#### **Conditional Formation Constant**

- The formation constant  $K_f = [MY^{n-4}]/[M^{n+}][Y^{4-}]$ 
  - $\rightarrow$  describes the reaction between Y<sup>4-</sup> and a metal ion (M<sup>n+</sup>).
- (Figure 12-7) most EDTA is not Y<sup>4-</sup> below pH 10.37.
  - $\rightarrow$  The species HY<sup>3-</sup>, H<sub>2</sub>Y<sup>2-</sup>, and so on, predominate at lower pH.
- From the definition  $\alpha_{Y4-} = [Y^{4-}]/[EDTA]$ ,
  - $\rightarrow$  we can express the concentration of Y<sup>4-</sup> as

$$[Y^{4-}] = \alpha_{Y^{4-}}[EDTA]$$

- → where [EDTA] is the total concentration of all EDTA species not bound to metal ion.
- The formation constant can now be rewritten as

$$K_{\rm f} = \frac{[{\rm MY}^{n-4}]}{[{\rm M}^{n+}][{\rm Y}^{4-}]} = \frac{[{\rm MY}^{n-4}]}{[{\rm M}^{n+}]\alpha_{{\rm Y}^{4-}}[{\rm EDTA}]}$$

- If the pH is fixed by a buffer,
  - $\rightarrow$  then  $\alpha_{Y4-}$  is a constant that can be combined with  $K_f$ :

$$K_{\rm f} = \frac{[{\rm MY}^{n-4}]}{[{\rm M}^{n+}][{\rm Y}^{4-}]} = \frac{[{\rm MY}^{n-4}]}{[{\rm M}^{n+}]\alpha_{{\rm Y}^{4-}}[{\rm EDTA}]}$$

Conditional formation constant: 
$$K'_{\rm f} = \alpha_{\rm Y^{4-}} K_{\rm f} = \frac{[{\rm MY}^{n-4}]}{[{\rm M}^{n+}][{\rm EDTA}]}$$

- The number  $K_f' = \alpha_{Y4} K_f$ 
  - → called the **conditional formation constant**, or the effective formation constant.
- It describes the formation of MY<sup>n-4</sup> at any particular pH.

#### **EXAMPLE** Using the Conditional Formation Constant

The formation constant in Table 12-2 for CaY<sup>2-</sup> is 10<sup>10.65</sup>. Calculate the concentration of free Ca<sup>2+</sup> in a solution of 0.10 M CaY<sup>2-</sup> at pH 10.00 and at pH 6.00.

**Solution** The complex formation reaction is

$$Ca^{2+} + EDTA \rightleftharpoons CaY^{2-}$$
  $K'_f = \alpha_{Y^{4-}}K_f$ 

where EDTA on the left side of the equation refers to all forms of unbound EDTA ( $Y^{4-}$ ,  $HY^{3-}$ ,  $H_2Y^{2-}$ ,  $H_3Y^{-}$ , and so on). Using  $\alpha_{Y^{4-}}$  from Table 12-1, we find

At pH 10.00: 
$$K'_{\rm f} = (0.30)(10^{10.65}) = 1.3_4 \times 10^{10}$$

At pH 6.00: 
$$K'_{\rm f} = (1.8 \times 10^{-5})(10^{10.65}) = 8.0 \times 10^{5}$$

Dissociation of CaY<sup>2-</sup> must produce equal quantities of Ca<sup>2+</sup> and EDTA, so we can write

|                           | Ca <sup>2+</sup> + | EDTA | $\rightleftharpoons$ | CaY <sup>2-</sup> |
|---------------------------|--------------------|------|----------------------|-------------------|
| Initial concentration (M) | 0                  | 0    |                      | 0.10              |
| Final concentration (M)   | X                  | X    |                      | 0.10 - x          |

$$\frac{\text{[CaY}^{2-}]}{\text{[Ca}^{2+}]\text{[EDTA]}} = \frac{0.10 - x}{x^2} = K'_{\text{f}} = 1.3_4 \times 10^{10} \text{ at pH } 10.00$$
$$= 8.0 \times 10^5 \text{ at pH } 6.00$$

Solving for x (= [Ca<sup>2+</sup>] = [EDTA]), we find [Ca<sup>2+</sup>] =  $2.7 \times 10^{-6}$  M at pH 10.00 and  $3.5 \times 10^{-4}$  M at pH 6.00. Using the conditional formation constant at a fixed pH, we treat the dissociated EDTA as if it were a single species.

TEST YOURSELF Find [Ca<sup>2+</sup>] in 0.10 M CaY<sup>2-</sup> at pH 8.00 (Answer:  $2.3 \times 10^{-5}$  M)

- For a titration reaction to be effective,
  - → it must go "to completion" (say, 99.9%),
  - → means that the equilibrium constant is large
  - → the analyte and titrant are essentially completely reacted at the equivalence point.
- You can see from the example that a metal-EDTA complex becomes less stable at lower pH.

### 12.3 EDTA Titration Curves

- In this section,
  - $\rightarrow$  we calculate the concentration of free M<sup>n+</sup> during its titration with EDTA.
- The titration reaction is.

$$M^{n+} + EDTA \rightleftharpoons MY^{n-4}$$
  $K'_f = \alpha_{Y^{4-}}K_f$ 

- If K<sub>f</sub>' is large,
  - → we can consider the reaction to be complete at each point in the titration.
- The titration curve
  - $\rightarrow$  a graph of pM (= -log[M<sup>n+</sup>]) vs. the volume of added EDTA.
  - → analogous to plotting pH vs. volume of titrant in an acid-base titration.
- There are three natural regions of the titration curve in Figure 12-11.

See Figure 12-11

### **Region 1: Before the Equivalence Point**

- In this region,
  - $\rightarrow$  there is excess M<sup>n+</sup> left in solution after the EDTA has been consumed.
- The concentration of free metal ion
  - $\rightarrow$  equal to the concentration of excess, unreacted M<sup>n+</sup>.
- The dissociation of MY<sup>n-4</sup> is negligible.

# **Region 2: At the Equivalence Point**

- There is exactly as much EDTA as metal in the solution.
- We can treat the solution as if it had been made by dissolving pure MY<sup>n-4</sup>.
- Some free M<sup>n+</sup> is generated by the slight dissociation of MY<sup>n-4</sup>:

$$MY^{n-4} \rightleftharpoons M^{n+} + EDTA$$

- → In this reaction, EDTA represents free EDTA in all its forms.
- $\rightarrow$  At the equivalence point, [M<sup>n+</sup>] = [EDTA].

# **Region 3: After the Equivalence Point**

- Now there is excess EDTA,
  - $\rightarrow$  virtually all the metal ion is in the form MY<sup>n-4</sup>.
- The concentration of free EDTA
  - → can be equated to the concentration of excess EDTA added after the equivalence point.

#### **Titration Calculations**

- We want to make a graph of pCa<sup>2+</sup> (= -log[Ca<sup>2+</sup>]) vs. milliliters of added EDTA.
- Let's calculate the shape of the titration curve for the reaction of 50.0 mL of 0.040 0 M Ca<sup>2+</sup> (buffered to pH 10.00) with 0.080 0 M EDTA:

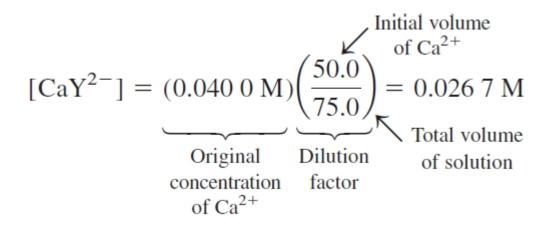
$$\text{Ca}^{2+} + \text{EDTA} \to \text{CaY}^{2-}$$

$$K'_{\text{f}} = \alpha_{\text{Y}^{4-}} K_{\text{f}} = (0.30)(10^{10.65}) = 1.3_4 \times 10^{10}$$

- Because K<sub>f</sub>' is large,
  - → it is reasonable to say that the reaction goes to completion with each addition of titrant.
- The equivalence volume is 25.0 mL.

### **Region 1: Before the Equivalence Point**

- Before the equivalence point,
  - $\rightarrow$  there is excess unreacted Ca<sup>2+</sup>.
- Consider the addition of 5.0 mL of EDTA.
- Because the equivalence point requires 25.0 mL of EDTA,
  - → one-fifth of the Ca<sup>2+</sup> will be consumed and four-fifths remains.


$$[Ca^{2+}] = \left(\frac{25.0 - 5.0}{25.0}\right) (0.040 \text{ 0 M}) \left(\frac{50.0}{55.0}\right)$$
Fraction Original Dilution of solution remaining concentration factor  $(= 4/5)$  of  $Ca^{2+}$ 

$$= 0.029 \text{ 1 M} \Rightarrow pCa^{2+} = -\log[Ca^{2+}] = 1.54$$

- In a similar manner,
  - $\rightarrow$  we could calculate pCa<sup>2+</sup> for any volume of EDTA less than 25.0 mL.

### **Region 2: At the Equivalence Point**

- Virtually all the metal is in the form CaY<sup>2-</sup>.
- Assuming no dissociation,
  - $\rightarrow$  the concentration of CaY<sup>2-</sup> is equal to the original concentration of Ca<sup>2+</sup>, with a correction for dilution.



- At the equivalence point,
  - $\rightarrow$  the major species is CaY<sup>2-</sup>, in equilibrium with small, equal amounts of free Ca<sup>2+</sup> and EDTA.
- The concentration of free Ca<sup>2+</sup> is calculated as:

|                           | Ca <sup>2+</sup> + | EDTA ⇌ | CaY <sup>2-</sup> |
|---------------------------|--------------------|--------|-------------------|
| Initial concentration (M) | _                  | _      | 0.026 7           |
| Final concentration (M)   | X                  | X      | 0.0267 - x        |

$$\frac{[\text{CaY}^{2-}]}{[\text{Ca}^{2+}][\text{EDTA}]} = K'_{\text{f}} = 1.3_4 \times 10^{10}$$

$$\frac{0.0267 - x}{x^2} = 1.3_4 \times 10^{10} \Rightarrow x = 1.4 \times 10^{-6} \text{ M}$$

$$p\text{Ca}^{2+} = -\log[\text{Ca}^{2+}] = -\log x = 5.85$$

### **Region 3: After the Equivalence Point**

- In this region,
  - $\rightarrow$  virtually all the metal is in the form CaY<sup>2-</sup>,
  - → there is excess, unreacted EDTA.
- For example, at 26.0 mL, there is 1.0 mL of excess EDTA.
  - $\rightarrow$  The concentrations of CaY<sup>2-</sup> and excess EDTA are easily calculated.

[EDTA] = 
$$(0.080 \text{ 0 M})$$
  $\left(\frac{1.0}{76.0}\right)$  =  $1.05 \times 10^{-3} \text{ M}$ 
Original Dilution factor Total volume of solution of EDTA

$$[CaY^{2-}] = (0.040 \text{ 0 M}) \underbrace{\left(\frac{50.0}{76.0}\right)^{\text{Original volume}}_{\text{of } Ca^{2+}} = 2.63 \times 10^{-2} \text{ M}}_{\text{Original concentration of } Ca^{2+}} = 0.040 \text{ 0 M}$$
Original Dilution of solution of Solution of Ca<sup>2+</sup>

The concentration of Ca<sup>2+</sup> is governed by

$$\frac{[\text{CaY}^{2^{-}}]}{[\text{Ca}^{2^{+}}][\text{EDTA}]} = K'_{\text{f}} = 1.3_{4} \times 10^{10}$$

$$\frac{[2.63 \times 10^{-2}]}{[\text{Ca}^{2^{+}}](1.05 \times 10^{-3})} = 1.3_{4} \times 10^{10}$$

$$[\text{Ca}^{2^{+}}] = 1.9 \times 10^{-9} \text{ M} \implies \text{pCa}^{2^{+}} = 8.73$$

**The Titration Curve** 

See Figure 12-12

# **End-point detection methods:**

- 1. Metal ion indicators
- 2. Mercury electrode
- 3. Ion-selective electrode
- 4. Glass (pH) electrode

# **Analytical Chemistry**

Chapter 14. Fundamentals of Electrochemistry Chapter 15. Electrodes and Potentiometry

### **Introduction and Overview of Electrode Process**

→ the terms and concepts for describing electrochemical reactions

### **Electrochemical Cells and Reactions**

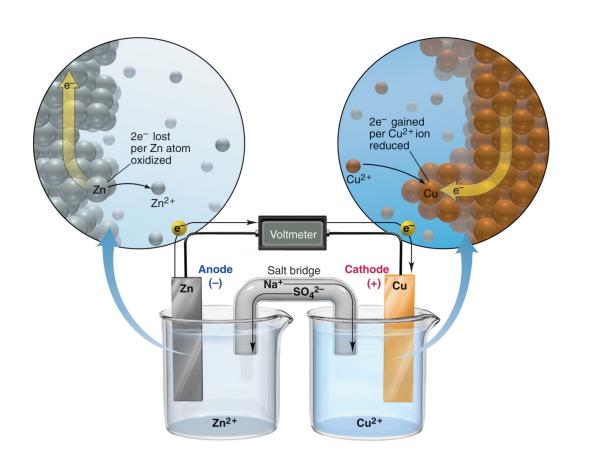
### **Electrochemistry**

The branch of chemistry

→ concerned with the interrelation of electrical and chemical effects.

Deals with the study of

- → chemical changes caused by the passage of an electric current
- → the production of electrical energy by chemical reactions.


electrophoresis, corrosion, electrochromic displays, electro analytical sensors, batteries, fuel cells, and electroplating

### **Electrochemical Cells and Reactions**

Generally defined as two electrodes separated by at least one electrolyte phase

A difference in electric potential (cell potential)

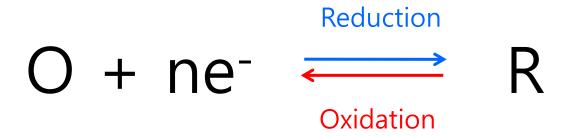
> can be measured between the electrodes in an electrochemical cell



Oxidation and Reduction

$$Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$$

### **Electrode**


#### **Electrode**

Charge is transported through the electrode

- → by the movement of electrons (and holes).
  Typical electrode materials include
- → solid metals (e.g., Pt, Au), liquid metals (Hg, amalgams), carbon (graphite), and semiconductors (indium-tin oxide, Si).

Two types of electrode

→ anode (<del>negative electrode</del>) and cathode (<del>positive electrode</del>)



Anode – electrode where oxidation (losing e<sup>-</sup>) occurs Cathode – electrode where reduction (accepting e<sup>-</sup>) occurs

# **Electrolyte**

### **Electrolyte**

In the electrolyte phase,

→ charge is carried by the movement of ions.

To be useful in an electrochemical cell,

- → the electrolyte must have sufficiently low resistance (i.e., sufficiently ionically conductive)
- → indicating that the movement of ions is sufficiently fast

The most common electrolytes

: liquid solutions containing ionic species, such as, H<sup>+</sup>, Na<sup>+</sup>, Cl<sup>-</sup>, in either water or a nonaqueous solvent.

# **Electrochemical Cells—Types and Definitions**

Two types of Electrochemical cells

#### 1) Galvanic cell

- → Reactions occur spontaneously at the electrodes when they are connected externally by a conductor
- → These cells are often employed in converting chemical energy into electrical energy.
- → Galvanic cells of commercial importance include primary batteries and fuel cells

### 2) Electrolytic cell

- → Reactions are driven by the imposition of an external voltage greater than the open-circuit potential of the cell
- → Electroplating, production of chlorine, charging process of rechargeable batteries

### Cell potential

→ a measure of the energy available to drive charge externally between the electrodes

Measured in volts (V),

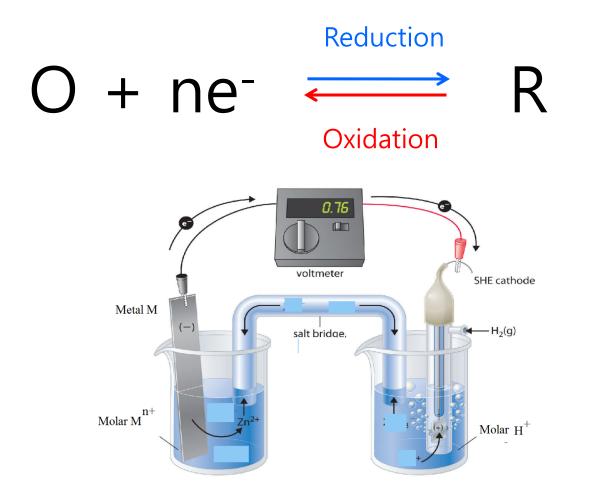
- $\rightarrow$  where 1 V = 1 joule/coulomb (J/C)
- $\rightarrow$  unit of charge: coulombs (C), where 1 C = 6.24 X 10<sup>18</sup> electrons

1 V

→ produce 1 J when 1 C of electrons pass through the external circuit

### Current, i

: the rate of flow of coulombs (or electrons)


: unit of a current = ampere (A)

: 1 A = 1 C/s.

### Number of electrons

The number of electrons that cross an interface

: stoichiometrically proportional to the extent of the chemical reaction (i.e., to the amounts of reactant consumed and product generated).



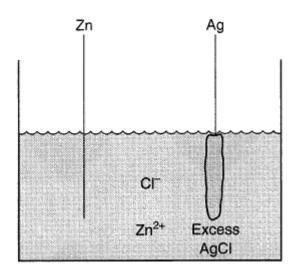
# **Number of electrons**

The number of electrons is measured in terms of the total charge, Q, passed in the circuit.

The magnitude of the charge of a single electron

: 1.602 x 10<sup>-19</sup> C

A mole of electrons = a charge of  $(1.602 \times 10^{-19} \text{ C})(6.022 \times 10^{23} \text{ mol}^{-1}) = 9.649 \times 10^{4}$ 

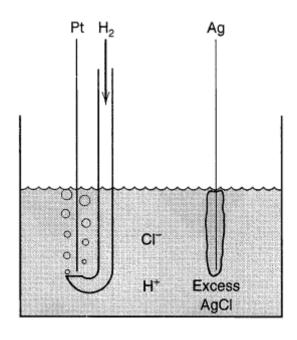

: called the Faraday constant, F.

### Faraday's law

: relationship between charge and amount of product formed

: the passage of 96,485.4 C  $\rightarrow$  1 mole of reaction for a one-electron reaction.

A shorthand notation for expressing the structure of electrochemical cells



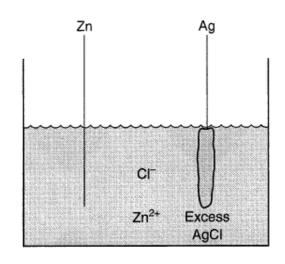

- → Slash: represents a phase boundary
- → Comma: separates two components in the same phase.
- → Double slash

: represents a phase boundary whose potential is regarded as a negligible component of the overall cell potential.

When a gaseous phase is involved,

→ it is written adjacent to its corresponding conducting element.




Pt/H<sub>2</sub>/H<sup>+</sup>, Cl<sup>-</sup>/AgCl/Ag

The overall chemical reaction taking place in a cell is made up of two independent half-reactions

→ Describe the real chemical changes at the two electrodes.

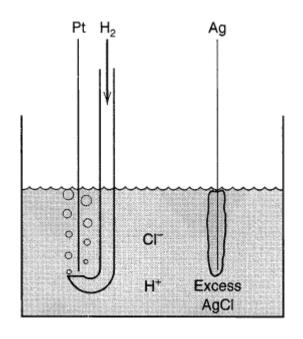
Each half reaction (and, consequently, the chemical composition of the system near the electrodes)

→ responds to the interfacial potential difference at the corresponding electrode.



Zn/Zn<sup>2+</sup>, Cl<sup>-</sup>/AgCl/Ag

Anode half-reaction:


$$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$$

Cathode half-reaction:

$$2AgCl(s) + 2e^{-} \longrightarrow 2Ag(s) + 2Cl^{-}(aq)$$

Overall cell reaction:

$$Zn(s) + 2AgCl(s) \longrightarrow Zn^{2+}(aq) + 2Ag(s) + 2Cl^{-}(aq)$$

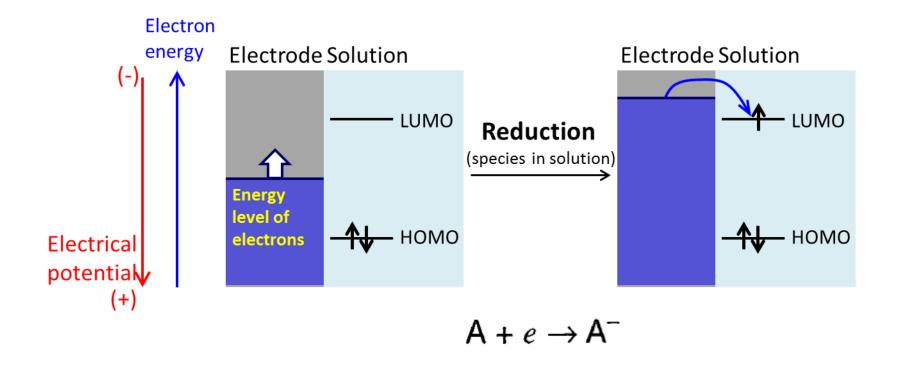


Pt/H<sub>2</sub>/H<sup>+</sup>, Cl<sup>-</sup>/AgCl/Ag

Anode half-reaction:

$$H_2(g) \longrightarrow 2H^+(aq) + 2e^-$$

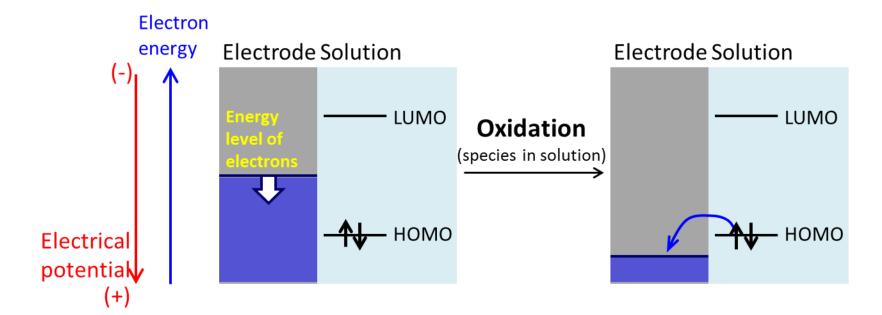
Cathode half-reaction:


$$2AgCl(s) + 2e^{-} \longrightarrow 2Ag(s) + 2Cl^{-}(aq)$$

Overall cell reaction:  $H_2(g) + 2AgCl(s) \longrightarrow 2H^+(aq) + 2Ag(s) + 2Cl^-(aq)$ 

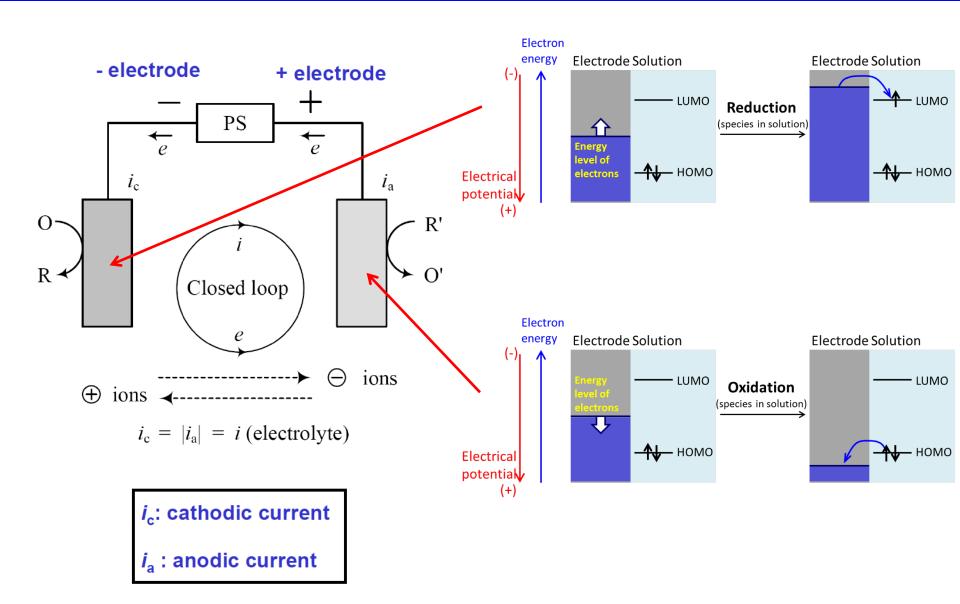
# **Charge transport: reduction**

By driving the electrode to more negative potentials using a power supply


- → The energy of the electrons is raised
- → They can reach a level high enough to transfer into vacant electronic states on species in the electrolyte
- → In that case, a flow of electrons from electrode to solution (a reduction current) occurs



# **Charge transport: oxidation**


Similarly, the energy of the electrons can be lowered by imposing a more positive potential

- → at some point, electrons on solutes in the electrolyte will transfer to a more stable energy on the electrode.
- → The electron flow from solution to electrode: oxidation current



$$A - e \rightarrow A^+$$

# Current passes through "closed loop"



# Standard electrode potentials

The critical potentials at which these processes occur

- → related to the standard potentials, E°, for the specific chemical substances in the system.
- → Potentials at standard states (1M, 25°C)

TABLE C.1 Selected Standard Electrode Potentials in Aqueous Solutions at 25°C in V vs. NHE<sup>a</sup>

| Reaction                                                        | Potential, V |
|-----------------------------------------------------------------|--------------|
| $Ag^+ + e \rightleftharpoons Ag$                                | 0.7991       |
| $AgBr + e \rightleftharpoons Ag + Br^{-}$                       | 0.0711       |
| $AgCl + e \rightleftharpoons Ag + Cl^-$                         | 0.2223       |
| $AgI + e \rightleftharpoons Ag + I^-$                           | -0.1522      |
| $Ag_2O + H_2O + 2e \rightleftharpoons 2Ag + 2OH^-$              | 0.342        |
| $Al^{3+} + 3e \rightleftharpoons Al$                            | -1.676       |
| $Au^+ + e \rightleftharpoons Au$                                | 1.83         |
| $Au^{3+} + 2e \rightleftharpoons Au^{+}$                        | 1.36         |
| $p$ -benzoquinone + $2H^+ + 2e \rightleftharpoons hydroquinone$ | 0.6992       |
| $Br_2(aq) + 2e \rightleftharpoons 2Br^-$                        | 1.0874       |
| $Ca^{2+} + 2e \rightleftharpoons Ca$                            | -2.84        |
| $Cd^{2+} + 2e \rightleftharpoons Cd$                            | -0.4025      |
| $Cd^{2+} + 2e \rightleftharpoons Cd(Hg)$                        | -0.3515      |
| $Ce^{4+} + e \rightleftharpoons Ce^{3+}$                        | 1.72         |
| $Cl_2(g) + 2e \rightleftharpoons 2Cl^-$                         | 1.3583       |
| $HCIO + H^+ + e \rightleftharpoons \frac{1}{2}Cl_2 + H_2O$      | 1.630        |
| $Co^{2+} + 2e \rightleftharpoons Co$                            | -0.277       |
| $Co^{3+} + e \rightleftharpoons Co^{2+}$                        | 1.92         |
| $Cr^{2+} + 2e \rightleftharpoons Cr$                            | -0.90        |
| $Cr^{3+} + e \rightleftharpoons Cr^{2+}$                        | -0.424       |
| $Cr_2O_7^{2-} + 14H^+ + 6e \rightleftharpoons 2Cr^{3+} + 7H_2O$ | 1.36         |
| $Cu^+ + e \rightleftharpoons Cu$                                | 0.520        |
| $Cu^{2+} + 2CN^{-} + e \rightleftharpoons Cu(CN)_{2}^{-}$       | 1.12         |
| $Cu^{2+} + e \rightleftharpoons Cu^{+}$                         | 0.159        |
| $Cu^{2+} + 2e \rightleftharpoons Cu$                            | 0.340        |
| $Cu^{2+} + 2e \rightleftharpoons Cu(Hg)$                        | 0.345        |
| $\mathrm{Eu}^{3+} + e \rightleftharpoons \mathrm{Eu}^{2+}$      | -0.35        |
| $1/2F_2 + H^+ + e \rightleftharpoons HF$                        | 3.053        |
| $Fe^{2+} + 2e \rightleftharpoons Fe$                            | -0.44        |
| $Fe^{3+} + e \rightleftharpoons Fe^{2+}$                        | 0.771        |
| $Fe(CN)_6^{3-} + e \rightleftharpoons Fe(CN)_6^{4-}$            | 0.3610       |

(continued)

| TABLE | C.1 | (continued) |
|-------|-----|-------------|
|-------|-----|-------------|

| Reaction                                                           | Potential, V |
|--------------------------------------------------------------------|--------------|
| $2H^+ + 2e \rightleftharpoons H_2$                                 | (0.0000)     |
| $2H_2O + 2e \rightleftharpoons H_2 + 2OH^-$                        | -0.828       |
| $H_2O_2 + 2H^+ + 2e \rightleftharpoons 2H_2O$                      | 1.763        |
| $2Hg^{2+} + 2e \rightleftharpoons Hg_2^{2+}$                       | 0.9110       |
| $Hg_2^{2+} + 2e \rightleftharpoons 2Hg$                            | 0.7960       |
| $Hg_2Cl_2 + 2e \rightleftharpoons 2Hg + 2Cl^-$                     | 0.26816      |
| $Hg_2Cl_2 + 2e \rightleftharpoons 2Hg + 2Cl^-$ (sat'd. KCl)        | 0.2415       |
| $HgO + H_2O + 2e \rightleftharpoons Hg + 2OH^-$                    | 0.0977       |
| $Hg_2SO_4 + 2e \rightleftharpoons 2Hg + SO_4^2$                    | 0.613        |
| $I_2 + 2e \rightleftharpoons 2I^-$                                 | 0.5355       |
| $I_3^- + 2e \rightleftharpoons 3I^-$                               | 0.536        |
| $K^+ + e \rightleftharpoons K$                                     | -2.925       |
| $Li^+ + e \rightleftharpoons Li$                                   | -3.045       |
| $Mg^{2+} + 2e \rightleftharpoons Mg$                               | -2.356       |
| $Mn^{2+} + 2e \rightleftharpoons Mn$                               | $-1.18_{-}$  |
| $Mn^{3+} + e \rightleftharpoons Mn^{2+}$                           | 1.5          |
| $MnO_2 + 4H^+ + 2e \rightleftharpoons Mn^{2+} + 2H_2O$             | 1.23         |
| $MnO_4^- + 8H^+ + 5e \rightleftharpoons Mn^{2+} + 4H_2O$           | 1.51         |
| $Na^+ + e \rightleftharpoons Na$                                   | -2.714       |
| $Ni^{2+} + 2e \rightleftharpoons Ni$                               | -0.257       |
| $Ni(OH)_2 + 2e \rightleftharpoons Ni + 2OH^-$                      | -0.72        |
| $O_2 + 2H^+ + 2e \rightleftharpoons H_2O_2$                        | 0.695        |
| $O_2 + 4H^+ + 4e \rightleftharpoons 2H_2O$                         | (1.229)      |
| $O_2 + 2H_2O + 4e \rightleftharpoons 4OH^-$                        | 0.401        |
| $O_3 + 2H^+ + 2e \rightleftharpoons O_2 + H_2O$                    | 2.075        |
| $Pb^{2+} + 2e \rightleftharpoons Pb$                               | -0.1251      |
| $Pb^{2+} + 2e \rightleftharpoons Pb(Hg)$                           | -0.1205      |
| $PbO_2 + 4H^+ + 2e \rightleftharpoons Pb^{2+} + 2H_2O$             | 1.468        |
| $PbO_2 + SO_4^{2-} + 4H^+ + 2e \rightleftharpoons PbSO_4 + 2H_2O$  | 1.698        |
| $PbSO_4 + 2e \rightleftharpoons Pb + SO_4^{2-}$                    | -0.3505      |
| $Pd^{2+} + 2e \rightleftharpoons Pd$                               | 0.915        |
| $Pt^{2+} + 2e \rightleftharpoons Pt$                               | 1.188        |
| $PtCl_4^{2-} + 2e \rightleftharpoons Pt + 4Cl^{-}$                 | 0.758        |
| $PtCl_6^{2-} + 2e \rightleftharpoons PtCl_4^{2-} + 2Cl^{-}$        | 0.726        |
| $Ru(NH_3)_6^{3+} + e \rightleftharpoons Ru(NH_3)_6^{2+}$           | 0.10         |
| $S + 2e \rightleftharpoons S^{2-}$                                 | -0.447       |
| $\operatorname{Sn}^{2+} + 2e \rightleftharpoons \operatorname{Sn}$ | (-0.1375)    |
| $\mathrm{Sn}^{4+} + 2e \rightleftharpoons \mathrm{Sn}^{2+}$        | 0.15         |
| $T1^+ + e \rightleftharpoons T1$                                   | -0.3363      |
| $T1^+ + e \rightleftharpoons Tl(Hg)$                               | -0.3338      |
| $TI^{3+} + 2e \rightleftharpoons TI^{+}$                           | 1.25         |
| $U^{3+} + 3e \rightleftharpoons U$                                 | -1.66        |
| 0 + 36 4 0                                                         |              |
| $U^{4+} + e \rightleftharpoons U^{3+}$                             | -0.52        |
|                                                                    | 0.273        |

(continued)