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Objectives
- Think about the definition of model

- Introduce procedure of modeling

- Study various types of numerical schemes
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9.1 Modeling Mixing in Rivers and Estuaries

9.1.1 Introduction
= Definition of Model
 What is a model?
- a deliberate misrepresentation of reality

- simplification (approximation) of real system

 Reason: convenience
* Purpose:
- gain understanding
- predict an outcome

e Constraints:

- degree of accuracy depends on degree of simplification
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9.1 Modeling Mixing in Rivers and Estuaries
————————————————————————————

* River model

Describe the real system of river dynamics using physical or mathematical approach

e Purpose

Understanding and prediction of river dynamics
Real System

}

Conceptual Model - simplified version of real system
| (set of assumption)

! }

P02 @ | .
Physical Model Mathematical Model - G.E. (PDE)
?‘ 0?\ O @iﬂ D — > gﬁ::?:tlualng Y | B.C.&I.C.

\‘\‘ ;{\Q =
N 9 & 7 N
) 2 ) ' & | : . . .
; 2 | Systematic |\ W, Analytical Solution Numerical Solution -- computer model
? ? mwemg -- no feasible because of irregular

domain boundaries, heterogeneityl l l l

=2 @c e @)/7 \ of domain, sink/sources
=, Computerized mode|
FDM FEM FVM Special Techniques

C umpulenzahle

conceptual model (BEM, ELM, FPM),
stochastic model
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9.1 Modeling Mixing in Rivers and Estuaries
————————————————————————————

e Uncertainty

AR

Most models are intermediate forms between FOLLITION

OOOOOOO

physical-based models and empirical models.

ECONOMIC

DYNAMICE

e Parameter -
Model have its own parameters to represent their Uncertainties in Model

characteristics. e

BOX BOX

o Calibration
Comparison of model output with observations to tune the model parameters

- The calibrated models can be called empirical models

« Validation
Comparison of output from the calibrated models with observations to evaluate

validity of the calibrated models.
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9. 1.2 Selection of Mode/

Code

Name

Description

1A

One-dimensional

tidally averaged

A numerical solution of 1-D tidally averaged dispersion equation
[Eq.8.38]

» steady state model: coefficients are constant in time.

» unsteady model: flow parameters and dispersion coefficient

vary between tidal cycles.

1T

One-dimensional

tidally varying

A numerical solution of Eq. (8.46)
- Tidal evaluation, velocity and dispersion coefficient vary during tidal

cycle.
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9.1 Modeling Mixing in Rivers and Estuaries

Branching 1-D _ _
1TB _ A network of 1T models connected at junctions.
tidally averaged

A numerical solution of 2-D tidally averaged dispersion equation.
2VA | Two-dimensional
* 2VA: horizontally averaged model — reservoir, lake
2HA tidally averaged _ _
« 2HA: vertically averaged model — river, estuary

2VT | Two-dimensional _ _ _ o _ _
_ _ A numerical solution of 2-D tidally varying dispersion equation
2HT tidally varying

Three-dimensional _ _ _ _ _ _
3A _ A numerical solution of 3-D tidally averaged dispersion equation
tidally averaged
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Three-dimensional
3T
tidally varying
A small-scale physical replica of the prototype geometry with
P Physical model
provisions of generating tidal and river flow
Hybrid numerical | A combination of a physical and a numerical model, using one
NP
physical model to generate input information for the other
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Mixing Appropriate _
_ Description
mechanism Model
2HT g . . - -
_ Well verified for simulation of trapping mechanism
physical model

Trapping
1TB Branches represent traps.
2VA In case transverse gravitational circulation is

_ _ 2VT not important.
Density-driven
i an If density-driven currents are important, the equations
- determining the flow and the salinity distribution

are coupled.
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9.1 Modeling Mixing in Rivers and Estuaries

2HT
Tidal pumping _ Accuracy of 2HT may be difficult to establish.
physical model
Shear flow 2HT
dispersion 2VT
_ 2HT
Wind effects
3T
Rotational _ _
2HT Easily modeled in 2HT models.
effects
Catastrophic/ 1A _ _ _
_ Long term simulation for a period of a year of more
seasonal changes| physical model
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9.1 Modeling Mixing in Rivers and Estuaries

9. 1.3 Modeling Procedure

 Model parameters

- Model parameters exist only in context of model.

- Model coefficients

 Model calibration

- Parameter tuning to fit observed data to predicted data

- To estimate parameters of model from available information

- Model becomes less mechanistic (more empirical)

- Parameter identification problem
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9.1 Modeling Mixing in Rivers and Estuaries

 Procedure of Calibration and Verification

Input /; /5
Output 0, 0,
Parameter A P

i) Calibration

~

l, — Model(?) — O, FitO, toO,
Find P (set of values of parameters(coefficients))
ii) Verification

l, — Model(P — 62 Predict (52 with calibrated parameter P

Compare O, to O, toseeif O, =0,
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9.1 Modeling Mixing in Rivers and Estuaries

(unknown) Outputs

Measured — Real System - Measured
Inputs [ / l

[Comparison] END

Outputs

Measured Combuted '
Inputs ‘[ Model }- P

Initial
Parameter
Estimates

Parameter
Corrector

e Best fit

~ techniques for determining the "best", or "optimal" values of the model coefficients

i.e., values that make the predicted values and the measured ones sufficiently close

to each other
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9.1 Modeling Mixing in Rivers and Estuaries

9. 1.4 Numerical Solutions

* Analytical Solution

- A closed-form algebraic expression for temporal and spatial distribution of the

constituent

- easier to use than a numerical model

e Numerical Solution

- The complex water body geometry and flow fields and nonlinearities of the source

and sink terms make it impossible to obtain analytical solutions to the differential

equation

- solve using numerical techniques
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9.1 Modeling Mixing in Rivers and Estuaries

* Numerical techniques

- simultaneous solution of a series of mass balances on a number of small fluid

elements

- matrix-inversion methods

« Types of numerical techniques
1) FDM (Finite Difference Method)
2) FEM (Finite Element Method)
3) FVM (Finite Volume Method)
4) FPM (Finite Particle Method)
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9.1 Modeling Mixing in Rivers and Estuaries

 Errors in numerical solutions

Conceptual model

< Conceptual errors
Physical Mathematical = G.E.+B.C.’s
model model

Parameter errors
& (most frequent source)

Truncation & Roundoff

<
s

W N errors
lytwal Numerical
Solution

Solution (=numerical model)

FDM FEM FVM Special
Techniques

* Truncation error: discretization error

» Round-off error: error occurred in the arithmetic operations needed to solve FDE
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9.2 Finite Difference Model
9.2. 1 Explicit Finite-Difference Methods

* Procedure of finite difference scheme

a. Break xinto finite segments of Axin length
b. Subscript all variables and constants, C;,U;, A, E;...etc.
such that 1 subscript indicates the value of variable or parameter at point i

c. Apply Taylor series expansions to approximate

the differentials

C
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9.2 Finite Difference Model

» Taylor Series expansions

2 3
C..,=C, + AX oC. Ax 0°C. Ax 0°C, © OAY® (a)
ax 2 Ox° 3' ox°

2 3
C.,=C, - Ax oC. Ax 0°C. Ax 0°C, ~ OAY! (b)
ax 2 ox? 31 ox°

oC, _oC|
oX  OX|,_
AX? = (AX)

OAX* = order of (Ax") and smaller
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9.2 Finite Difference Model

1) Forward-difference < (a)

oC, _C..—C, AX®C, AC&C,
OX Ax 2 oxt 31 ox°

~
OAx ~ first-order error

12

— OAX® (c)

2) Backward-difference (Upwind difference) <« (b)

oC, _C,=Cy;  MXO’C,_AX &C
OX Ax 2 ox* 3l ox

OXX 6

12

+OAX® (d)




9.2 Finite Difference Model

3) Central-difference
Subtract (b) from (a)

3
L a2 E‘
37 o

OAx? ~ 2nd-order error

aCi Ci+1 — Ci—l

OX 2AX

1

4) Central-difference for 2nd derivative
Add (a) and (b)

12

—0O(AX?)

o°C. _C,.,—2C +C,,
Ox? AX®

21/147
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9.2 Finite Difference Model

9.2.2 Model Assembling for Explicit Scheme

1D advection-dispersion equation for conservative pollutant is
oC +U6C _ 1( 0 EAaCj

ot ox Alax  ox

AEU = f (x)

1) Formulation Ex-a
- Explicit solution Ex-a:

@ Forward-difference for time derivative — explicit method

®@ Forward-difference for 1st derivative in x
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9.2 Finite Difference Model

6C Cin+1 _ Cin . .

pe ~ AL Superscript n - time step
) ) Subscript / - distance step

aC C|+l Ci

ox At

1 ( 0 a0 j EACL-C)-E.ALC -ClL) « Combination of FD and BD
Alox  ox AAX?

Substituting & rearranging

i+1 |+1

e - Ay e, ey B ep, oy — B At
| | A

Rearranging further

o |_ (1, uAt_EAt E AL At E At uAt E A At @
! Ax A A AX AX? A AT
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9.2 Finite Difference Model

Let
u. At
——— =4, -> Courant No. - stability
AX
E. At . . .
—=D, -> Peclet No. — numerical dispersion
AX
Ei—lAi—l At d
A Ax*
Then

CM=dC +(1+a —-b —d,)C"+(b -a)C (1)

1+1




9.2 Finite Difference Model

}ji/+(l+/a/i_k{i_ﬂ/i)+(k{i_/ai/):l

.. C™ is weighted average of C",,C",andC'

1+1

Solution

Boundary conditions: @ C knownforall x@t=0
@ C knownforall t@x=0

Procedure:

@ UseEq. (1)toget C;,C;, C; etc.

@ Thenget CZ, CZ, C? onthe basis of C/, C;, etc.

® Continue as far in time as desired

25/147
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9.2 Finite Difference Model

FANS (@

H ¢ i1 GUBC

[1DBC
n—14¢ i
2 ¢ i
1 ¢ E? il

& e A ee 2///)\‘\\\£ ud £ .
1 2 3 =1 i i+l - m m+l —ilx)
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9.2 Finite Difference Model

2) Formulation Ex-b

@ Forward difference for time derivative — explicit scheme

@ Backward difference for spatial derivative
aC ~ Cin+l . Cin

ot At

oC N C'-C,

OX AX
i(i EA aC j ~ Ei+1A+1(Cirll _ Cin) _ Ei A (Cin - Cin_l)
Alox o AAX?

Let's include the source/sink term in this time

S, = (C)




9.2 Finite Difference Model

Substituting and rearranging

Let

u. At EA,, At
C_n+1:C_n_|_ C_n_c_n + i’ i+l C-n _C_n
i i AX ( i |—1) Ai sz( i+1 |)
EAt, ., o 0
- = (CM-Cl)+ f(Cl)At
[y uat EA, At2 ~ EiAzt c +(uiAt .\ EiAztj cr.
AX A AX®  AX AX  AX
E A
f S8 A on L onyat
AX® A
Ei+1A1+1 At
>~ d
A AX

C"™=(a +b)C", +d

C" 4

171+l

(1—a —b, —d,)C" + f (C")At

28/147




9.2 Finite Difference Model

Assume first-order decay

S=f(C)=—kC

- f(C")At = -k ALC'

~CM =(a, +)C", + (1-a —b —d Q}

t)C'+d.C’

i i+l

Note that now

>.Coeffs #1

29/147
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9.2 Finite Difference Model

3) Formulation Ex-cd

Forward difference for time derivative— explicit method

Central difference for spatial derivatives, 15t and 2"d derivatives

aC N Cin+1 . Cin

ot At
oC ~ Cirll — Cin—l
OX 2 AX

8°C _C!,—2C"+C!,

i+1

OX? AX?




9.2 Finite Difference Model

Substitute these into 1-D transport equation
oc oC 0°C
—+U—=E—;
ot X OX
c-c'  Ch -C C',—-2C"+C,
+U =E

i+1 i+1

At 2AX AX®

UAL

i ( EAthCin +(EA2’[ _ UA jCi'll | ( EAt
AX AX 2AX AX?

Cin+1 = (% + bjCinl + (1— Zb)C (b - Ej Cllll

UAL
a=——
AX

EAt

b=

AX?

2Ax

jc;u

31/147
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9.2 Finite Difference Model

9.2.3 Error Analysis
(1) Source of Errors
Mathematical Model PDE C
! | « Truncation error
Numerical Model FDE C
| < Roundoff error

Solutionto FDE C

e Errors in machine computations

Roundoff error: stem from a finite number of diqgits in a computer word

or from initial data

Truncation error: due to finite approximations of limiting processes
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9.2 Finite Difference Model

= Roundoff Error

(i) Decimal-binary conversion error

~ computer converts decimal number to its binary equivalent

~ conversion error may be introduced because of finite word length of computer

particularly if there is not exact binary equivalent

(i) Non decimal-binary conversion error
~ if calculation requires more digits than available digits through a machine

(decimal computer)

[Examples]

(i) 0.625:@1 +(2

1 3 10 16 17 21
0.626:(1) J{EJ +(£j +(1j +(1) +(Ej +...=.101000 (infinite series)
2 2 2 2 2 2

| —

3
j = .101
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9.2 Finite Difference Model

If binary machine has 20 bits available binary-decimal reconversion to a decimal

equivalent with 8-digit accuracy
- [0.62599945 without rounding
0.62600040 with rounding

(ii) If decimal computer of capacity of 8 significant digits

0.33333333 0.33333333
+ 0.33333333 +0.33333333
add 3,000 times +0.33333333
Expected value = 999.99999 +0.33333333
Rounded-off value= 999.99091 /1 33333332 » 1.3333333
Roundoff error = 0.00908 True value Truncated to 8digit

Error = 0.00000002
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9.2 Finite Difference Model

(2) Lax Equivalence Theorem

Consistency + Stability -~ Convergence

« Convergence
The numerical scheme is convergent if for any fixed time T = nAt

and fixed location X = iAx,

C(X,T)>C(X,T) (or ‘C(X,T)—E(X,T)‘=O) asAX —0and At >0

in which C(X ,T)= computed value at the fixed point X, T of the FDE
C(X,T)= exact solution to the PDE
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9.2 Finite Difference Model

» Consistency

The FDE is consistent with the PDE if the local truncation error goes to zero as
AX —> 0 and At - 0.

. Stability

The numerical scheme is stable if &' remains bounded as n— « for fixed At

( T — o0 or as computation proceeds)

in which ¢’ = roundoff errors
=C(x,t)-C(x,t)

C(x,t) = computed value of FDE by computer
C(X,t) = exact solution to the FDE
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9.2 Finite Difference Model

(3) Analysis of Stability
Von Neumann Method
Matrix Method

« Explicit solutions
~ accurate & easy

~ may be unstable - need a stability criterion

1) Formulation Ex-a
Let C'=T"+¢’ (1)
C' = computed value of FDE by computer

Tin = true (exact) value to FDE at the x and fassociated with /and n

n .
€ = error at that point
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9.2 Finite Difference Model

Substitute this into Formulation a)
e =(1+a —b—d)e +(b—a)e

|+1+d|e|1 @
-T"™+(1+a -b-a)T"+(b-a)T, +dT" @) (2)

i+1

— error for newly-calculated concentration depends not only on true concentration

(exact solution to FDE) ( 7-terms) but also on other errors (e-terms)

~ Part @ may not be zero because of truncated terms in formulating FDE out of PDE

PDE —» FDE — Solution

I

Truncation error roundoff error

T-terms e-terms
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But, we assume truncation error is zero, and worry only about the eterms or

propagation (magnification) of roundoff errors.

To insure stability (to prevent magnification of errors)

] 3)

n

e

i+1

n+1 n

e ' €

| 1

For Formulation a
et | <{1+a —b —d|+|b —a|+|d|}|e]

1+a —b —d|+[b—a|+]d[<1 (4)

Absolute values of the coefficients should add to less than one.

Now, since @;,b,d; 20 there are 4 possibilities.
1) if 1+a -b-d >0& b —-a>0

then 1+/a(i_}3i/_}ji/+}2i/_/ai/+ﬂ/i:1 <1
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9.2 Finite Difference Model

which is satisfied for all values of and which meet these conditions.

i) if 1+a -b—-d >0& b—-a <0
1+a,—b — df —b +a +4d <1
2a. < 2D,

a <b

i) if 1+a —-b-d <0 & b —-a >0
—1-a +b+d +b —a +d <1
2d. +2b. —2a, <2
d.+b —a <1
if d.=b
then 2b <1+a




9.2 Finite Difference Model

iv) if 1+a -b-d <0 & b -a<0
-1-a+b+d -b+a+d <1
2d. <2
d<1 or b<l1lif b=d

Combine these conditions

0.57

41/147




9.2 Finite Difference Model

e Restrictions on AX and At

i)a<b
uAt < EAZt —> AxsE

AX  AX u
li)2b<l+a
ZEAZt£1+u—At —> 122E2_U

AX AX At AX AX

1
<
— At < 5E

(1)

(2)

42/147




9.2 Finite Difference Model

Substitute (1) into (2)

At < — —

up E

IrﬂC

Al < (3)
AxgE

u
At <£2

u

1
<

MEZE o

AX®  AX

43/147




9.2 Finite Difference Model

2) Formulation Ex-b

Consider formulation w/o decay term
1-a —b —d]|+|a +b]+|d <1

There are only 2 cases to be considered

i) if 1-a —b —d >0

-4 - -+ &+, + o <1
1<1 \
Satisfied for any values of a, b,and d. 1.01

i) if 1-a —b —d. <0
—1+a +b +d. +a +b +d <1
2(a,+b +d,)<2

0.57

44/147

a +b +d <1 if b=d
a, +2b <1 a, <1-2b

0.b

1.0
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9.2 Finite Difference Model

a+2b<1

A EA
d t+2 z.tgl
AX AX

1
u 2E

AX  AX®

At <




9.2 Finite Difference Model

3) Formulation Ex-cd

[1-2b| +12

I PR
2

)if 1-2b>0 & b——>0
-2+ K- /g/
1<1

i)if 1-2b>0 & b—%<0

a a
1-2b+—+p - +—=<1
2 B-p 2

a—2b<0
a<?2b

46/147




9.2 Finite Difference Model
i) if 1-2b<0 & b-2>0
2

120+ 24p4b-2<1
2 2

<l
2
. a
v)if 1-2b<0 & b—§<0
":I;'
o 1 & a _ A
1+ +E+M—M+§_1 st
2b+a<?
h+2<1 |
2

0.5

1.0

47/147
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9.2 Finite Difference Model

a<?2b
u_AtSZEAt
AX AX®
AXSZE
u
h<t
2
EAt 1
<=
AX? 2
2
At <X
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9.2 Finite Difference Model
9.2.4 Implicit Finite-Difference Method's

1) Formulation /m-c

Backward difference for %—(t:

Forward difference for 2—C
X
6(: N Cin . Cin—l
ot At
oC - Cin+1 — Cin
OX AX
10 oC 1 0 0 n n
——(EA—) = {EiAi (Ci+l - Ci )— Ei—1Aﬁ—1(Ci N Ci—l)}

Aox ox AAX




a0/147

9.2 Finite Difference Model
=

Substituting and rearranging yields

n e U. At EAt Ei— AL n n

Ci _Ci 1___(C|+1_C ) |+1 )_ﬁ(cl _Ci—l)
(1- U, At N EiAzt E_ A, At)C” (u.At B EiAzt)C.+1

AX  AX AAX® AX  AX
=i 1Aﬁ At Cn Cin—l

A AX?
. : E At
let ai _ u|At bi _ E|A2t di — |—1A1—12
AX AX AAX

(l-a +b +d,)C"+(a —b)C", —d.C", =C™*

i+1

and C',

— C" = weighted average of C',C

i+1?
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9.2 Finite Difference Model
=

We need |.C., UBC, and DBC to solve system of algebraic equation
Let L =-d; M, =1-a+b+d, U =a-b
Then LC', +M.C'+U.C" = Ci”‘l

171+l

-0 (i=0)

. . X
(i) If C is known @(X o (i=m+1) C(0),C(m+1)

— Dirichlet (The 1st kind) type B.C.

1=1: L1CO“ + |\/|1Cln +U1C2n =C1n_1 %IC
i | UBC
— M,C'+U.C]) = Cln_1 -LC; . L DEC

Known

i=2:LC'+M,C)+U,C] =C)"
i=m: L,C,,+M Cr+U C" =CI*

m " m-1 m " m+1

> LC',+M C'=C'"-uU_C"

m " m-1 m m+1j

1 2 3 e -l i itlem m+l =i

=
Known

,J._r.




o2/147

9.2 Finite Difference Model
=

_ - [~n-1 no]
1 U, 0 . : 0 ( cr v |G n_ll—lco
Mg_ U, 0 0 cr C,
by MS,_,. U, 0 .. 0 i crt

F‘-_S’

o O
Il

Yoy : | ni

L R m m+1

| [

ey L
1 2 3 f
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9.2 Finite Difference Model
=

— All concentrations for one value of n are solved for simultaneously, and the

solution marches in time.

— Implicit solution

* Tridiagonal matrix - Gaussian elimination

Thomas Algorithm (Stone and Brian, 1963)
[Ref] Stone, H.L., and Brian, P.L.T., “Numerical Solutions of Convective Transport
Problems,” AIChE. Jour. (1963) Vol.9, No.5, pp. 681-688.

(i) If C known @ x=0(i=0) — Dirichlet

And (g—g known @ x=o0(i=m+1) -~ Neumann (2nd kind)
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9.2 Finite Difference Model
=

oC

n

Suppose no flux @ boundary -~ —| =0 - Reflecting boundary
n 0 0 m+1

% ~ Zmil -Gy -0 Backward difference

OX |11 AX

Cr:+l = Cr:

i=m:LC" +M C'+U C" =C'

S LC +(M_+U_)C'=C*

M 1 Ul ..... O - Cl n _Cln—l . Llcg -
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9.2 Finite Difference Model

[Re] Boundary Conditions

Boundary Conditions

» Dirichlet (1st type): C(X,Y)= fl(X,Y) on T,

 Neumann (2nd type): Z—C: f,(X,y) on T,
n
oc = derivative normal to a boundary = o€ or €«
on OX oy
oC

» Mixed (3rd type): a8_+bC: f,(x,y) on T,
n
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9.2 Finite Difference Model

2) Formulation /m-d
~ most commonly used formulation

oC
Backward difference for 5t

Backward difference for oc

OX

oc _Cr-cr
ot At

1,0 _,0C 1

K(ﬁ = OX )= AAX® |:Ei+1A+1(CirJ]rl -C)-EA(C - Cin—l):l
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9.2 Finite Difference Model

Substituting and rearranging yields

(L+a +b; +d;)C - (a +b)C], —d,Cl, =C™

171+l

where d. E., A, At
| A AX
ot L =—(a+h)
M, =0+a +b +d,)

U. =-d.

then | LC!, + M,C +U,C]

171+l

— C-n_l
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9.2 Finite Difference Model

3) Formulation /m-cd

Backward difference for %

Central difference for oc

OX

oc _C'-c
ot At
oC ~ Cirll - Cin—l

OX 2AX

Final discretized equation is given as

LC" +M.C"+U,C", =C™

i i~i+l

L=——"-b M, =1+20 U, =—-b 9 =
2 2
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9.2 Finite Difference Model

9.2.5 Numerical Dispersion for Finite-Difference Methods

= Numerical Dispersion
~ Truncation error of Taylor's series in converting PDE of diffusion equation into
FDE

~ artificial viscosity, numerical dissipation

~ smearing of concentration fronts due to excessive damping

<Ref>

Lantz, R.B., "Quantitative evaluation of numerical diffusion (Truncation error)," Soc.
Pet. Engr. J., pp.315-320, Sept., 1971.




60/147

9.2 Finite Difference Model

= Numerical dispersion of Ex-cd

From Taylor series expansion, we get
0AX?

n n 2 A3
oC G, -G N AX® 0 (:;, L OAC® (a) central
OX 2AX 3! OX

oC _CM-C' AtdC

ot At 2 ot
By the way, think about 1-D transport equation w/o dispersion term (pure advection)

~0At’ (b) forward

& (1)
ot OX
differentiate w.r.t x
0°C B 0°C

oxot  ox (2)




9.2 Finite Difference Model

Differentiate (1) w.r.t. ¢
0°C 0°C

ot> otox
2) 0°C  0°C

Xt ox
3 O°C__1d%C
otox  u ot?

0°C 10°C

ox:  u ot
_°C  ,0C

u
ot? OX?

(3)

(4)
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9.2 Finite Difference Model

Formulate (1) with (a) and (b)

C-C | Ato°C _u(c.“ -C/,

| — i+1
At 2 ot? 2 AX

) + O(At?, AX®) (5)

Substitute (4) into (5)
Cin+1 . Cin _ ( C-n

+ O(At?, AX?)

i+1
At

—C/, At ,0°C
+ u
2AX

2 ox*

numerical dispersion term

o

Let £,= numerical dispersion coefficient

At A
E =—U’ -1V (a:u—m:Courant No)
2 AX
oC oC 0°C 2 2
—+UuU—=E + O(At°, AX
ot OX NG ( ) (6)




9.2 Finite Difference Model

= Numerical dispersion of /m-c

OC At o°C

C'*=C"-A —O(At®)
at 2 ot
n_conl 2
C'-C, :8C_At8(23+O(At2)
At ot 2 ot
2
e e+ axZC AT TC L
6x 2 ox°
Cl,-Cl _oC , Ax 0°C,

i+ +O(AX?)

AX 8x 2 Ox?

(c) backward

(d) forward
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9.2 Finite Difference Model

Substituting (c) and (d) into (1)
oC At o°C oC Axo°C

— =-u —
ot 2 ot oXx 2 ox°

}+O(At2 + AX?) (7)

Substituting (4) into (7) yields

oA _x

“~
PDE

9 5 2

2 2 OX

Vo
Numerical dispersion (TE1)

2
oC  oC {qu Atuz}a 4 O(AE + AXY)

.V
Truncation error 2

: : . : .. UAX At A
Define numerical dispersion coefficient as E = (1- 4 ) = u2x (1-a)

"2 AX

Then 50 sc _ 6%
+u—=E

5 U e + O(At* + AX?)
X X

If we include real dispersion term

oC oC 0°C

_ E+E |
ot ox (E+E) 52 (8)

%/_/
E. = Computed dispersion
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9.2 Finite Difference Model

= How to remove E,

(i) Choose and At and AX suchthat E, =0

E Y4 _a-0
Z

q_ UAL (9)
AX

However, stability criterion for Formulation Ex-bis

UAL N 2E At -

<1
AX  AX? (10)
If we make uat =1 then (10) becomes
AX
EAt
% <0 (11)

Therefore we have to choose At and AX satisfying both (9) & (11) — impossible
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9.2 Finite Difference Model

<Example> For Ex-b

1-1
a———=—
2 2
ST
2 2 2

SC forEx—b:£+ 2(12)E=1+E§1
2 (2) 2 2
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9.2 Finite Difference Model

(ii) Dispersion correction technique
- make E.=E
For Formulation Ex-b, subtract E, ~ from E_

S E/=E+E,—E =E

(i) make Ax and At small

- make £, small




9.2 Finite Difference Model

o Summary

Formulation Numerical dispersion, E,
Ex—a _u_?x(“ a)
Ex—b UAX 1 _a)
2
2
Ex—cd YAt
2
Im—c UAX 1 _a)
2
Im—d UAX 14 a)

66/147

measure to ND

Add (-E.)

Subtract E, (Be careful

whenE < E )

Subtract E_

Make a=1

Subtract E,

Subtract E
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9.2 Finite Difference Model

9.2.6 Lagrangian Formulations

= Lagrangian approach

~ Observer is traveling at the same speed as the parcel of water under observation

» Two-step explicit method (Bella & Dobbins, 1968)
— Two processes of the advection-diffusion equation are assumed to occur

sequentially rather than simultaneously as in the prototype

1) 1st step (advection process)

~ to translate the pollutant downstream for one-time step in Eulerian frame

Cin — Cin+1
cr=cp
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9.2 Finite Difference Model

2) 2nd step (dispersion process)

~ to calculate new values on the 1 row using only the dispersion in Lagrangian

frame
C-n+1 . C-n E
' L= C", —-2C"+C'
At sz ( i-1 i i+1
Cin+1 - Cin + EAI (Cin—l - 2Cin + Cin+1

AX®
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9.2 Finite Difference Model

1) Formulation La-e

~ explicit
8C+uaC:£(6EA6C)+S
ot ox A oOx  OX

Forward difference formula at the A1 grid point for %

oC - Cin:l1 B Cin+1
ot At
oC
Forward difference formula for X
oC ~ Cin+1 — Cin
ox  AX

Eulerian formulation for second derivative

)= Aﬁixz [EiA (Cirll -G/ ) - Ei—lAi—l(Cin - Cin_l)]

10 gaC
AOx X
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9.2 Finite Difference Model

Substituting this into Governing Eq. yields

™ . UAt, N EAt, . E_ALAt L, A
C|+1 C|+1 _E(Cwl Ci ) AX (C|+1 o C ) AAXZ (Ci Ci—l) + SiAt
Rearranging further gives
Crt o (1- uAt E, At)CI+1 (uiAt B EiAzt B Ei_lA_let)Ci E. A At C", +S At
AX  AX AX  AX A AX A AX?
let  a - U;At b :Ei_Azt d. = E._ A_At
AX AX A AX’

Then C'''=(1-a +b)C", +(a —b —d)C"+d.C", +SAt

n+l

- We need 2 UBC and IC, need no DBC n & ® »

i-1 I i+1
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9.2 Finite Difference Model
— A

* Numerical Dispersion of Formulation La-e

Pure Advection Problem
ClTil Clrl-l _ Clr-]l-l C
At AX

Taylor Series expansion in t direction
2
crl_cn L ac At 0 C

+O(At
i+1 |+1 81: ( )
n+1 n 2
L, Ci-cly 8C+At8C +O(AD)
At ot 2 ot

Taylor Series expansion in x direction

2 A2

C' =C"+Ax oC A9 E +O(AX®)
OX 2 OX
L Cl-Cl_C  axa’C

+O(AX?)

AX ax 2 Ox°
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9.2 Finite Difference Model

Substitute @ & ® into @

2 2
oC AtaC +O(A?) = —u 6C+Ax8C +O(AX)
at ox 2 ox°
2 2
C__ L _AMIC_ MXIC reyar)
ot ox 2 8t 2 OX
2azc
u¥ 2
.'.gz—uﬁ—EA X(L+ a) C+O(Ax2+At2)
ot ox 2
E,
.'.Enz—%(l a)

- Stability Criteria

l-a +b >0 & a-b —-d. >0

v AX? %E
At < X AX > ——
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9.2 Finite Difference Model

2) Formulation La-f

~ implicit method

oC
Backward difference for gt  at the Al grid point

Backward difference for 88_C
X

oC ~ Cin—l — Cin—_ll
ot At

oC _ C'-C,
oX  AX

(ai +d, _1)Cin—1 + (_ai —b —d, )Cin +B G+ SAt = Cin_ll

171+l

« Numerical Dispersion n+l__g

UAX

En=7(1+a) ~ Im—d I_]. f I+].
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9.2 Finite Difference Model

9.2.7 Crank-Nicholson Scheme
1) Formulation CN-b

oC

~ Upwind (Backward) difference for &

C_n+1 . C-n u

B C8 Ce _|_ C¢ —2C8+C8

At AXS iy 1) ( i+1 )
B.D.
£=nN — Explicit ] - 4 point scheme
e=n+l - Implicit

=N+ E — Crank-Nicholson
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9.2 Finite Difference Model

( EAt2 ~ uAtj Crir (s UAt EAt)Cn+1 EA C.rl a
2AX°  2AX 2Ax 2 AX?
:( EAt uAtan—1 1 UAL EAZ’[)C EAt .

2AX®  2AX 2AX  AX 2 AX?

n+1 n
[AJiC} =[BHC}" +{b}
|A],[B] — Tridiagonal method
& u {}” {::” n+1 6 Point scheme

3 knowns (@ time level n
k i

3 unknowns (@ time level n+1

k k
o o Sl
C-N method — O(AX + At*)
Fully Implicit _)()(A)H-At)
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9.2 Finite Difference Model

2) Formulation CN-cd

oC
~ Central difference for &
O = O == (Gl =Gl + — 5 (€L, 2C1 +CF)
C.D.

O -
ift{;+ Crp -2 2ET+Er + VA}}

( EAt2 _ UAt j iy (“ EAZt j cry ( UAL EAt2 j c
2AX°  4AX AX AAX  2AX

3

:( EAt uAtjCH +(1— EAthCin { EAt2 - uAtjCin+1
2AX*  4AX AX 2AX°  4AX
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9.3 Finite Element Model

9.3. 1 Infroduction
= Difference between FDM and FEM solutions to PDE

2 (e i) ®
ot  Ox\ OX
FDM
Approximmating Derivatives
7 T
PDE System of Linear

\ Algebraic Eq.

FEM 7

Approximating Solution — Integral Eq.

Matrix Solver

Numerical Solution -

(Approximate Solution)
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9.3 Finite Element Model

9.3.1 Introduction
FDM: A domain of interest is replaced by a set of discrete points. Then, the function

of Cis represented by an approximate function using Taylor series.
FEM: A domain is divided into subdomains (finite elements). Then, the unknown

function C is represented by an interpolating polynomials within each element

C N
C Finite element

/ - / modal point
il

/‘/awf":ﬁ;‘ B :x\'\:\“‘\“\

/T \ C(x)

element

domain
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9.3 Finite Element Model

» Procedure (Summary) of FEM

i) Discretize domain into elements

ii) Select basis functions

iif) Derive an integral equation based on Method of Weighted Residuals (MWR)

iv) Compute element matrix and vectors

v) Assemble global matrix and vectors

vi) Incorporate boundary conditions

vii) Use a finite difference for time discretization

viii) Solve a system of simultaneous linear algebraic equation
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9.3 Finite Element Model

9.3.2 FEM Formulation
(1) Domain Discretization

M

¢ o Finite element

modal point

/?"”’_‘ B

/’ \ C(x)

element

domain

C(x) =true and unknown solution to PDE
continuous function of x

é(x) = approximate solution

piecewise continuous function
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9.3 Finite Element Model

We may approximate the true solution by a polynomial

C*(x) :an:Cj¢je(x) @

in which

¢, = basis function (shape, approximate) function

Now, we are seeking the "best" value of the C; to give us the best values for ée(x)




9.3 Finite Element Model

(2) Selection of Basis Function

1) Lagrangian interpolating polynomials

m X—X
¢j(x): liI ‘

K#]

i) Linear function: m =2

X=X,
¢1(X): X=X
_ X=X
¢2(X)_ X, =X

~.C" (X) =C,¢(X) + C,4,(X)
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9.3 Finite Element Model

i) Quadratic function: m=3

2. CE(X) = Cuh (X) + Cyhy (X) + Cyhy(X)

2) Hermitian interpolating polynomials

~ interpolate C(x.) and ™ (function and slope)

Xi

Reroy N\ ©,(dC)
C (x)—;{chﬁ,— +(dxl¢j }
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9.3 Finite Element Model

(3) Method of Weighted Residuals
« Formulation of approximating integral equation
{ Variational Method
Method of Weighted Residuals (MWR)
Select MWR
Substitute @ into @
oC &
ot oX

[E ‘ZC —uéji 0= R(x.t)—> Residual ®
X

If C=C then R(xt)=0
But CxC R(x,t)#0

So, in the MWR, an attempt is made to force this residual to zero through selection
of the constant C;(j=12,...M) .
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9.3 Finite Element Model

Let’'s set the weighted integrals of the residual to zero - MWR

_[QQR(X,t)a)i(X)dQ:O, i=1,2,...M - Integral Eq. @

J'{%—Q(E@—uéj} o, (x)dx =0 ®
ot oX OX

There are several MWRs which is distinguished by the choice of weighting function @)
1) Galerkin method: @, = ¢ (X)
2) Subdomain method

~ divide domain B into M subdomains B,

{1,xin B,
. =

: 0, x not in B,
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9.3 Finite Element Model

3) Collocation method

M point x; (collocation points) are specified in B and weighting functions are Dirac

delta functions
w, =0(X—X)

which have the property that
j R(Xx)wdx=R(x)=0
B

4) Least Squares Method

OR
W, = p(x)a

p(x) = arbitrary positive function

minimize the integrated square residual w.r.t a,

I =I p(X)R*(x)dx




89/147

9.3 Finite Element Model

[Re] Basis function vs Weighting function

The unknown function C is represented by an interpolating polynomials within each

element

u() =~ 0( Zu¢ j=12,.....N
u; = undetermlned coefficient

¢j () = basis function over both time and space

In MWR, the objective is to select the undetermined coefficients u; such that this

residual is minimized in some sense.

H )dvdt=0, i=12,..,N

o;(-)= weighting function
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9.3 Finite Element Model

= Galerkin Method

Weighting function is chosen to be the basis function

UVR(-)qzﬁi ()dvdt=0, i=12,..,N

Basis and
weighting function

(Chapeau function)
*hatshaped’

W

e g+1
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9.3 Finite Element Model

= Subdomain Method

[ R()@dv=0, i=12...,N

where 1L, (x,y,2) inv
0, (x,y,z) notinv,

W
A
il weighting function
]. e Y
// \\ /
s N
4 ~
s ~
s Y
. basic function
A
"/
~
A
Y

A »

eg+1

Subdomain Method

~ integrations are less tedious than those in Galerkin's method




9.3 Finite Element Model

= Collocation Method

Weighting function is chosen to be the Dirac delta
@ =0 (x — x.)

” Jdvdt=0, i=12,3...,N

~ Calculate the value of residual at the selected points

Itjva(°)5i(x_xi’y_Yi’z_zi,t—ti)dthEa

X1 YiiZioh

w
A

1+

92/147

weighting function

e+1
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9.3 Finite Element Model

[Example]
d—T+ k(T-T,)=0
dt
0<t<1
Tt=0)=1
k=2 ; T, 1
2
ﬁsj!\
t-t Il 4 . "
t—t, ha=t=t T / _W \
Al sl
e, [ St<t, |
_ti+1_ti
| L | . >
0.25 0.5 0.75 1.0 !

I = nodal points 1 2 3 Node




94/147

9.3 Finite Element Model
) T =T = iTj¢j (1)

i) | RMOW,(Hdt =0, i=12,3
dT
g L k(T-T w. (t)dt =0
J 4+ K« )} ®
T -0, -
<ZT KT, tw, (t)dt=0, i=12,3
9= dt
Apply Galerkin method
1 -
Z f{ kep; t#dt = [ KT.gdt, i—1,2,3

i=1:2j{

+ kg, }¢1dt _j KT, ¢ dt
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9.3 Finite Element Model

i=1 1jo{d¢1+k¢l}¢ldt+T j{ +k¢2}¢1dt+Tj{ /: +k¢3}¢1dt jkT dt

i =2 leo{dfl +k¢1}¢2dt+T j{ +k¢2}¢2dt+Tj {d¢3 +k¢3}¢2dt—j KT, 4,0t

i=3 1j0{d¢1+k¢1}¢3dt+T j{ +k¢2}¢3dt+TI{ +k¢3}¢3dt—j KT, ¢t

s =
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9.3 Finite Element Model

iv) Expansion yields the following matrix equation

1rd 2(d j Fe—— i
Jo erl
14 -1( d 1 d 1 .
joz(%¢2+k¢l¢2jdt '0(%¢2+k¢2¢2 dt I%(%%_'—k%%jdt T = .okTe¢2dt
1 d 1 d .j_-kTe dt
0 L(%%"’k%%Jdt I&(d;?¢3+k¢3¢3jdt _T3_ | "2 ¢3 |
—1+§ 1+— 0 1 _kL_
2
E _1 E 2_k 1_|_E T2 = E kTe
2 6 3 2 T
0 —l+5 1+E T, i 2e 1




9.3 Finite Element Model

= Basis functions (Interpolation)

C(x,1) =C(x,t) = > C g (x,1)

j=1
A m o0Q. A m
%ZZCjﬂ E Z
X 3 OX ot 4

= >.¢,09 ()
C0,9

» Natural coordinate system for element basis function

(Dimensionless & coordinate system where —1<&<1 )

i) Linear
¢f(§)=%(1—§) ¢§(§)=§(1+§)
dgy _ 1 dg 1

dé 2 dé 2
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9.3 Finite Element Model

i) Quadratic

b.(E) = —%5(1—5)

b (&) =1- &
A =2£0+8)

96/147




99/147
9.3 Finite Element Model

= Galerkin method

Select the basis functions as the weighting functions

w, =@

Thus the weighted integral equation of the residuals becomes

jﬂe{ac _0 (E oc —ué)}qux:o

ot 0OX ot

Jge%qﬁi —j —(E—X— O cx =0

A du

)

B
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9.3 Finite Element Model

Term A: use Iinear basis function

[ Srx= [.> dt’qﬁ(x)qﬁedx

o dCJ(t) )
=2 o #1004, (x) dx

j=1

Term B: Integration by parts _[ udv = uv—j vdu

[, (X)(E——uc:) [¢ e C)]n

OX

~

G RGO RPN NI il T
:_@_X(X){E;Cj(t) ~ —uJZ:;‘CJ.(t)¢5j (x)}dx+_¢iI (x)(Ea—uC)}X

N

B m a¢ (X) a¢1 . % \>_ e %_ ~ Xm
—+ ;Cj(t){j E dx — J‘eu¢j (xX) « de {ﬁ (xX)(E - uC)}

X
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9.3 Finite Element Model

Eq®: ch (t)j ¢(x)¢(x)dx+ZC (t){j Ea¢ (x) 5¢@)§X)d
OF; () 047 (X) . | | serere@C  AV|
_IQEE ~ - dx} {ﬂ (X)(E o~ uC)}X =0 @
Let aﬁzjge aé}f) iid —_[ u¢ (x) ¢'dx . i1=1,.....m

~

¢f(x)(E";—‘X:—ué)xl

m = [ ¢,00400dx .,  {B} = '. >

N

. oC 2
P (X)(Ea —uC),
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9.3 Finite Element Model

(4) Element matrix equation

The element matrix equation results in

[A]e{é}+[M]{(:j?} (B}°=0

Use linear basis function

—jl £ 09 05 99; o 5__{ 06 op; 0¢ 4z
1 0E Oox 0 ox b os ox ¢ dg

_ (g% 94 498 o 4
5 j¢,8§

1 9E OF
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9.3 Finite Element Model

By the way
dx  &dgi(E) dgf dg;
dﬁ_xj; d& _deg de Xl(__) X()— (2_ )__
. ae o9, o¢ 2,
"a“'_J—lEacf o¢ 9 A ) [ ¢,a<§

m; = [,. 4 ()4 () dx = [ ¢, (£)4(£)d é —["hds S

B’ = {¢ (x)(Eg—uC }
OX )

E U E U [E%—C— éj

c |Ax 2 Ax 2 . Ax[2 1 : X "
A= Ty [M]:?L 2} B = 2 (

e u ELU oC -

AX 2 Ax 2 —[EX—UC)




9.3 Finite Element Model

(56) Assemble global matrix equations
Combining element equations

For each element, apply

[M] ‘?j—(t:>+[A]e{é}+{B}e=o
IM] &[A] ~ 2%2 matrices

= Numbering Systems

Loeal I | I

| | |
1 2 1

Element No 1

b2
Ll

Global 1

b
Lad
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9.3 Finite Element Model

Let V(= number of element) = 30

number of nodes = 31
Then | | | | |

NH

(29) g (30 (30)
a22 + a12

(30) (30)
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9.3 Finite Element Model

30
[M]=>[M] ~ same as [A]
31x31 e=1 ~ -
Bl(l) (Bl(l) 3
B + B? 0
B! + B 0
30
[B]=>{B} =1 =
31<1 e=1 . .
Bézg) 4 Bl(so) 0O
B30 5530)
L 2 ) "~ J

Since 95 +a9;" =0

= Boundary Conditions
At x=X%X ;UC-E—=1uC
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9.3 Finite Element Model

(6) Time discretization

1) Fully Implicit
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9.3 Finite Element Model

(2) Crank-Nicholson scheme

[M]{C} 1] +[A]{é}“%+{s}k%=o

At
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9.4 Finite Volume Model

9.4. 1 FVM for one-dimensional diffusion

» Finite Difference Method:
A domain of interest is replaced by a set of discrete points. Then, the function of Cis

represented by an approximate function using Taylor series.

* Finite Volume Method:
A domain is divided into the discrete control volumes. Then, the governing equation

is integrated over a control volume to yield a discretized equation at a nodal point.

Consider the steady state diffusion of a concentration, C in a one-dimensional

domain
d [Ddcj+8 =0

dx dx
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9.4 Finite Volume Model

» Grid generation

~ divide the domain into discrete control volumes

Nodal Points. __

7
Face ‘<
of control
volume

Ax ’{ ‘Eontrol volume
P : Nodal point

Wand E: Neighbor nodes to west and east respectively
wand e : west and east side of face of control volume
The faces of control volumes are positioned mid-way between adjacent nodes.

— each node is surrounded by a control volume (cell)
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9.4 Finite Volume Model

* Discretization

The integration of the governing equation over a control volume to yield a

discretized equation at its nodal point P

j d (Ddc)dv +j SdV:(DAd—Cj —(DAd—Cj +SAV =0 @®
avdx\  dx Av dx J, dx /,,

where A : the cross-sectional area of the control volume face.

AV : the volume of the control volume.

S : the average value of source Sover the control volume.




9.4 Finite Volume Model

The diffusion coefficient, D and the gradient, (Z—C at east(e) and west(w) faces
X
are required in order to derive the discretized equations.

— use Linear approximation (Central differencing)

A dc C.-C,

o) o5 o
dc -G,

(DAKJW_DWAN( o ] ®

If the source term is approximated by means of a linear form,

SAV =S, +S,C, ®

Substituting equations @, ® and ® into equation @O gives
DAE(C —Ce } WANL CW] (S,+5,C,)=0 ®

AXyp

XPE
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9.4 Finite Volume Model

Equation ® can be rearranged as

( . AN—Schp{ = AN)CW{ % a]CE+su

AXPE AXWP AXWP AXF’E
i
a,C, =a,C, +a:Cc +35, ®
where a a, a,
D D
Y4, <A, Gy +d; =S,
Aty Axpg

Discretized equation ® must be set up at each of the nodal points. For control

volume that are adjacent to the domain boundaries, the general discretized equation

® is modified to incorporate boundary conditions.
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9.4 Finite Volume Model

o Treatment of the node adjacent to boundary

Boundary of Domain

. s E— e — T —— a——
A 7 3
L 0 |
‘ Ax/2 | Ax ] Ax |

Treatment of the node adjacent to boundary
Node 1 that is located adjacent to boundary can be treated in same manner of

derivation of discretized equation ®

Integration of governing equation at Node 1,

C.-C C. -C —
DeA\e( - pj_DAAA( . ZA}-FSAV:O
)

AX AX [

a,C,=a,C, +a:Cc +5,
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9.4 Finite Volume Model

Where

Qy Qg a, S, S,
0 Doy | a+a,-5 | _2Pay |sar+Zdic,
Ax °© £ i Ax 4 Ax
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9.4 Finite Volume Model

9.4.2 FVM for two-dimensional diffusion

Two-dimensional steady state diffusion equation is given by

d(Dde+d DdC LS-0
dx\ dx /) dyl{ dy
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9.4 Finite Volume Model

o Grid generation

~divide the domain into discrete control volumes

T o
| I N |
| } ® } |
| I | |
| I | |
[ R D L U B
B e e
| W | | E 1
} ? 3 O e} — Ny ——
| wi | € |
| [ | ll
[ NS SR S E
r r s |
| I | |
| | ' !
| I TS | |
| e gyl |
L__m___L__+___L_____J

Grid generation

Upper case letter (£, W, N, W): Neighbor nodes

Lower case letter (e, w, n, w): control volume faces
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9.4 Finite Volume Model

o Discretization

~integrate governing equation over control volume (cell)

d
AV&(D—jdx dy + Lv y( jdx dy+ SdV:O

Noting that A = A, =Ay and , A, = A =AX we obtain

{DA@—?) —DWAN(Z—S(:) }{Dﬁ{%} —DsAs(aa—ij }+S_AV=O

— The balance of the generation of C in a control volume and the fluxes through its

cell faces.




9.4 Finite Volume Model

oC C,-C,
Fl h f =D, =D, P
ux across the west face AN( axj A, ~
Flux across the east face =D A o« =D,A Ce -G,
oX J, AX
oC C,-C
Flux across the south face = D,A,| — | = DA,
OX ), Ay
oC v —C
FI the north face =D,A,| — | =D, s
ux across the north face A( x jn A, Ay
Substituting the above expressions into equation
-C, C, - C,-C C -C
DA; -D,A,— CW+D,A ——F DA

AX Ay Ay

+SAV =0
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9.4 Finite Volume Model

Assuming the source term in linearized form is SAV =S, +S,C, and rearranging

(WAN DA , DA DA S]C

AX  AX Ay Ay

G R o N

The general discretized equation form is
a C =a,C, +a:C¢ +a,C; +a,C + 5,

Where [ a, a, a, a,

D4, | DA, | D4, | D4,

e e

Ax Ax Ay Ay

e '

At the boundary where the concentration are known, the discretized equations are

modified to incorporate boundary conditions in the manner demonstrated in one-

dimensional problem.
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9.4 Finite Volume Model

9.4.3 FVM for three-dimensional diffusion
Steady state diffusion in a three-dimensional situation is governed by

d(DdC)er DdC +d(DdC LS -0
dx\ dx/ dyl dy ) dz dz

o Grid generation

B

A cell contacting node P has six neighboring nodes identified as west, east, south,
north, bottom and top (W, E, S, N, B, T).

The notation w, e, s, n, b and fis used to refer to the west, east, south, north,

bottom and top cell faces.
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9.4 Finite Volume Model

O Discretization

~integrate governing equation over control volume (cell)

o4(5) 03] oa(5) 045
{DA@—Sl — Dbpb(z—i)b}s_m =0

~ Follow the procedure developed for one- and two-dimensional cases the

discretized form of equation is obtained:

{ C.-C, cp—cw}{ C, -C, Cp—CS}
DeA\a _DWA\N + DnAh _DsAs

AX AX Ay Ay

C, -C, C, -
T _p p
AZ aa' AZ

CB}+(SU+SpCp)=O

J{DA




9.4 Finite Volume Model

The general discretized equation form is

Where

a,C,=3a,C, +a:C +a,C; +a,C\ +a,C5 +3;C; + 35,

DA,

DA

L -3

D, 4,

Ax

Ax
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9.4 Finite Volume Model

9.4.4 FVM for advection-dispersion

Steady advection and dispersion of concentration C in a given one-dimensional flow

field U is governed by

d d dC
—(pUC)=—| K—
dx(p ) dx( dxj

The flow must also satisfy continuity equation.

a
dx

(0)=0
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9.4 Finite Volume Model

o Grid generation

~divide the domain into discrete control volumes.

Nodal Points >

Face AN
of control Ax Control volume

volume we

Grid generation

The same notation as in the one-dimensional diffusion problem is used.

U, and U, are cross-sectional average velocity on the faces of control volume.
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9.4 Finite Volume Model

O Discretization

Integration of transport equation over the control volume

(PUAC), —(pUAC), = (KAz_il B ( KA(Z_(;)W

Integration of continuity equation over the control volume
(PUA), =(pUA), =0

For convenience, convective mass flux unit area and dispersion term are replaced

K
to: F=pU , D=—
P AX

The cell face values of the F and D can be written as
Fo=(pY), . F=(pV),
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9.4 Finite Volume Model

Assuming that A, = A, = A | the integrated advection-dispersion equation can be

written as
FC.-F.C,=D,(C.-C,)-D,(C,-Cy)
And the integrated continuity equation as
F-F,=0
When we have one-dimensional flow field U, F, and F, can be calculated.

~ need to know the transported concentration C at the e and w faces

(1) Central differencing scheme for advection

For a uniform grid, the cell face values of concentration C as
C,=(C,+C¢)/2

e

C,=(Cy+C,)/2

Substitution of the above expressions into the advection term

%(cp +CE)—%(CW +C,)=Db,(C.-C,)-D,(C,-Cy)
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9.4 Finite Volume Model

This can be rearrange to give

|:(DW+%j+[De —%]+(Fe - FW)}Cp =(DW+%jCW +(De —%)CE

Central differencing expressions for the discretized advection-dispersion equation

are

a C, =a,C, +a:C

where
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9.4 Finite Volume Model

(2) Upwind differencing scheme for advection

In a strongly convective flow, the cell face should receive much stronger influencing

from upstream node.

~ UDS takes into account the flow direction when determining the value at a cell

face

~ The transported value of C at a cell face is taken to be equal to the value at the

upstream node.

© Flow in the positive direction C C,

CE
C, C,
u,>0,u,>0 R R

C.,=Cy and C =C,




9.4 Finite Volume Model

The discretized equation becomes
F.C,-F.C, =D,(C.-C,)-D,(C,-Cy)

This can be rearrange as

[(DW+ F,)+D,+(F, - FW)]Cp =(D, +F,)C, +D,C,

CW
© Flow in the negative direction C C,
u, <0, u,<0 “ & 'e
u . |
C,=C, and C.=C; e pag

The discretized equation becomes

FC.-FC,=D,(C.-C,)-D,(C,-C,)
This can be rearrange as

| D, + )+(F.-F,)]|C, =D,Cy +(D,—F,)C,
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9.4 Finite Volume Model

Upwind differencing expressions for the discretized advection-dispersion equation

are apCp — aWCW + aECE
Where a, a, a,
F.>0, F,>0 |D_+F. | D,
aﬂ" +GE +(F; _FH-)
F <0, F.<0 | D, D -F,

(3) Hybrid differencing scheme for advection
~ based on a combination of central and upwind differencing schemes.
~central differencing scheme is employed for small Peclet number ( Pe<2 )

~upwind differencing scheme is employed for large Peclet number ( Pe>2)

~Peclet number is evaluated at the face of the control volume.
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9.4 Finite Volume Model

For west face of control volume

PeW: |:W — (pU )W
D, K,/AX

W

The hybrid differencing formula for the net flux per unit area though the west face is

1 2 1 2
=F |—|1+—— +—|1-—— |C —2<Pe, <2
il W{Z( PewjCW 2( Pewj p} For "
qW:FWC\N For PeWZZ
Ow = Fpr For Pew <=2

East face of control volume also follow the same manner.
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9.4 Finite Volume Model

The general form of the discretized equation is
a,C,=a,C, +a:C¢

Where | % ag a,

F, F,
max{ﬁ_,[ﬂuﬁ?“],ﬂ} mﬂ[—ﬁ,[ﬂa—?“},ﬂ} a, +a, +(F,—F,)

(4) Quadratic upwind differencing scheme for advection: the QUICK scheme
~uses a three-point upstream-weighted quadratic interpolation for cell face values.
~The face value of C is obtained from a quadratic function passing through two

bracketing nodes and a node on thecupstream side. C
w Cw
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9.4 Finite Volume Model

For uniform grid the value of C at the cell face between two bracketing nodes i and

I-1 and upstream node i-2 is given by:

C :gci—l+gci _lci—z

face
8

When u,>0 , the bracketing nodes for the west face w are W and P, the upstream
node is WW
6 3 1
C,==-C, +=C,——
w 8CW 8 p 8CWW
When u >0 , the bracketing nodes for the west face e are P and E, the upstream

node is W
6 3 1
C,=—C +-C.-=

The discretized equation becomes
F.C.-F.C,=D,(C.-C,)-D,(C,-Cy)

6 3 1
(B, 2c. Lo, |

6. 3~ 1
—Cy +—Cp _§CWWj: D, (CE _Cp)_DW(Cp _CW)

8 8 8

0




135/147
9.4 Finite Volume Model

This can be rearrange as

3 6 6 1 3
D,--F,+D,+-F, |C.=|D,+=-F,+=-F + D, —=F |C. ——F

The general form of the discretized equation is
apCp =8, Cy +a:Cp + 8, Gy +aCre

where o P a P a,
g 8 g
"‘%‘IGF; _g(]_as)‘F; Ay + A+ Ay T Ap +(F;_Fw)
+3(1— )F, —1(1—.:1 ) F,
8 a\ﬁ w 8 L W
Where

a,=1 for F,>0 and «a,=1 for F,>0
a,=0 for F,<0 and %=0 forF <0
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9.5 Finite Particle Model
9.5.1 Concepfts

 Finite Particle Model

A number of particles, each representing a finite mass of solute, are released at a
rate proportional to the strength of each source. The particles are then "tracked" in
space and time.

— Particle Tracking Method (Prickett et al., 1981)

— Giant Molecule Method

» Distribution of concentration of solute
~ represented by the distribution of a finite number of discrete particles

~ each particle which is assigned a mass which represents a fraction of the total

mass of chemical constituent, is moved by flow and dispersed by the random mixing
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9.5 Finite Particle Model

In the computer code, enough particles are introduced so that their locations and
density are adequate to describe the distribution of the dissolved constituent of
interest.

New position = Old position + Advection + Dispersion

Dispersion is based on the concept of random process.

® S} X

. A v
k'

Advection Dispersion
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9.5 Finite Particle Model

The advection-dispersion equation is given as

2
L L _e7C i g
ot OX OX

The analytical solution for a unit slug of solute placed initially at x=0 is given

exp{— (x —uty } (2)

cx= AEt

1
VarEt

L "E'

C Tl_ﬂ,_
0.8+
ﬁ.ﬁ' =

041

0.2

T T 1  E— 1 ] 1 1 T
-5 -4 -3 -2 - L) 1 2 3 4 5
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9.5 Finite Particle Model

« Statistically, a random variable xis said to be normally distributed if its density

function, n(x)is given by

1 (x=p)
"= s ex'{ 207 } 3)

o = standard deviation

L =mean

Now, if we let
o =~/ 2Et (4)
L =ut (5)
n(x) =C(x,t) (6)




140/147

9.5 Finite Particle Model

Then, Egs. (2) and (3) are equivalent.

So, the key to solute transport is the realization that dispersion can be considered a

random process, tending to the normal distribution.

-~ Random Walk Model
ol /’ \ +6
."h._ _,_J?'\ JCI >
T " X
Advective Dispersive

Distance Distance
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9.5 Finite Particle Model

Advective distance = UAt (7)

At = time increment

Dispersive distance =+6c

=2EAt - ANORM(0) (8)

in which 60 = probable locations of particles out to 6 standard deviations either
side of the mean ( > 99.9% )

ANORM (0) = a random number between -6 and +6, drawn from a normal

distribution of numbers having a standard deviation of 1 and a mean of zero.

. New position of the particle

= Old position + U At ++/2EAt -ANORM (0) (9)
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9.5 Finite Particle Model

Repeat for numerous particles, all having the same initial position and advection

term.
— Create a map of the new positions of the particles having the discrete density

function.

C(x,t) > n(x) —>ﬁ
AX 2
= exp| —
V27 2AXE AL p{ 4AXE At }

in which AX = incremental distance over which N particles are found

N, = total number of particles in the experiment

The distribution of particles around the mean position, uAt, is made to be
normally distributed via the function ANORM(O0).
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9.5 Finite Particle Model

= Generation of ANORM(0) in computer code.

1) Summation of random function

ANORM (0) = iRF(O,l) -6

i1
[

In EXCEL, RAND()

use @RAND function to generate a uniform random number between 0 and 1 =U (0,1)

2) Multiply random function

ANORM (0) =RF(0,1)x12-6
%/_/

RAND ()

3) Numerical Recipes
ANORM(0)= GASDEYV (IDUM)
RAND() = RAN1(IDUM)
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9.5 Finite Particle Model

« Advantages of the Random Walk Model

i) There is no numerical dispersion, despite the use of an Eulerian framework.

i) Computer CPU time is drastically reduced.

iii) Solutions are additive. If not enough particles are included for adequate definition
in one run, subsequent runs may be made and the results of these may be
superimposed upon the first run.

iv) This method is particularly suited to time-sharing systems where velocity fields

can be stored.

 Disadvantages

i) It may require a large number of particles to obtain meaningful results.

ii) It doesn't easily accommodate non-linear kinetic expressions.
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9.5 Finite Particle Model
9.5.2 2D Random Walk Model

Depth-averaged advection-dispersion equation is

£+u(x,y)§+v(x,y)acz J (Exacj+ g Ey£ +S
ot OX oy oX oX ) oy oy

E, =5.93du.

Ey =0.6du,

. = Jods L

i




146/147

9.5 Finite Particle Model

2D Random Walk Model

Old position  (x;,»;) *
¥

/_,____._._-—-u,ﬁf—-—-—-.__._\

"

Advection = -\"(u.f_\r)z + (wAr)?

~\ New position (x,y)
K I T Transverse Dispersion
= [J2E A - ANORM(0)

Longitudinal Dispersion
= JZE A - ANORMI(0)
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9.5 Finite Particle Model

Longitudinal and transverse dispersion take place simultaneously

X = X, + UAt + ,/2E At - ANORM (0)

y=Y,+UAt + /2EyAt - ANORM (0)

In natural rivers

E =5.93du.

Ey =0.6 du,
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