

# **River Water Quality Modeling**







#### Contents

- 6.1 Non-Conservative Pollutants
- 6.2 Modeling BOD-DO Coupled System
- 6.3 Modeling Heat Transport
- 6.4 Modeling Eutrophication
- 6.5 Modeling Bacteria and pathogens
- 6.6 Modeling Toxic Substances
- 6.7 Modeling Oil Transport

#### Objectives

- Classification of non-conservative pollutants
- Present water quality modeling processes





#### 6.1.1 Category of Non-Conservative Pollutants

Non-conservative pollutants:

- Substances <u>undergoing any biochemical changes (ex. decay, growth,</u> sink or source) in transport and not following the mass conservation
- Non-conservative pollutants in rivers are generally classified as:

1) BOD-DO

- 2) Heat and temperature
- 3) Algae and nutrients
- 4) Bacteria and pathogens
- 5) Toxic substances

#### 6) Oil





#### 6.1 Non-Conservative Pollutants

- Toxic substance (독성물질)
  - Metals: mercury, cadmium, lead
  - Industrial chemicals: toluene, benzenes, phenols, PCB
  - Hydrocarbons: PAH (polycyclic aromatic hydrocarbons)
  - Agricultural chemicals: pesticides, herbicides, DDT
  - Radioactive substances









#### 6.1 Non-Conservative Pollutants

[Cf] Conservative pollutants

- One which does not undergo any biochemical changes in transport and follows the mass conservation
- No loss due to chemical reactions or biochemical degradation
- Salt, chloride, total dissolved solids, some metals









#### 6.1.2 Transport of Non-Conservative Pollutants

Physio-chemical phases of the transport of non-conservative substances include

- Loss of the substances due to biodegradation, volatilization, photolysis, and other chemical and bio-chemical reactions
- <u>Sorption and desorption</u> between dissolved and particulate forms in the water column and bed sediment
- <u>Settling and resuspension mechanisms of particulates between water</u> column and bed sediment





#### **6.1 Non-Conservative Pollutants**







2D transport model with only loss of the substance

$$\frac{\partial(hC)}{\partial t} + \frac{\partial}{\partial x}(uCh) + \frac{\partial}{\partial y}(vCh) = \nabla \cdot (hD\nabla C) + hS$$

where S = sink/source term

Assume first-order decay

- decay rate is proportional to the amount of material present

$$\frac{dC}{dt} = S = -kC \qquad \longrightarrow \qquad \frac{\partial(hC)}{\partial t} + \frac{\partial}{\partial x}(uCh) + \frac{\partial}{\partial y}(vCh) = \nabla \cdot (hD\nabla C) - khC$$

where *C* = mass/volume; *S* = mass/(volume·time); *k* = 1/time =  $\frac{\text{decay rate}}{\text{decay rate}}$ 





- First-order decay
- Rate of disappearance of BOD due to biodegradation (oxidation)
- Radioactive substance also <u>decay in strength</u> in this way
- Coliform bacteria and pathogens <u>die away</u> with a rate of first-order decay







#### 6.2.1 Transport of BOD and DO

- BOD-DO coupled system
- Conc. of DO depends not only on transport of DO but also on the conc.
   of BOD present
- Biodegradable substances undergo biochemical reactions
- Oxygen is used up in aerobic decomposition



#### 6.2.2 Solutions of BOD-DO Coupled System

- Coupled system of BOD and DO
- Determination of DO conc. downstream of a source of BOD
- ◆ Oxygen Demand (Deoxygenation: 탈산소)
- = indirect measure of organic materials (= organic pollutants) in terms of the amount of oxygen required to completely oxidize it
  - COD: Chemical Oxygen Demand
  - BOD: CBOD Carbonaceous BOD (탄소BOD)

NBOD – Nitrogeneous BOD(질소BOD)

Organic substance +  $O_2 \rightarrow CO_2 + H_2O$ 





- Importance of DO
- Anaerobic conditions in a stream are indicative of extreme pollution
- Low DO concentrations have severe effects on aquatic animals
- Sources and sinks of DO

|   | Sources                          |   | Sinks                                           |
|---|----------------------------------|---|-------------------------------------------------|
| - | Reaeration from the atmosphere   | - | Deoxygenation of DO ← BOD                       |
| - | Photosynthesis oxygen production | - | Oxygen demand of sediments of water body        |
| - | DO from incoming tributaries     | - | Use of oxygen for respiration by aquatic plants |

 $\therefore \frac{dC}{dt}$  = reaeration + (photosynthesis-respiration) – Deoxygenation by BOD

- sediment oxygen demand ± oxygen transport (into and out of segment)





- 1D transport model for BOD and DO
- Let C = concentration of DO
  - L =concentration of BOD

(1) rate of utilization of DO by BOD  

$$\frac{dL}{dt} = -k_1 L \rightarrow \text{exertion of BOD} = \text{utilization of DO} = \text{depletion of DO}$$

where  $k_1$  = deoxygenation coefficient (탈산소계수)

#### : Conservation equation for L

$$\frac{\partial L}{\partial t} = -U \frac{\partial L}{\partial x} + K \frac{\partial^2 L}{\partial x^2} - k_1 L$$

 $\Rightarrow$  G.E. for BOD





(2) reaeration from the atmosphere

= diffuse of oxygen into the stream rate of reaeration

 $\propto$  degree to which the water is unsaturated with oxygen

Let  $C_s = DO$  saturation concentration

then oxygen deficit, DOD =  $C_s - C$ 

∴ rate of reaeration

$$\frac{dC}{dt} = +k_2(C_s - C)$$

• 국내 5대강 탈산소계수: 0.05~0.5/day 재폭기계수: 0.25~3.0/day

where  $k_2$  = reaeration coefficient (재폭기계수)





 $\therefore$  Conservation equation for DO

$$\frac{\partial C}{\partial t} = -U\frac{\partial C}{\partial x} + K\frac{\partial^2 C}{\partial x^2} - k_1 L + k_2 (C_s - C)$$

Let

 $D = C_s - C$ 

Then

dD = -dC

$$\therefore -\frac{\partial D}{\partial t} = U \frac{\partial D}{\partial x} - K \frac{\partial^2 D}{\partial x^2} - k_1 L + k_2 D$$
$$\frac{\partial D}{\partial t} = -U \frac{\partial D}{\partial x} + K \frac{\partial^2 D}{\partial x^2} + k_1 L - k_2 D \Rightarrow \text{G.E. for DO Deficit}$$



Let reaction terms

 $S_L = -k_r L$  where  $S_D = k_d L - k_a D$   $k_r$  = BOD removal coefficient =  $k_d + k_s$ 

 $k_s$  = settling coefficient

 $k_d$  = deoxygenation coefficient

 $k_a$  = reaeration coefficient

.: G.E. for BOD and DOD at unsteady state

BOD 
$$\frac{\partial L}{\partial t} = -U \frac{\partial L}{\partial x} + K \frac{\partial^2 L}{\partial x^2} - k_r L$$
  
DOD  $\frac{\partial D}{\partial t} = -U \frac{\partial D}{\partial x} + K \frac{\partial^2 D}{\partial x^2} + k_d L - k_a D$ 





Solution for steady state (continuous input)

(i) BOD: 
$$0 = -U \frac{\partial L}{\partial x} + K \frac{\partial^2 L}{\partial x^2} - k_r L$$

$$L = \begin{bmatrix} L_0 \exp\left[\frac{U}{2K}(1+\alpha_r)x\right], & x \le 0\\ L_0 \exp\left[\frac{U}{2K}(1-\alpha_r)x\right], & x \le 0 \end{bmatrix}$$

where

$$L_0 = \frac{W}{Q\alpha_r}$$

---

$$\alpha_r = \sqrt{1 + \frac{4k_r K}{U^2}}$$





a) input

(ii) DO: 
$$0 = -U \frac{\partial D}{\partial x} + K \frac{\partial^2 D}{\partial x^2} + k_d L - k_a D$$

$$D = \frac{W}{Q} \frac{k_a}{k_a - k_r} \left\{ \frac{\exp\left[\frac{U}{2K}(1 + \alpha_r)x\right]}{\alpha_r} - \frac{\exp\left[\frac{U}{2K}(1 - \alpha_a)x\right]}{\alpha_a} \right\}, \quad x \le 0$$

$$D = \frac{W}{Q} \frac{k_a}{k_a - k_r} \left\{ \frac{\exp\left[\frac{U}{2K}(1 - \alpha_r)x\right]}{\alpha_r} - \frac{\exp\left[\frac{U}{2K}(1 + \alpha_a)x\right]}{\alpha_a} \right\}, \quad x \ge 0$$

where

$$\alpha_a = \sqrt{1 + \frac{4k_a K}{U^2}}$$









18/59

#### 6.2.3 Streeter-Phelps Equation

- Streeter-Phelps Equation (1925)
- No dispersion (river) K = 0
- Solution for steady state

BOD: 
$$0 = -U \frac{\partial L}{\partial x} - k_1 L$$
  
DO:  $0 = -U \frac{\partial D}{\partial x} + k_1 L - k_2 D$ 







For BOD, we have solution as follow,

$$L = L_0 \exp(-\frac{k_1}{U}x) = \frac{W}{Q} \exp(-\frac{k_1}{U}x)$$

**B.C.**: 
$$D(0) = D_0 = C_s - C_0$$

 $D_0 = initial deficit$ 

Solution:

$$D(x) = \frac{k_1}{k_2 - k_1} L_0 \left[ e^{-\left(\frac{k_1}{U}\right)x} - e^{-\left(\frac{k_2}{U}\right)x} \right] + D_0 e^{-\left(\frac{k_2}{U}\right)x}, \quad x \ge 0$$





(1)

DO sag curve



• Critical deficit of DO,  $D_c$  at  $t_c$ 

 $\rightarrow$  Loss of oxygen by BOD balanced by the input of oxygen from atmosphere





Change *x* by *t*, *x/U =t* (= time of flow, time of travel)

 $\rightarrow$  Then Eq. (1) becomes

$$D(t) = \frac{k_1}{k_2 - k_1} L_0 \left[ e^{-k_1 t} - e^{-k_2 t} \right] + D_0 e^{-k_2 t}, \ t \ge 0$$
(2)

 $\rightarrow$   $t_c$  may be found as

$$\frac{\partial D}{\partial t} = 0; \quad t_c = \frac{1}{k_2 - k_1} \ln \left\{ \frac{k_2}{k_1} \left[ 1 - \frac{(k_2 - k_1)}{k_1} \frac{D_0}{L_0} \right] \right\}$$
$$D_c = \frac{k_1}{k_2} L_0 e^{-k_1 t_c} \quad \leftarrow \text{ from Eq.(2)}$$





#### 6.3.1 Heat and Water Temperature

- Heat is the <u>extensive quantity</u> whereas <u>temperature is intensive</u> (ex. mass is the extensive property whereas conc. is intensive or size-independent)
- Discharge of <u>excess heat from STP and power plants</u> may positively or negatively affect the aquatic ecosystem
- Strong influence on many physiological and biochemical processes
- Control of the rate of biological and chemical reactions
- Oxygen solubility governed by water temperature
   (ex. the colder the water, the more the dissolved oxygen)





Heat exchange with sediment bed is generally much smaller than the <u>surface exchange</u> and frequently neglected in modeling studies (Morin & Couillard, 1990; Hondzo & Stefan, 1994; Younus et al., 2000).







#### 6.3.2 Kinetics of Heat Pollutants

(a) Sources

- Shortwave solar radiation
- Longwave atmospheric radiation
- Conduction of heat from atmosphere to water
- Direct heat input from municipal and industrial activities

(b) Sinks

- Longwave radiation emitted by water
- Evaporation
- Conduction from water to atmosphere





• Heat balance equation (Edinger & Geyer, 1965; Edinger et al., 1974)

 $q_{net} = q_s + q_a + q_b + q_c + q_e$ 

where

 $q_{net}$  = net heat exchange across the water surface

- $q_s$  = shortwave solar radiation
- $q_a$  = longwave atmospheric radiation
- $q_b$  = longwave radiation from water
- $q_e$  = conductive heat transfer
- $q_c$  = evaporative heat transfer

All terms are in units such as  $cal/cm^2 \cdot day$ 





- Simplified heat balance equation
- Edinger et al. (1974) have shown that the net heat input can be represented by

 $q_{net} = K_T (T_e - T)$ 

where

- $K_T = \text{surface heat exchange coefficient} (W/m^2 \circ C)$
- $T_e =$ equilibrium temperature

= temperature that a body of water would reach if all meteorological conditions were constant in time





- Exchange coefficient,  $K_T$
- Edinger et al. (1974) proposed as follows,

$$K_T = 4.5 + 0.05T + \beta f(U_w) + 0.47f(U_w)$$

where

$$f(U_w) = 9.2 + 0.46U_w^2 = \underline{\text{wind function}} (W/\text{m}^2 \cdot \text{mm Hg})$$
$$U_w = \underline{\text{wind speed}} \text{ in m/s (at 7 m above the water surface)}$$
$$\beta = 0.35 + 0.015T_m + 0.0012T_m^2$$
$$T_m = (T + T_d)/2$$

 $T_d = \underline{\text{dew point temperature}}$ 





- Equilibrium temperature,  $T_e$
- The equilibrium temperature can be estimated for by iteration until  $q_{net} = 0$ .
- Alternately, it can be approximated by the <u>empirical relationship</u> as follow,

$$T_e = T_d + \frac{q_s}{K_T}$$

Time rate of change of temperature

$$\frac{dT}{dt} = \frac{q_{net}}{\rho c_p h} = \frac{K(T_e - T)}{\rho c_p h}$$

where

 $\rho$  = water density (g/cm<sup>3</sup>)

 $C_p = \text{specific heat of water} (1 \text{ cal/g}^\circ\text{C})$ 





2D Heat transport equation

$$\frac{\partial hT}{\partial t} + \frac{\partial}{\partial x}(uTh) + \frac{\partial}{\partial y}(vTh) = \nabla \cdot (hD\nabla T) + hS$$
$$S = \frac{dT}{dt} = \frac{q_{net}}{\rho c_p h} = \frac{K_T(T - T_e)}{\rho c_p h}$$

- Assume that u, v, h satisfy the continuity eq.

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{1}{h} \nabla \cdot (h D \nabla T) + \frac{K_T}{\rho c_p} (T_e - T)$$





#### 6.4.1 Eutrophication

- Eutrophication is <u>excessive nutrient</u> (nitrogen and phosphorus) in the water systems and causes high biomass of algae.
- Toxic algae (cyanobacteria) deteriorates water quality, kills aquatic animals and even damages human organs.



Klamath River, CA



Nakdong River, South Korea





- Nitrogen and phosphorus are crucial proxies to diagnose eutrophication level and calculate growth rate of algae (Thomann & Muller, 1987).
- Algae and nutrients are transported by advection and dispersion with complex physicochemical processes (ex. photosynthesis).







#### 6.4.2 Modeling Nitrogen and Phosphorus

- Transport of nitrogen and phosphorus
- Advection and dispersion are the most important mechanisms
- Nutrient transport involves chemical reactions or biological evolutions
- Coupled with algae transport to consider <u>uptake loss by algae</u>
- Also <u>linked with heat transport</u> due to its high influence on nutrient kinetics in the water body





- 1D transport equation of nutrients

$$\frac{\partial C}{\partial t} = -U\frac{\partial C}{\partial x} + K\frac{\partial^2 C}{\partial x^2} \pm S - kC$$

where

- C = concentration of nutrients
- *K* = longitudinal dispersion coefficient
- S =<u>sink and source by external contribution</u>
- k =first-order decay

Let reaction term of nutrients,  $R(C,t) = \pm S - kC$ 

$$\therefore \frac{\partial C}{\partial t} = -U \frac{\partial C}{\partial x} + K \frac{\partial^2 C}{\partial x^2} + R(C, t)$$





- Nitrogen cycle
- Agricultural soil management with synthetic fertilizers, accounts for about 74% of total NO<sub>2</sub> emission in 2013 (USEPA, 2015).
- The nitrogen cycle considers organic nitrogen (Org-N). ammonia nitrogen (NH<sub>4</sub>-N), nitrite nitrogen (NO<sub>2</sub>-N), and nitrate nitrogen (NO<sub>3</sub>-N).
- Nitrification and denitrification are important phases in the nitrogen cycle.

유기성 질소 (Org-N) → 암모니아성 질소 (NH<sub>4</sub>-N), → 아질산성 질소 (NO<sub>2</sub>-N) → 질산성 질소 (NO<sub>3</sub>-N)







#### Source: WATERMAN homepage





36/59

- Reaction terms of nitrogen
- (1) Organic nitrogen (Org-N)
- Source: respiration by algae
- Decay: <u>ammonification from Org-N to ammonia nitrogen</u>, and settling
  - $\therefore R(N_{org}, t)$  = respiration ammonification settling

$$= \alpha_{n,A} k_{r,A} \theta^{(T-20)} A - \left( k_{n,org} \theta^{(T-20)} + \frac{\omega_{n,org}}{h} \right) N_{org}$$

#### where

- $N_{org}$  = conc. of organic nitrogen
- $\alpha_{n,A}$  = nitrogen content in algae
- $k_{r,A}$  = algal respiration rate

- $\theta$  = temperature coefficient
- A = conc. of algae
- $k_{n,org}$  = rate of ammonification
- $\mathcal{O}_{n,org}$  = rate of organic nitrogen settling



#### (2) Ammonia-nitrogen (NH<sub>4</sub>-N)

- Source: ammonification from organic nitrogen to ammonia-nitrogen
- Decay: <u>nitrification (질화) from ammonia-nitrogen to nitrite-nitrogen</u>

 $\therefore R(N_{amm}, t)$  = ammonification – nitrification (a)

$$=k_{n,org}\theta^{(T-20)}N_{org}-k_{n,amm}\theta^{(T-20)}N_{amm}$$

#### where

 $N_{amm}$  = conc. of ammonia-nitrogen  $k_{n,amm}$  = nitrification rate (a) of ammonia-nitrogen into nitrite-nitrogen





#### (3) Nitrite-nitrogen (NO<sub>2</sub>-N)

- Source: nitrification from ammonia-nitrogen to nitrite-nitrogen
- Decay: <u>nitrification from nitrite-nitrogen to nitrate-nitrogen</u>

$$\therefore R(N_{nitri}, t)$$
 = nitrification (a) – nitrification (b)

$$=k_{n,amm}\theta^{(T-20)}N_{amm}-k_{n,nitri}\theta^{(T-20)}N_{nitri}$$

#### where

 $N_{nitri}$  = conc. of nitrite-nitrogen  $k_{n,nitri}$  = nitrification rate (b) of nitrite-nitrogen into nitrate-nitrogen





- (4) Nitrate-nitrogen (NO<sub>3</sub>-N)
- Source: nitrification from nitrite-nitrogen to nitrate-nitrogen
- Sink: uptake by algae
- Decay: denitrification from nitrate-nitrogen to nitrogen gas (N<sub>2</sub>)

 $\therefore R(N_{nitra}, t)$  = nitrification (b) – denitrification – algal uptake

$$=k_{n,nitri}\theta^{(T-20)}N_{nitri}-k_{n,nitra}\theta^{(T-20)}N_{nitra}-\alpha_{n,A}\mu A$$

#### where

- $N_{nitra}$  = conc. of nitrate-nitrogen
- $k_{n,nitra}$  = denitrification rate
- $\mu$  = algal growth rate





- Phosphorus Cycle
- Simpler than the nitrogen cycle with no major gaseous component
- Phosphorus loading contributed by runoff from pastures and croplands with livestock waste and fertilizers (USGS, 2000)
- The phosphorus cycle includes <u>organic phosphorus (Org-P)</u>, and <u>dissolved phosphorus</u> or phosphate phosphorus (PO<sub>4</sub>-P).







- Reaction terms of phosphorus
  (1) organic phosphorus (Org-P)
- Source: respiration by algae

유기물이 미생물에 의해 무기물 로 변화하는 과정

- Decay: <u>mineralization (무기화) to phosphate-phosphorus,</u> settling
  - $\therefore R(P_{org}, t)$  = respiration mineralization settling

$$= \alpha_{p,A} k_{r,A} \theta^{(T-20)} A - \left( k_{p,org} \theta^{(T-20)} + \frac{\omega_{p,org}}{h} \right) P_{org}$$

where

 $P_{org}$  = conc. of organic phosphorus

 $\alpha_{p,A}$  = phosphorus content in algae

 $k_{p,org}$  = mineralization rate

 $\mathcal{O}_{p,org}$  = rate of organic phosphorus settling





#### (2) phosphate-phosphorus (PO<sub>4</sub>-P)

- Source: mineralization, <u>excretion (배설) from algae</u>, and aerobic release from sediment
- Sink: uptake by algae

 $\therefore R(P_{diss}, t)$  = mineralization + excretion + release – uptake

$$=k_{p,org}\theta_{p,org}^{(T-20)}P_{org}+\frac{\gamma_{p,diss}}{h}+\alpha_{p,A}\left(k_{e,A}\theta_{A}^{(T-20)}-\mu\right)A$$

where

- $P_{diss}$  = conc. of phosphate phosphorus
- $\gamma_{p,diss}$  = rate of aerobic release from sediment
- $k_{e,A}$  = algal excretion rate





- cyanobacteria) are common species in the water systems
- The presence of algae in the river depends on the factors including: <u>nutrients, temperature, and sunlight intensity (Hornbeger & Kelly, 1975).</u>
- <u>Coupled with nitrogen, phosphorus and heat transport models to</u> estimate growth rate of algae
- Chlorophyll-a (Chl-a) usually used as a proxy of algal concentration





- Transport of algae
- Similar to the nutrient transport
- Growth rate is added instead of sink-source in the reaction term.
- General partial differential equation of algae for a 1D model:

$$\frac{\partial A}{\partial t} = -U\frac{\partial A}{\partial x} + K\frac{\partial^2 A}{\partial x^2} + \mu A - kA$$

Let reaction term,  $R(A, t) = \mu A - kA$ 

$$:\frac{\partial A}{\partial t} = -U\frac{\partial A}{\partial x} + K\frac{\partial^2 A}{\partial x^2} + R(A, t)$$

where

R(A, t) = reaction term of algae





- Reaction term of algae
- Growth: photosynthesis (or uptake of nitrogen and phosphorus)
- Algal growth is a function of temperature, light, and nutrients (Bowie, 1985).
- Decay: respiration, excretion, grazing by zooplankton, and settling

$$F.R(A, t) = \left[\mu_{\max} \cdot f(T) \cdot f(N) \cdot f(I) - k_{r,A} \theta_A^{(T-20)} - k_{e,A} \theta_A^{(T-20)} - k_{z,A} \theta_A^{(T-20)} - \frac{\omega_A}{h}\right] A$$

#### where

- $\mu_{\max} = \underline{\text{maximum growth rate}}$   $k_z = \underline{\text{grazing rate by zooplankton}}$  $f(T) = \underline{\text{temperature limitation function}}$   $\omega_A = \text{rate of algal settling}$
- f(N) = <u>nutrient limitation function</u>
- f(I) =<u>light limitation function</u>





#### (1) Temperature limitation

- Three major categories of a temperature limiting function are used to calculate the growth rate of algae:
- a) Linear function (Bierman et al., 1980; Canale et al., 1975):

$$f(T) = \begin{cases} \left(\frac{1}{T_{\text{opt}} - T_{\min}}\right) T - \left(\frac{T_{\min}}{T_{\text{opt}} - T_{\min}}\right) &, \text{ for } T \leq T_{\text{opt}} \\ 1 &, \text{ otherwise} \end{cases}$$

where

 $T_{\rm opt}$  = optimal temperature for algal growth

 $T_{\min}$  = minimum temperature for algal growth





- b) <u>Exponential function (Eppley, 1972)</u>:
- Can be applied for mixed population of algae in the water body

 $f(T) = \theta^{(T-T_{ref})}$  where  $T_{ref}$  = reference temperature ( = 20°C)



Source: Canale & Vogel (1974)





c) <u>Skewed normal distribution function</u> (Cerco & Cole, 1995):

$$f(T) = \begin{cases} \exp\left[-KTg_1(T_{opt} - T)^2\right], & \text{if } T \le T_{opt} \\ \exp\left[-KTg_2(T - T_{opt})^2\right], & \text{otherwise} \end{cases}$$

 $KT_{g_1}$  = rate coefficient for left limb

where

 $KTg_2$  = rate coefficient for right limb







#### (2) Nutrient limitation

 <u>Monod model (1945)</u> is frequently used for considering effect of limiting nutrients as substrates on the growth of micro-organisms.

$$f(N) = \frac{S}{K_s + S}$$
 where

S =concentration of the limiting nutrient

 $K_s$  = half-saturation constant of the limiting nutrient







Three approaches used to assess the combined effect of the nutrients:
 a) Multiplicative:

$$f(N) = \frac{N_{nitra}}{K_n + N_{nitra}} \cdot \frac{P_{diss}}{K_p + P_{diss}}$$

b) Limiting nutrient (or Liebig's minimum law):

$$f(N) = \min\left(\frac{N_{nitra}}{K_n + N_{nitra}}, \frac{P_{diss}}{K_p + P_{diss}}\right)$$
 wh

c) Harmonic mean:

 $K_n$  = half-saturation rate of nitrogen

 $K_p$  = half-saturation rate of phosphorus

$$f(N) = \frac{\frac{N_{nitra}}{K_n + N_{nitra}} + \frac{P_{diss}}{K_p + P_{diss}}}{2}$$





#### (3) Light limitation

- Three formulas used to estimate the light effect on algal growth rate:
- a) <u>Michaelis-Menten (saturation) model</u>:

$$f(I) = \frac{I}{K_{si} + I}$$

b) <u>Smith (hyperbolic saturation) model (1936)</u>:

$$f(I) = \frac{I}{\sqrt{I^2 + {I_k}^2}}$$

where

 $K_{si}$  = half-saturation constant of sunlight intensity

 $I_k$  = Smith's constant













*53/59* 

## 6.5 Modeling Bacteria and Pathogens

#### 6.5.1 Bacteria and Pathogens

- Cause waterborne diseases (ex. gastroenteritis, amoebasis, cholera, etc.)
- The modes of transmission of pathogens are through drinking water, primary & secondary contact recreation, etc.
- Examples of <u>communicable disease indicators and pathogens</u>

| Туре               | Organisms                                                                                            |
|--------------------|------------------------------------------------------------------------------------------------------|
| Indicator bacteria | Total Coliform, Fecal Coliform, E. Coli, Fecal streptococci,<br>Enterococci, etc.                    |
| Pathogens          | Vibrio cholera, Salmonella species, Shigella species,<br>Giardia lambia, Entamoeba histolytica, etc. |





## 6.5 Modeling Bacteria and Pathogens

#### 6.5.2 Kinetics of Bacteria and Pathogens

- The principal sources of organisms:
- (a) point sources from domestic, municipal, and some industrial sources
- (b) combined sewer overflows
- (c) runoff from urban and suburban land

(d) municipal waste sludge disposed of on land or in water bodies



Source: Buchanan et al. (2010)





#### - Decay rate of bacteria

$$K_B = K_{B1} + K_{BI} + K_{Bs} - K_a$$

where,  $K_{B1}$  = basic <u>death rate</u> as a function of temperature, salinity, predation  $K_{BI} = \underline{\text{death rate due to sunlight}}$  $K_{Bs} = after growth rate, K_a = net loss due to settling (resuspension)$ 

- For rivers and streams, the downstream distribution of bacteria is

 $N = N_0 \exp(-K_B t^*)$ 

where,  $N_0$  = the concentration at the outfall after mixing [num./L<sup>3</sup>],  $K_B$  = the overall net first-order decay rate [1/day],  $t^* = x/U$ 





56/59

#### 6.6.1 Kinetics of Toxic Substances

- Loss of the chemical due to biodegradation, volatilization, photolysis, and other chemical and bio-chemical reactions
- Sorption and desorption between dissolved and particulate forms
- Settling and resuspension mechanisms of particulates







2D transport model with only loss of the chemical

$$\frac{\partial(hC)}{\partial t} + \frac{\partial}{\partial x}(uCh) + \frac{\partial}{\partial y}(vCh) = \nabla \cdot (hD\nabla C) + hS$$

where S = sink/source term

Assume first-order decay

- decay rate is proportional to the amount of material present

$$\frac{dC}{dt} = S = -kC \qquad \Longrightarrow \qquad \frac{\partial(hC)}{\partial t} + \frac{\partial}{\partial x}(uCh) + \frac{\partial}{\partial y}(vCh) = \nabla \cdot (hD\nabla C) - khC$$

where C = mass/volume;  $S = \text{mass/(volume \cdot time)}$ ; k = 1/time = decay rate





58/59

## 6.7 Modeling Oil Transport

- Mechanism of oil transport
- Photolysis (광분해)
- Evaporation
- Advection
- Spreading
- Dispersion
- Sinking
- i) Advection
- Advection recognized as a 3-D process with key mechanisms
- Moves horizontally in the water under forcing from wind, wave and current

Transports vertically in the water column in the form of droplets



## 6.7 Modeling Oil Transport







60/59

#### ii) Spreading

- Oil film thickness determines the oil persistence on the water surface
- <u>Oil slick area (film thickness)</u> used in the computation of evaporation determines changes in oil composition and properties with time
- For instantaneous spills, Fay-type spreading model (Fay, 1971)
   provides adequate predictions of the film thickness

$$A \sim \left(\frac{\sigma^2 V^6}{\rho^2 v D^3 s^6}\right)^{1/8}$$

where  $\sigma = \underline{spreading \ coefficient}$  or interfacial tension,  $V = volume \ of \ oil \ in$ axisymmetric spread,  $\rho = density \ of \ water$ ,  $V = kinematic \ viscosity \ of \ water$ ,  $D = diffusivity \ of \ the \ surfactants \ in \ water$ , S = solubility





iii) Evaporation

- Estimates of <u>evaporative losses</u> are required to assess the spill persistence and the changes in oil properties with time.
- <u>25 ~ 40% of the total mass can be lost by evaporation</u>, depending on the environmental conditions and the type of oil (Azevedo et al., 2014).
- Evaporative exposure formulation (Stiver & Mackay, 1984)

$$\frac{dF_{v}}{dt} = \frac{K_{e}A}{V_{0}} \exp\left[6.3 - \frac{10.3}{T} \left(T_{0} + T_{G}F_{v}\right)\right]$$

where  $F_v$  = fraction evaporated, t = time,  $K_e = 2.0 \times 10^{-3} \times U_w^{0.78}$ ,  $U_w = \underline{\text{wind}}$ <u>velocity</u>, A = film thickness, T = environmental temperature (K),  $T_0$  and  $T_G$  = oil-dependent parameters from the fractional distillation data





#### iv) Natural dispersion

- Computation of natural dispersion required for estimate of the spill lifetime
- The rate of natural dispersion depends on environmental parameters and oil parameters (oil film thickness, density, surface tension and viscosity)
- Delvigne & Sweeny (1988) related the number of droplets to the droplet size with a common power law relationship.

$$Q_{d \le D} = aH^{1.4}D^{1.7}$$

where  $Q_{d \le D}$  = entrained oil mass per unit area included in droplets up to a certain diameter D,  $a = \underline{\text{dispersion coefficient}}$  which is related to the oil type in terms of the oil viscosity, H = breaking wave height



