Lecture Note #5 (Spring, 2019)

Thermodynamics & Kinetics
of Adsorption & Desorption

Reading: Kolasinski, ch.4



Thermodynamics of ad/desorption
Binding energies and activation barriers
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Figure 4.1 One-dimensional potential energy curves for molecular adsorption: (a) nonactivated adsorption;
(b) activated adsorption. E g, E .., adsorption activation energy and desorption activation energy, respectively;

Uags heat released by adsorption; z.,, adsorbate-surface bond length.
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Figure 4.2 Activated dissociative adsorption. E,, E ., adsorption activation energy and desorption activation
energy, respectively; q,4, heat released by adsorption; z., adsorbate-surface bond length.



Thermodynamic gquantities

« Adsorption, especially chemisorption — surface free energy|— surface
tension, y|

« Chemisorption — usually exothermic process — AS <0 (gas in 2D), AG
<0 (constant T & P, free energy|, spontaneous) —» AG = AH - TAS — AH
< 0 (exothermic)

« Temperature| — Adsorption?

« exception: dissociate adsorbates & high translational mobility on the
surface (AS > 0 ). Repulsion between adsorbates by coveraget — less

exothermic

e.g., H, on glass: endothermic, H,(g) — 2H (glass), AS>0 —- AH >0



Table 4.1 Definition of symbols

Number of adsorbates (molecules or atoms, as appropriate)

Number of surface sites or atoms (as defined by context)

Number of atoms/molecules exposed to (incident upon) the surface

Surface area (m? or, more commonly, cm?)

Areal density of adsorbates (adsorbates cm™2), o = N, /A,

Areal density of sites or surface atoms (cm™)

Areal density of empty sites (cm™?)

Areal density that completes a monolayer (cm™2)

Coverage, fractional number of adsorbates (monolayers, ML), also sometimes called
fractional coverage, 6 = o/oy

Saturation coverage, 6., = 0,,,/0o, where o is the number of surface atoms

Relative coverage defined with respect to saturation, § = o/og,, = 6/0.,

Exposure, amount of gas incident on the surface, units of cm~2 or Langmuir

Binding energy of the M—~A bond

Heat released when a single particle adsorbs (positive for exothermic)

Langmuir, unit of exposure, 1L =1 x 107 torr x1's

Sticking coefficient, s = o/e

Integral sticking coefficient: total coverage divided by exposure, meaningful only if s is
constant or as 6 — 0 ML

Instantaneous or differential sticking coefficient at coverage 6 s(6) = dN,4/dN,,, = do/de,
evaluated at a specific value of 6 :

Initial sticking coefficient, sticking coefficient as & — 0 ML




Heat of adsorption



|sosteric enthalpy(heat) of adsorption

«dG =Vdp - SdT, and d(A G) = Avdp — AS dT for any change

* At equilibrium, AVdp — ASdT= 0.

*AV =V,y—V,~-nRT/p

* (dp/ dT)g = AS IAV= - (AH/T)/(nRT/p) = - p AH/nRT? at constant 6.
*d Inp = (AH_4/R) d(1/T) — The slope of (In p) — (1/T) plot gives AH_ /R

* In genera, AH_, is coverage-dependent because of
1) Heterogeneity of the adsorption sites
2) Lateral interaction between adjacent adsorbates

cf. isoteric: constant adsorption
Isoteric enthalpy: standard enthalpy of adsorption at fixed coverage
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Figure 4.3 Three different behaviours of the heat of adsorption, q,4, as a function of coverage, 6. Case (1):
the surface is composed of one and only one type of non-interacting site. Case (2): q,4, decreases linearly with
6. Case 3: the surface is composed of two types of sites with different binding energies that fill sequentially. As
shown in §4.3, case 3 can also arise from strong lateral interactions.
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Kinetics of adsorption

Langmuir model assumes that

« Uniform adsorption site

« Adsorption energy independent of 0
* No surface diffusion

 Monolayer coverage

A(g)+ * = A(ad) : non-dissociative
K,: adsorption rate const, k,: desorption rate const

do/dt = k,p(1- 8) : k,=Z,Sy/Pp
S, = Initial sticking probability
(1- 6): vacant site
p: partial pressure of A
s(8) =s,(1-6)

B(t) = 1- exp(- k,t)

A, +* - 2A(ad) : dissociative adsorption
« dB/dt = k p(1- 6)? : k,=2Z,S,/p

s(B) =sy(1- 8)?

() = k,t/ (1+k,t)
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Figure 4.6 Langmuir models (molecular and dissociative) of the sticking coefficient, s, as a function o
coverage, 0.
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Figure 4.7 Langmuir models (molecular and dissociative) of coverage, o, as a function of exposure, &.



Dissociative Langmuir adsorption with lateral interaction
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Figure 4.8 The effect of lateral interactions on the dissociative sticking coefficient as a function of interaction
strength, o, and coverage 6 at a fixed surface temperature T, = 77 K.



Precursor-mediated adsorption

« Marked deviation from Langmuir adsorption N, (9) 2 2 N4
Langmuir adsorption; s = s, (1- 8)? 2 | ——
» Coverage-insensitive s. s ' N / W(100)
» Decrease in s with increasing Ts: re-evaporation of the o= 2
precursor state. - TS TR
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 Precursor hopping on the surface to find an empty site
773

—> increase in s
* Re-evaporation of the precursor due to a finite surface

lifetime 7 ; T = 1oexp (-E4/RT) Surface coverage 0
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Figure 4.9 Sticking of Cs on W. Replotted from the data of J. B. Taylor, I. Langmuir, Phys. Rev., 44 (1933) 423.
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Figure 4.10 The Kisliuk model of precursor mediated adsorption. Incident molecules trap into intrinsic or
extrinsic precursors. Thereafter, sticking becomes a competitive process between desorption out of the precursor
and transfer into the stable chemisorbed state. « is the probability to enter into the precursor state.
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Figure 4.11 The change of sticking coefficient, s, with coverage for precursor mediated adsorption is charac-
terized by the parameter K. For K = 0, the sticking coefficient is constant, whereas for K = 1 it drops linearly
with coverage as in Langmuirian adsorption. Large values of K decrease s relative to Langmuirian adsorption.



Adsorption isotherms from kinetics

NH,/ charcoal

Adsorption-desorption equilibrium
250K
+ * =
A(9) < A(ad) g [ 273K |
& ey SEEN
« dO/dt = k, p(L- 6) - k0 Pl £ A | |0
-g L)
*The desorption rate constant 2 / g
ky =k exp(- E4/RT) 3 % . v i[i
g /
* At equilibrium, dé/dt = 0, 2 5 e i =5

(@]

6 = K(T) p/[1+K(T) p] 0.2 : 0.4/10526 08 10
ressure m~

where K = Kk, / ky : equilibrium constant

*As p—, 6 — 1

* ©-P plot at constant T is called Langmuir isotherm

*T| — adsorption?

* As seen in the Fig., the coverage 6 depends more sensitively
on T thanonp

cf. adsorption isotherm: coverage change by pressure at a temperature



Measurement of adsorption isotherm

Volumetric measurement

0 = K(T)p / [1+K(T) p]
8 = V/V,, measured as a volume change,
where V is the volume of gas adsorbed

and V,, is the saturation volume (corresponding to
complete coverage).

VIV, =Kp /(1+Kp),
P/V = (1+Kp)/K V,, = p/V, +1/KV,

p/V vs. p plot gives a straight line.
Slope = 1/V,, and intercept = 1/KV,,
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Classifications
of adsorption
ISsotherms

Figure 4.12  The six types of physisorption isotherms in which coverage (either relative coverage 6 or absolute
coverage o) is plotted against pressure, p, of a gaseous adsorbing species (or concentration, c, of a species
dissolved in a liquid solution). The coverage is often expressed as specific coverage, that is, coverage per unit

Amount Adsorbed

i

Adsorption Isotherm

Adsorption Isotherm |
Type Il !

Type |

mass of the substrate.

Adsorption Isotherm
Type Il

Adsorption Isotherm
Type IV '

T T T s B R o B g

| I i I

Adsorption Isotherm
Type V

Adsorption Isotherm |
Type Vi

i

TTTTTIIT Y POy T T T T

Pressure

G 1 ==

Pressure



Langmuir adsorption isotherm
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Figure 4.4 Langmuir isotherms exhibit a dependence on the temperature and binding energy. (a) Constant heat
of adsorption for various temperatures T. (b) Constant temperature for various adsorption energies €.



Classifications of adsorption isotherms

Brunner clasification

Type |I: Langmuir adsorption

1
|
|
|
|
|
|
|

Type Il: monolayer + multilayer }
|
|
|

Type III: multilayer adsorption

Type IV: Type I

Type V: Type Ill on a porous adsorbent

Vods.

* Finite pore volume limits the max. V4.
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* Type Il & IV: A Hgeg >> A Hyq - S e

* Type Il & V: AHy ~AH _
= P P, = saturation vapor pressure



Examples of adsorption isotherms
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Multilayer physisorption

BET isotherm: Brunnauer, Emmett, Teller
* Langmuir adsorption extended to allow multilayer adsorption
 Equilibrium maintained between the adjacent layers

« AH%, for the first layer and AH°,,, for the multilayers
» used for surface area measurements.

M(g) + * < M,(ad)
M(g) + My(ad) < My(ad)

M(g) + M,,(ad) < M,(ad)

dBy/dt=1-2-3 +4

Y

T




BET equation
de,/dt=1-2-3+4
» Extension of Langmuir equation beyond the 15t layer.
» Equilibrium between adjacent layers © 3 4
» The rate of coverage change for each layer is zero. \ 2 O I
* The 1st layer may be chemisorption, but the 2" |ayer and 13i @)
beyond are always physisorption— Therefore, different k,and .00 @ O
kd values may be involved. //////////////////////
* At equilibrium
dey/dt =-k,p 6, +k;6,=0
de,/dt=k,p6,-ky0,—k,p6,+k4y0,=0
de,/dt=k’,p0,-k'y0,—-k,p0B,+k';08;=0

den-lldt = k’a P en-2 o k’d en-l o k’a pen-l + k’d en =0

* Ky = 27,50, Kqg=vexp(-AHy/RT) for the 1st layer
k', =2,50 kiy=Vv exp(-AH,,/RT) for the 2" layer and beyond.

« For miultilayer adsorption s, ~ s’ and v~v’. Then, k,~ k’,.
* But E,4. can be much larger than E’,_. , hence k; much smaller than k’; .



*Let k,/ky =K, k’,/k’y = K’, and

c=K/K = (k,/ky) I(k’,/K’}) ~ K’s Ky = exp (AHye - AH,,.) /RT

vap
0, = (ka/kg) P By = KpBy = cK’p6,

0, = [(kg+ k2 p) 8, — K, p Bg] Tk'y = (1/c+ K'p) B8, — K'p 6, = c(K'p)? 6,
0; = [(k}y + kiap) 6, - kK3p 8,1 Tk'y = (1+ K'p) B,— K'p 8, = c(K'p)* B

6,= (1+ K'p) 8,1, — K'p 6, ,= c(K'p)™ 8, + (K'p),6, - ¢(K'p)™* B, = c(K'p)" B

(1) 6+ 6,+....+0,(n >=) =1
— B; + cK'p [1+ Kp+ (K'p)*+ (K'p)* * ] 8= 1 — B, [1+ cK'p /(1- K'p)] = 1
— 0, = 1/[1+ cK'p /(1- K'p)] = (1- K'p) / [1+(c-1)K'p]
(2)VIV,,= 8,426, .... + n 6, =c[ Kp+ 2(K'p)? + 3(K'p)3 + = 16,
= (1- K'p) cK'p / [1+(c-1)K'p] (1-K'p)?
cfi 1+x+X%+ - = d( x+x%+ x3--)/dx = d[x/(1-X)]/dx = 1/(1-X)?

* When p = p, (saturation vapor pressure), adsorption and desorption can take place at
all sites. Therefore, k7, py (6, + 6.+ ...+ 6,,) = k’y (6, + 0,+ ... +6,)) = ki, pp= k'y —
K'=1/p, and K p=p/p, (3)
* VIV, = (1- K'p) cK’'p / [1+(c-1)K’p] (1-K’p)? from (2) and (3)
= ¢ (p/po) / [1+(c-1)p/po] ] (1-p/pg) = VIV, = cp pq / [Pot(c-1)P] (Po-P)
* Rearranging, [py*(c-1)p] /c py Vy, = p/V(py-p) —
P/V(po-p) = 1/cVy, + [(c-1)/cV ] (P/pg); Yy =a+ bx type



BET equation

P/V(py-p) VS. p/p, plot gives a straight line as shown in the Figure (next page)

BNl +(c-l)_g_ Intercept = 1/cV,,

V(po—P) V€ V€ Po Ehe 1
H

i slope + intercept
V., = monolayer capacity
C=exp (AHges -AH,) /RT

For a porous solid
[

o V. cx .l—(n+l)x"+nx":
(1-x) 1+(c-Dx—-cx"

, Where n is related to the pore size and x = p/p,

-

) SEEEL =L
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Capillary Condensation

Porosity may result from

1) Gas evolution during the formation of the solid.

2) Fibrous structure.
3) Compaction of particulate solid.

Representative example: Zeolites

» Natural or synthetic materials

* SiO, and AlIO, tetrahedra are linked by sharing O atoms

« 3D structure containing regular channels and cavties of sizes
similar to those of small and medium —sized molecules.

Classification of pores

» Micropore s: width < 2nm

» Mesopores: width = 2nm ~ 50 nm
» Maropores: width > 50 nm

Hysteresis loop
in physisorption

Desorption

Adsorption

Figure 5.7 Zeolite structure. (a) 6-ring containing two aluminium and four silicon
tetrahedral centres. (b) Zeolite A structure. Each of the eight sodalite units depicted
contains 24 aluminium or silicon tetrahedral centres arranged to give six 4-rings plus
eight 6-rings



Pore size distribution: Mercury intrusion porosimetry



Rate of desorption

* Reverse process of adsorption
* Thermal desorption by phonon anihilation
» Temperature programmed desorption (TPD)

information available: surface coverage,
desorption kinetics, adsorption energy,

Desorption rate

do/dt = k, O"

n =0 : O-order desorption

n=1: 1%-order desorption : M(ad) — M(qg)

n =2 : 2h-order desorption : 2 A(ad) — A, (g)

kd = kdO exp(- Edes/ RT)
T=T,(1+ B t), where the
heating rate B = 0.1~ 10 K/s

Mass
spectrometer

V(z}(

K—. I .

=

surface



Temperature programmed desorption (TPD)

A. Ot —order desorption

« d0/dt = ky = k0 exp(- Egee/ RT)

* For a multilayer 6 = 1.

« Exponential rate increase with T-> obtain E
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Figure 2 Thermal desorption spectra of Au on Mo(110) in the coverage range from0to
2 ML. Heating rate 5.2 K s™'
(Reproduced with permission from Surf. Sci., 1988, 195, 207)
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15t —order desorption

* The peak temperature is
coverage-independent
« Asymmetric peak shape

B RT l:ln(ﬂ> -3 46}
des’ i p ﬁ ;

~ 31 kT,
Ex: T,= 300 — Ege, = 0.81 eV.

2"d —order desorption

» Peak shift to a lower T with
Increasing coverage
* Almost-symmetric peak
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