velocity.
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3. 1.1 Basic characteristics of turbulent flows

- Turbulent flow: Irreqularity, randomness, non-linearity
« coherent structure — large scale eddies
High diffusivity and mixing
High Reynolds number
3-D fluctuations and rotational eddies
« tend to be isotropic- small scale eddies
Transfer and dissipation of kinetic energy
Continuum phenomenon

Feature of flow « property of fluid (o, 1, )

- Navier-Stokes and scalar transport equations can be used to describe
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Coarse grid

Non-isotropic
turbulence

152. Generation of turbulence by a grid. Smoke wires ber is 1500 based on the 1-inch mesh size. Instability of the

show a uniform laminar stream passing through a !/, s-inch shear layers leads to turbulent flow downstream. Photo-
plate with %-inch square perforations. The Reynolds num- graph by Thomas Corke and Hassan Nagib
grid Curbulenee

Fine grid

Isotropic
turbulence

153. Homogeneous turbulence behind a grid. Behind stream, it providdb a useful approximation to the idealiza-
a finer grid than above, the merging unstable wakes tion of isotropic Rurbulence. Photograph by Thomas Corke
quickly form a homogeneous field. As it decays down® and Hassan Nagib
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3.1.2 Description of turbulent flows

The velocity at a point in a turbulent flow will appear to an observer to be

“‘random” or “chaotic.”

— The velocity is unpredictable in the sense that knowing the

instantaneous velocity at some instant of time is insufficient to predict the

velocity a short time later.

— Thus, we describe the motion through statistical measures.
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For a stationary (steady) velocity record, the instantaneous velocity can be

decomposed into the sum of time-averaged and fluctuating contributions as

shown in Fig. 3.1.
u=u-+u (3.1)
where u is a time-averaged value which is given as

—_ 1 T
UZ? udt (3.2)

where T is a time much longer than the longest turbulent fluctuations in the

flow, and U’ is the fluctuating component, i.e. the deviation from the mean

values.
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U

‘,n,im' ‘L"..,"I, lv. A'A"u "l’“ u',.v.t,,

u = time-averaged
(or mean) value




13/106
3.1 Introduction

g

Higher order statistical quantities, such as the variance, are used to describe

the magnitude (intensity) of the fluctuations:

~2

LT o = F
u :UZ:?JO (u—u) dt (3.3)

where U is the standard deviation and is defined as the turbulent

intensity.

Actual velocity records obtained at two depths in the open channel flow
photographed in Fig. 3.2 are shown in Fig. 3.3.
— The time-averaged velocity is greater farther from the wall, but the

turbulence intensity is significantly larger near the wall.
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The variation of the time-averaged velocity and the turbulence intensity with
distance, z, are shown in Fig. 3.4.

— The time-averaged velocity increases monotonically from zero at the wall

to be approximated into the logarithmic profile.

— The turbulence intensity increases rapidly from zero at the wall to a local

maximum near the wall and then monotonically decreases.

The turbulent fluctuations act to efficiently transport momentum, heat, and

tracer concentration.

— It is common to model the transport due to the fluctuations by defining

an effective diffusion coefficient called the eddy diffusivity.
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a) Mean velocity b) Turbulence intensity
200 200
| Logarithmic profile ° °
[ L
150 r PointB ® 150 - M
E 100 | ® g 100 °
N | N |
i ® L e
50 : / 50 : '
: PointA F : ‘
— @ >
0 ’ i . i L L ’ i L I 0 . I I i .I i I '. I I.
0 0.04 0.08 0 0.005 0.01
1 (m/s) i (m/s)

Fig. 3.4
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3.1.3 Length Scales of turbulent flows

Motions in a turbulent flow exist over a broad range of length and time scales.

(1) Integral length scale

— The largest scales are bounded by the geometric dimensions of the flow,

for instance the diameter of a pipe or the depth of an open channel.

Eddies lose the most of their energy after one or two overturns.

— Thus, because the rate of energy transferred from the largest eddies is

proportional to their energy times their rotational frequency.

The rate of energy dissipation, &, is of the order:

~  ~3
gocliz-%ocE (3.4)
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The rate of dissipation is independent of the fluid viscosity and only

depends on large-scale motions.

— The scale at which the dissipation occurs is strongly dependent on the

fluid viscosity.

(2) Kolmogorov microscale

~ turbulent velocity field

Dissipation length scale (0|L1X|E ABA|Z|= 2t 27])is

noc[‘;j‘l‘ (3.5)

v = Kinematic viscosity
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Time scale of the smallest eddies is

N2
T oc (—J (3.6)

(3.7)

(3) Batchelor scale (molecular scale)

~ turbulent concentration field

L, o (EJE (3.8)

/4
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where D = molecular diffusivity; 7 = the strain rate of the smallest velocity

scale which is given as

h (3.9)
n

Therefore the Batchlor’s length scale can be recast into a form that include

both the molecular diffusivity and the kinematic viscosity.

2\
vD
LBoc( . ) (3.10)
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* Schmidt number

~ is defined as the ratio of the Kolmogorov and Batchelor length scales

2
n | 4
S ~| +~—| ~| —
NEANEY o
[Ex] For the open channel flow, u =50 mm/s, U~ 5mm/s

1
- Integral length scale, | = Eh ~100mm

Water @ 20°C:; v =1x10°m’/s =1x10°mm’/s; D =1x10""m’/s
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Solution:

- Kolmogorov scales

3 3 )
(5)"(mm/s) 105 mT
100(mm) S
_(1><10°mm2/s)3_%
n= Lot = 0.7 mm
_ 1
1(mm?/s) |
T = (m / ) = 053

_1.25(mm2/s3)_
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- Batchelor scale

L; =0.02mm

~ Batchelor scale is 35 times smaller than the Kolmogorov scale.

— We would expect a much finer structure of the concentration field than

the velocity field.
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3.1.4 Energy cascade

- Spreading of kinetic energy of the fluid motion over a range of eddy sizes

through the non-linear interaction of the large and smaller scales of motion

. URE 31 %2 92 TAE/0] U0n OIS ME HIMEEoR o
o] S
. 2 729l ot ofLx| BZH, olAxlol iR TEstT S

- OfF %2 ot&= of| x| Aol =RQ
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- Energy transfer

S —
—— @ B9 B
—— CECEC
mean flow - large eddy - small eddy - heat
generation energy dissipation
of turbulence cascade by viscosity

Kolmogorov (1941): In equilibrium, transfer rate = dissipation rate
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* Turbulent kinetic energy is passed down from the largest eddies to the

smallest through the process called the energy cascade.

~ To maintain turbulence, a constant supply of energy must be fed to the

turbulent fluctuations at the largest scales from the mean motion.

~ At the smallest scales, the enerqy is dissipated into heat by viscous

effects.

e The small scale motions tend to have small time scales.

— These motions are statistically independent of the relatively slow,

large-scale turbulence and of the mean flow. — isotropic turbulence

— The small scale motion should depend only on the rate of energy

transfer from the larger scales and on the viscosity of the fluid.
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3.1.5 Kolmogorov's universal equilibrium theory of turbulence

The kinetic energy of the small and intermediate scale motions varies only at
the rate at which the mean flow varies.

— The behavior of the intermediate scales (inertial surange) is governed by the

transfer of energy which, in turn, is exactly balanced by dissipation at the
smallest scales.
~ In equilibrium, the transfer process must be in equilibrium with the energy

dissipation rate.

 The energy spectrum characterizes the turbulent kinetic energy distribution
as a function of length scale.

— The spectrum indicates the amount of turbulent kinetic energy contained

at a specific length scale.
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* The large turbulent length scales in the flow dictate the rate of dissipation.

~ These large scales draw energy from the mean flow, then transfer the

energy to successively smaller scales until it is dissipated at the

Kolmogorov microscales.

~ The energy distribution at the largest length scales is generally

dictated by the flow geometry and mean flow velocity.

~ The smallest length scales are isotropic in nature.

* Forinertial subrange (n < L < /), the energy spectrum will only be a

function of the length scale and the dissipation rate.

E = a3 (3.12)

k = wave number ~ inverse of length
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Batchelor Kolmogorov Integral
} | }
-
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3.1.6 Evolution equations

Turbulent flows must instantaneously satisfy conservation of mass and

momentum.

— The incompressible continuity and Navier-Stokes equations can be
solved for the instantaneous flow field.
—~ However, to accurately simulate the turbulent field, the calculation must

span from the largest geometric scales down to the Kolmogorov and

Batchelor length scales.
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In many situations, engineers are satisfied with an accurate assessment of

the time-averaged flow quantities.

— The time-averaged flow equations, known as Reynolds-Averaged Navier-
Stokes (RANS) equations, read as

o,
OX.

ou. —ou. ap o*u, 0
gy =25 —(ulu’ 3.14
p{at ’axj) ox, ”a P L) 514

i ]

=0 (3.13)

0
where pGT(U{U}) = Reynolds stress tensor; it physically corresponds to the
j
transport of momentum due to the turbulent fluctuations.




34/106

3.2 Mixing by Turbulent Motion
—

3.2. 1 Mixing by turbulent motion

- Eddies range in size from the largest geometric scales of the flow down

to small scale where molecular diffusion dominates.

- These eddies are continuously evolving in time, and the superposition
of their induced motions leads to the fluctuating time records as shown
in Fig. 3.2.

- Large eddies transport the whole cloud of tracer while small eddies

distort the shape of the cloud.
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LAMINAR TURBULENT

f

Dye Trace

Kawahara (2016)
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3.2.2 Two approaches for analysis of turbulent mixing

1) In Environmental Fluid Mechanics, they try to model the transport due

to the fluctuations by defining an effective diffusion coefficient called

the eddy diffusivity.

—u_ic:Fa—C

! oz,

1) In Turbulence Modeling, they model the turbulent motion first, and

then relate the turbulent diffusion to the eddy viscosity.

— use turbulent Prandtl (heat) or Schmidt number (mass), o,
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3.2.3 Mixing mechanism in turbulent flows
(1) Experiments of slugs of tracer
- Consider the spreading of a slug of tracer or a group of marked particles
in a steady turbulent flow.
- Suppose a mass M of tracer (or a total number M of marked particles) is

released at a fixed point in the stationary, homogeneous turbulent flow.

- Subsequent spread of the tracer is to be viewed by an observer moving

with the mean velocity of the fluid.

[Re] Stationary, homogeneous turbulence

~the variance of the velocity is steady and does not change with time and
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- We can take a series of photographs using a camera traveling with the

mean velocity of the flow.

- The photos were taken at equal times after the release for two identical

experiments

- The experiment could be repeated many times

- The results of the two sets of experiments are quite different, and the

differences are two sorts: first, the small scale fluctuations, which are

different for each cloud; second, the large scale fluctuations.
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Diffusing Patch at
patch Later time

Small-scale
eddy |

Large-scale
_  eddy
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@ The small scale fluctuations

~ distort the shape of the cloud and produce steep concentration gradient

over short distances.

~ These local differences will eventually be smoothed out by molecular

diffusion.

@ The large scale fluctuations
~ some of them are larger than the cloud itself.

~ transport the entire cloud

~ Each cloud of particles encounters a different set of large scale motions,

so the motion of the center of mass of each cloud is different.
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(2) Ensemble averages

- Now, suppose we release a large number of clouds of particles, one after

another, and watch the spread of each cloud over a long period of time.

- Since we subtracted out the mean motion, the average position of the

center of mass will be at the origin, but the center of mass of each cloud

may diverge from the origin because of the large scale eddies.

- If we wait long enough, each separate cloud will grow to be bigger than the

largest eddies and will average out their effects.

- The center of mass of each cloud will tend to return to the origin through

the process of averaging the random motions. We can use “ensemble

average” which is the average over all of the release.
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1st release + n 4 ‘

(a)

ond rglease 4 @ ‘

(b)
Ensemble SN
mean-LT + G+ L+
(EALT)
(c)
Ensemble
mean-ST + o+ (+ Lt
(EAST)

A

(c)
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- However, we also want to solve the problems of the turbulent diffusion

during short times.

— We try to follow each release separately.

= Two kinds of average

1) Ensemble average for long times (EALT)

- average over all of the releases after long times

- However, the ensemble average concentration at a point in space and

time is likely to be an average of a large number of zeros (times when

the tracer cloud does not cover the point) plus a few large values.

- This type of average may be meaningless when high concentration is

of concern.
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2) Ensemble average for short times (EAST)

follow each release separately during short times

superpose the centers of mass of each of the individual clouds and then

average over the ensemble of releases.

The average extent of each individual cloud is smaller than the extent of

the ensemble average (EALT) because the EALT includes the

distribution of the centers of mass. - C ,>C,

However, in applying this method, not enough is known about the
turbulent flow to permit the computation of the spread of each individual
cloud or the peak concentration at any instant.

use a statistical estimate of the size of an individual cloud
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- Study various ways of computing averages, variances, and correlation
coefficients of a random time series
3.3. 1 Slafistics of particle position

- Suppose that a particle in a turbulent fluid is, at time 7, located at the

point, &, in Cartesian coordinates (&,7.¢) .

- At a subsequent time £, the particle moves to a nhew pointY(x Y,Z)

- The trajectory of the particular particle is given as
(3.15)

X = X(&,t,t,)
where X =X(&n,4,t.t))

Y =Y(,nd )

Z=72(&n,¢,t1) (3.16)
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EXPERIMENT X, EXPERIMENT
#3 — el — #1
X, (’\ X X
X EXPERIMENT i %\
«— #2
(a) (b)
Trajectories of three particles Trajectory of a single particle

foratime 7 foratime 37
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« Two interpretations of Eq. (3.15)

i) For each release of a particle, there will be a different functional form of X

reflecting the random nature of turbulent flows. — Fig. 3.8(a)

e

i) For any one release, X may be interpreted as a random variable in

time since the position that a particle takes at some later time t+ 7 may

bear little correlation to the position at time 1 . — Fig. 3.8(b)
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« Two averages

i) Ensemble average

~ mean over many trials (releases)

~ average across the totality of experiments performed

— As shown in Fig. 3.8(a), a number of particles are released at different

times, and the displacement X of each particle a time T after its release is

observed.

ii) Time series average

As shown in Fig. 3.8(b), a single particle is released and followed through

a large number of time increments each of duration T.
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- The displacement Xduring each time increment is a random variable.

- The statistical properties may differ from those obtained by an ensemble
of many releases.

- If the time series average and the ensemble average are the same, this

process satisfies the ergodic property.
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» Correlation

Because of the correlation of turbulent motion, the probability that the value

of Xcoordinate of the random variable X is between xand X +dx attime
t will not be independent of where, the particle was at some previous

instant, t —At.

« Joint probability

= Probability that the value will be between X, and X, +dX, at t, between
and X, at X,+dX,, t, between X, and X,+dX, at t;, and so on.

— Two turbulent mixing processes are identical if all the joint probabilities
are the same.

— This does not mean that any two trials will produce the same position

.e
<+

history.




o2/106

3.3 Statistic Concepts
é

@ Ensemble mean of particle displacement

~ average taken over a large number of trials

(X) = j‘: Xp(X|&,t,t;)dX (3.17)

where p(X|§,t,to)dX is the probability density function of the process X

= probability that the random variable X has a value between X and

X +dX attime t giventhatitwas & attime {;.
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@ kth moment

(X =[" X*p(X|& t.t,)dX (3.18)

® Auto-covariance

By (St ty) = [ [ XX, p(X, X, €., b, t)dX dX, (3.19)
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@ Cross-covariance

By (Et) = [ [ XYp(XY|&,t,t,)dXdX, (3.20)

where p(XY|z§,t,tO) is the joint probability density function forthe X and Y

components of particle displacement.

The particle displacement X is stationary if all the moments of the

distribution of the displacement are independent of the time origin and

depend only on the time difference t—t,, and in addition the covariances

depend only on the time difference.

The X is homogeneous if the moments of the distribution of the displacement

depend only on the relative displacement |X —¢| , and not the initial position &.
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3.3.2 Stalistical distribution of concenftration

Ensemble average of the concentration n(x,t) measured at point x at time t

after many repeated trials in which identical cloud of particles are released

under the same statistical conditions is given as:
C(x,t) =(n(x,1)) = | "np(n|x,t)dn (3.21)

where n(Xx,t) =concentration observed at point X and attime t

p(n|x,t)dn = probability that the concentration of tracer material has a value

between N and n+dn atthe point X attime t.
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- Slaltistics of a single trial (cloud)
@ Centroid of cloud

—_— 1 o0 o0 o0
X = ML@ LO j_oo xn(X, Y, z,t)dxdydz (3.22)
where M is the total mass (= number of particles) in the cloud

M = j:jjof:n(x y, z,t)dxdydz (3.23)

@ Variance of the cloud
~ the mean square X displacement about the center of mass (centroid) of

particles in a single cloud.

ot = [ [ [ (= X)n(x,y, 2.0z (3.24)
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- Slatistics of an ensemble clouds of many trials

@ Center of mass for the ensemble

(X) = ﬁjijij: xC(X, Y, z,t)dxdydz (3.25)

@ Overall variance of the concentration in the ensemble of clouds

2 1 VIt %
% =Vjﬂ(x—<x>) C(x, Y, z,t)dxdydz (3.26)
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Expand Eq. (3.24) and then take the ensemble average (EALT)

22 =(a?)+{(X —(X))* (3.27)
/ X,

The varianée of the ensemble distribution about its expected position is equal

to the en!emble average of%e\variance of each cloud about its center of

mass plus the ensemble mean square displacement of an individual cloud’s

center of mass from its expected position.

We can define the size of an individual cloud as

bl
o(t) = {%(05 +0,+0, )} (3.28)
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The size of the ensemble-average cloud is

L(t)=E(Z§ +3; +23)T (3.29)

Combine Egs. (3.27) ~ (3.29)

L (t)=<*(t) > +%[<(Y—<Y>)2> HY =W +(Z-@)]  |(3.30)

— The width of the ensemble mean concentration profile is larger than

the average width of a cloud as indicated in Fig. 3.7 (c) and (d).
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3.4.1 Taylor's Theory (1921) of Turbulent Mixing

Assume a field of stationary homogeneous turbulence.

Consider a series of experiments with zero mean velocity where, in each

experiment, mass m of matter is added to a single fluid particle at time to at

point &.
- X and (X) are zero.
- L) =X :ﬁ_m x°C(X, Y, z,t)dxdydz (3.31)

T

where number of particles N =%

Overall variance




64/106

3.4 Diffusion of the Ensemble Mean Concentration
—— =

* The effects of molecular diffusion are neglected.

— The mass M allocated to each particle remains with that particle at all

times.

— The average concentration C(x,t) measured at a fixed point in space will

be proportional to the probability that the particle is at X .

C(x,t) = Mp(x|&,t,t,) (3.32)

Substituting Eq. (3.32) into Eq. (3.31) and using Eq. (3.18) gives

() =25 =

_” X*p(x|&,t,t,)dxdydz

°Zx2p(x|§,t,to)dxdydz = (X%) (3.33)




65/106

3.4 Diffusion of the Ensemble Mean Concentration
—— =

Eq. (3.33) holds if all particles begin their motion at the same point &, but it

can also be generalized to the case in which we begin with a cloud of

particles having a spatial distribution C(&,t) attime .

By superposition of the point source result Eq. (3.32), as discussed in

Problem 1-3 in Chapter 2, we have

C(x.1) = [, C(&t)P(x|& L )de (3.32a)

By substituting Eq. (3.32a) into (3.31), the more general result follows:
IR

L*(t) {<X2>>F L*(t,) (3.33a)
%
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where L’(t,) is the ensemble mean square size of the cloud at the initial

time t,.

— Thus, the problem of finding the ensemble mean size of the cloud is

equivalent to finding the ensemble mean square displacement of the fluid

particles.

— This problem was solved by Taylor in 1921.

Let U be the velocity of the particle, with zero mean.

Take &£=0 and t,=0, then the location of the particle, X(?)is

X (t) = EUdt

X2 (t) :(I;Udrl)(J;Udrz) = ['[{U () (,)dnde, (3.34)
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The ensemble mean is

(X2 =[ [ (U(z)U (z,))drde, (3.35)

The ensemble average (U(7,)U(z,)) means the average over a large number of

trials of the product of the velocity of a single particle at time % multiplied by

the velocity of the same particle at time %2 .

— Since the turbulence is stationary this can only be a function of the

difference between 7, and 7, .
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Define a correlation coefficient as

(U (z)U (7,))
R (1. —7) = 3.36
X(TZ z-1) <U 2> ( )

where (U?) =(U (0)U (0)) = square of the turbulence intensity.

R, is called the Lagrangian autocorrelation function.

Substitute Eq. (3.36) into Eq. (3.35)

(X2()) =UD] [ R.(r, ~z)dz,dr, (3.37)
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Changing the variables of integration to

S=1,-1,
r=(r,+7,)/2

Performing the integration with respect to r gives

(X2(1)) = 2(U?) j; (t—5)R. (5)ds (3.38)

For the case of diffusion in three dimensional flow
Y2 (0) =20 ) (t-9)R, (5)ds
(Z*(1) = 2W )], (t-9)R, (s)ds
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@ For very short times after release of the particles, (t <<T,)

— The particle velocity is nearby constantand R, =1 .
Then, Eq. (3.38) is simplified as

(X2) = (U)t? (3.39)

@ For very long times (t >>T))

- R — 0 because motions become less and less (.\ |
X,
correlated at longer and longer times. d*

(X?) — 2(U*)T t +const (3.40)
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where

T = j0°° R (s)ds

(3.41)

T, is known as the Lagrangian time scale which is a measure of how long

the particle takes to lose memory of its initial velocity

RL(T)

N\

AN
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Differentiating Eq. (3.40) gives

%<x2> = 2UNT, (3.42)

— After some long enough time, the variance of the ensemble averaged

concentration distribution for clouds dispersing in a stationary homogeneous

field of turbulence grows linearly with time. — Fickian diffusion
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[Case study] Field study using GPS floaters in Nakdong River
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Wind speed
Date Q (m?/s) U (m/s) H (m) A (1) (m/s)
(Direction)

Sep. 12, 2012 547 0.19 6.0 383 0.15 ~ 0.22 (SW)
Sep. 15, 2013 681 0.21 71 308 0.50 ~ 2.00 (NE)
Sep. 15, 2013 697 0.22 8.5 360 0.50 ~ 2.00 (NW)
Oct. 11, 2013 169 0.29 3.4 263 0.16 ~ 1.25 (NW)
Oct. 12, 2013 352 0.32 5.6 480 0.82 ~ 1.90 (NW)

Oct. 12, 2013 352 0.32 5.6 480 0.82 ~ 1.90 (NW)
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n(x, y, t)
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a) GF11 [
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#
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a) Series GF1

b) Series GF2
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O_iZ — i=1
N
T : .
1 | Ke Ki K, /HU" K, /Hu
X==—> X
N i=1 4.5 0.041 0.012 0.56 0.16 3.46 0.78
1.4 0.012 0.002 0.14 0.02 6.75 3.56
2.8 0.003 0.001 0.03 0.01 3.14 5.00
1.7 0.016 0.005 0.24 0.07 3.20 3.07
0.9 0.021 0.004 0.22 0.04 5.68 2.23

1.1 0.011 0.006 0.11 0.06 1.73 3.32
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3.4.2 Derivation of diffusion equation for turbulent flows

Recall molecular diffusion

— Fick’s law led to the derivation of the diffusion equation.

— The fundamental solution to the diffusion equation is the Gaussian

distribution.

— A property of the diffusion equation is that the variance of a concentration

distribution always grows linearly with time.

do?

dt

-2D (2.22)
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After some start-up time, the random walk generates the Gaussian

distribution.

— The Gaussian distribution implies that the diffusion equation describes

the process, and that the variance of a spreading cloud of molecules

undergoing a random walk grows linearly with time.

» Taylor’s analysis, Eq. (3.42), has shown that after some start-up time the

variance of a spreading cloud of particles in stationary homogeneous

turbulent motion grows linearly with time.

— We can define a turbulent mixing coefficient, analogous to the molecular

diffusion coefficient, by the relationship
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_ii 2\ _ /112
=5 (XD =U7T, (3.43)

However, linear growth of the variance is a necessary condition for the

diffusion equation to apply, but it is not a sufficient one.

The velocity U(t) is a random variable for any fixed time ¢ so that

X(t)= tU(t)dt is the sum or integral of random variables.
0
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The central limit theorem of probability theory tells us that such sums

approach normality as t— o provided that the variable U(t) satisfies

certain weak independence requirements.
— Since a stationary homogeneous turbulent velocity field satisfies these

requirements we may expect that X(t) becomes a normal or Gaussian

random variable for large time.

— If so, as provided in Section 2.3, the spread of the ensemble mean

concentration may be described by a diffusion equation.

— The diffusion equation for zero mean flow velocity is

2 2 2
oC 0C 0°C 0°C (3.44)

—=c +
ot ox’ Yoyl tor
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— If the fluid has a mean velocity,

oC oC oC oC _ 0°C 0°C 0°C

(3.44a)

= Derivation by time-averaging the advection-diffusion equation:
For turbulent flow, the advection-diffusion equation which was derived from

conservation of matter is given as

2 2 2
@_FU @-FV@—FW@_DG—-F D8—+Da— (3.45)
ot OX oy 0z OX’ oy’ oz°
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Now, neglecting molecular diffusion gives

@+U @+V @er@:O

ot ox oy oz (3.45a)

where U, V,and W are randomly varying velocities; Cis the time-varying
point concentration in turbulent flow.

If this equation is averaged over a time long enough to average the turbulent

velocity and concentration fluctuations, we obtain

0

0 T~ 9,
+U X+V +W Z_ X(UC) (VC) Z(\NC) (346)
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where y=y+U’
V=v+V'
W=w+W'

c=C+C’

Comparing Eq. (3.46) with Eq. (3.44) gives

UC =—¢ &
OX
VT =, &
oy

WC'= _825 (347)
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where &,,¢,,¢, are referred to as “Fickian turbulent diffusion coefficient”;
since they are result from a process involving larger scale random motions
they are often called “eddy diffusivities.” Then Eq. (3.46) becomes

oC oC oC oC O ( 8Cj 0 oC| 0o ( 8Cj
+U—+V—+W—= E, + &, + &, (3.48)
ot OX oy oz OX oX ) oy oy ) oz 0z

— This is the same as Eq. (3.44a).
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3.4.3 Requirements of Taylor's analysis

We must now resolve the question of under what conditions a Fickian

turbulent diffusion equation like Eq. (3.48) can be used.

@ Requirement in terms of time
If we are dealing with a cloud of particles originating at a point, requirement

given by Taylor’s analysis is that more time has elapsed than the Lagrangian

time scale.

t>T, =%(TX +T, +T,)
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@ Requirement in terms of the size of the dispersing cloud
In many cases, the time of origin of the cloud as a point source may not be

known. Then, use a Lagrangian length scale, v, defined by the relation

02 =UDT? (3.49)

The scale ¢, gives the order of magnitude of the distance a fluid particle will

travel before losing memory of its initial velocity.

The size of the dispersing cloud, L, should substantially exceed the distance

over which turbulent motions are correlated, which is given using Eq. (3.40)

L% = 2UHT,t > 202 (3.50)
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® Summary

 Taylor's analysis has shown that there is such a thing as a turbulent

mixing coefficient that is analogous to the molecular diffusion coefficient.

* Taylor’s analysis shows, by combining Egs. (3.43) and (3.49) that

Ex = KL[<U 2>]]/2

(3.54)

where [(U»]¥? = the intensity of the turbulence; ¢, = Lagrangian length

scale which is a measure of how for a particle travels before it forgets its

initial velocity.
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3.5. 1 Growth of clouds of particles for t<T,

« Two ways of forming ensemble average concentrations
@ Ensemble average of random clouds

~ average the concentration at each point in space at identical times

C(x,t) =(n(x,t)) (3.55)

where n(x,t) is the concentration in one trial at point and time X.

The measure of the spread of the concentration distribution is given as t

52 = ﬁ [[1(x=Y e tox (3.56)
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where

= 1

O =[] xC(x, hox (3.57)
From the Taylor’s analysis, the size of the cloud changes with time.

2(t) = %(zi 432 437) (3.58)

@ Ensemble average of superposed clouds
The ensemble mean concentration is formed by averaging the concentration

at points equidistant from the center of mass of each cloud in the trial.

The rate of growth of the ensemble of clouds with superposed centroid is
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(0%) = <ﬁ NIE —Y)Zn(x,t)dxdydz> (3.59)
where

Y:ﬁm‘ xn(x, t)dxdydz (3.60a)

(X)= <ﬁﬂj xn(x,t)dxdydz> (3.60)

The size of an ensemble cloud is defined as

o) =%<af + 02407 (3.61)




96/106

3.5 Relative Diffusion of Clouds

é
The ensemble concentration formed by aligning the centers of mass is

w(x,1)=(n(x—X,1)) (3.62)

where

X=X-X (3.63)

By translating the origin x=0 Eq. (3.63) becomes

(67) = ﬁ [ Xw(x, ydx,dyctz (3.64)

The mean concentrations by Eq. (3.62) are actually higher than those
described by Eq. (3.55).

12(t) = (£2(1)) +%<[<Y— OOV +( (D +Z @)D (3.65)
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3.5.2 Batchelor's analysis

Consider the statistics of the separation of a particular pair of particles in a

cloud. We define the probability density function

Q(s.t;3,,1,)ds = probability that a pair of particles separated by a distance
between S, and S, +ds, attime t, will be separated by a distance S and

s+ds attime t.

« Batchelor’s analysis (1952)

If the pair of particles are not widely separated compared to the scale of the

turbulent eddying motion, then only two length scales are important to the

statistics of their relative motion.
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3 \V*
Two scales are their initial separation S, and Kolmogorov scale [;) :

Two time scales are important to the motion: scale t-t,and Kolmogorov

12
scale X) |
&

Dimensional analysis implied that
d(s?) ) s, z&"’
a & (3.66)

where 7=t-t,

(s7) =] $°Q(s,t;5, t,)dls (3.67)
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@ For very long times from release

~ two particles will wander independently

(s2) —> 2(X?) (3.68)

y(x,1) > C(x,1) (3.69)
@ For very short times

~ the rate of increase is a function of viscosity and the initial separation.

If S is much larger than the Kolomogorov scale v¥¢%* | the viscosity is

not important.

If enough time has passed that the initial separation of the particles Sy has

been forgotten, Eq. (3.66) becomes
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%<52> - Cye(r -1’ (3.70)

where t, is proportional to sZ’¢™* and C, is a universal constant.

Integrating Eq. (3.70) gives (s°) ~t° so that we have

57 = T (3.71)

— The rate of increase of the mean square separation of particles is

proportional to the mean square separation to the power 2/3.

— Experimental results collected by Richardson (1926) showed that
d(s?)
dt

oc §4° (3.72)
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3.5.3 The 4/3 law of Diffusion

If the initial separation of pairs of particles in a cloud has been forgotten,

and the turbulence is homogeneous, the description of the mean square

separating of all pairs of point in an ensemble will be exactly the same as

the description of the mean square displacement from the center of mass.

If we let x=|7| then we have that

() = [[[ 2w (x 04 2.0 7,8 7, =3 @) (3.73)

W;t(t» _ ke¥e( 02 (1)) (3.74)
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From this result we postulate the existence of a differential equation

describing w(x,t) of the form

oy o, ow) o op) o ( an
= K + K + K
a alx( %j %( Zy] o\ I (3.75)
where
K =a(y*? (3.76)
2

2t
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The solution of Eq. (3.75) corresponding to a point source at the origin

7|=0 is
1 ;(2
1) = - EXp| — -
e
With n=3 and
o (2 Y
(x >=(§05t} (3.79)

This solution should only apply where

t>> (y2)Pe™? (3.80)
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which implied that the original cloud size has been forgotten.

Experimental results of 2D field diffusion studies collected by Okubo (1974)

showed that the 4/3 laws of Eq. (3.77) is valid over a much larger scale

than the Batchelor-Kolmogorov theory would indicate as appropriate.

The constant @ decreases with an increase in the scale of the diffusion.

— However, unless the scale of the problem is very large a reasonable

estimate for o for engineering purpose is given by taking the universal

constant to have a value in the range of 0.002 ~ 0.01cm?*/sec , as shown
by Fig. 3.11.




106/106

3.6 Summary
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- This chapter introduces the kinematics of turbulence which affects the
mixing of pollutants
- It discusses the ranges of scales of motion in turbulent flow, and how

they interact with the size of a dispersing cloud of tracer

* Three concentrations
@ n(x,t)

~ concentration observed at point x attime t after the release of a

single cloud of particles from point &
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@ w(xt)

~ concentration computed at point x attime t by releasing a large

number of clouds of particles at point &, superposing the centers of mass

of each cloud, and then averaging the values of n over all clouds. X is

measured relative to the center of mass of the cloud and t is measured

relative to the time of release.

® C(x,t)

~ the ensemble average obtained by releasing a large number of clouds

particles at point & at various times and averaging the values of n

observed at point X for all clouds at time { after their release.
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e What to use?
From the point of view of pollution control, N(X,t) is the most relevant

concentration because it is what is actually seen by an organism in water.

— Unfortunately we have not been able to give a general method for
predicting values of n(x,t).

— We have seen, however, that spreading of both (X,t) and C(x,t) can

be modeled by Fickian diffusion equations.
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* Their uses and limitations

@ w(xt)

The average concentration we called ¥ is not an observable concentration

because it requires an averaging by superposition of center of mass that
never actually occurs in the environment. It leads to the “4/3 law” which says

that the diffusion coefficient is proportional to the 4/3 power of the size of the

cloud. The 4/3 law is useful for studies in the ocean where turbulence is

homogeneous.




110/106

3.6 Summary
EEEEEEEEE——————————————— .

@ C(x,t)
The ensemble average concentration C is obtained by averaging at a fixed

point over a large number of releases of tracer. It is likely that C is what

will be observed after even just one release of tracer if the tracer has been

in the flow longer than the Lagrangian time scale of turbulence. After the

tracer has been in the flow longer than the Lagrangian time scale, further

changes in C are governed by the Fickian diffusion equation with constant

coefficients.
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« Stages of diffusion

(i) Individual clouds grow at a rate which increases with their size, and which

is different for each cloud.

(ii) In the intermediate stage, the average growth of the cloud can be

described by the diffusion equation with a diffusion coefficient proportional

to the 4/3 power of the size of the cloud, if the turbulence is homogeneous.
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(iii) After the clouds reach a size larger than the largest scales of turbulence

motion, the further spread is described by the Fickian diffusion equation

with constant coefficients.

— This theory can be used for practical problems of rivers and estuaries

because the size of pollutant cloud is usually greater than the largest eddy

sizes.
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