
3-3 Types of Error

§ Every measurement has some uncertainty, which is called experimental error. 

§ Conclusions can be expressed with a high or a low degree of confidence, but 

never with complete certainty.

§ Experimental error is classified as either systematic or random.

Systematic Error

§ Systematic error, also called determinate error, arises from a flaw in 

equipment or the design of an experiment. 

§ If you conduct the experiment again in exactly the same manner, 

à the error is reproducible. 

à In principle, systematic error can be discovered and corrected, although this 

may not be easy.



§ For example, 

à a pH meter that has been standardized incorrectly produces a systematic

error. 

§ Suppose you think that the pH of the buffer used to standardize the meter is 

7.00, but it is really 7.08. 

à Then all your pH readings will be lowered by 0.08 pH units 

à When you read a pH of 5.60, the actual pH of the sample is 5.68. 

à This systematic error could be discovered by using a second buffer of known 

pH to test the meter.

§ A key feature of systematic error is that it is reproducible. 

à Systematic error may always be positive in some regions and always 

negative in others. 

à With care and cleverness, you can detect and correct a systematic error.



Random Error 

§ Random error, also called indeterminate error, arises from the effects of 

uncontrolled (and maybe uncontrollable) variables in the measurement. 

à Random error has an equal chance of being positive or negative. 

à It is always present and cannot be corrected. 

For examples,

§ There is random error associated with reading a scale. 

à One person reading the same instrument several times might report several 

different readings.

§ Another random error results from electrical noise in an instrument. 

à Positive and negative fluctuations occur with approximately equal frequency 

and cannot be completely eliminated



Precision and Accuracy 

§ Precision describes the reproducibility of a result. 

§ If you measure a quantity several times and the values agree closely with 

one another, 

à your measurement is precise. 

§ If the values vary widely, 

à your measurement is not precise. 



Precision and Accuracy 

§ Accuracy describes how close a measured value is to the “true” value. 

§ If a known standard is available (such as a Standard Reference Material), 

accuracy is how close your value is to the known value

§ A measurement might be reproducible, but wrong. 

à If you made a mistake preparing a solution for a titration, you might do a 

series of reproducible titrations but report an incorrect result because the 

concentration of the titrating solution was not what you intended. 

à In this case, the precision is good but the accuracy is poor.



Absolute and Relative Uncertainty 

§ Absolute uncertainty expresses the margin of uncertainty associated with a 

measurement. 

§ If the estimated uncertainty in reading a calibrated buret is ± 0.02 ml 

à we say that ±0.02 ml is the absolute uncertainty associated with the reading.

§ Relative uncertainty compares the size of the absolute uncertainty with the 

size of its associated measurement. 

§ The relative uncertainty of a buret reading of 12.35 ± 0.02 ml is a 

dimensionless quotient:



§ The percent relative uncertainty is simply:

§ If the absolute uncertainty in reading a buret is constant at ± 0.02 ml,

à the percent relative uncertainty is 0.2% for a volume of 10 mL and 0.1% for 

a volume of 20 mL.



3-4 Propagation of Uncertainty from Random Error

§ We can usually estimate or measure the random error associated with a 

measurement, such as the length of an object or the temperature of a solution.

§ The uncertainty might be based on how well we can read an instrument or 

on our experience with a particular method. 

§ If possible, uncertainty is expressed as the standard deviation or as a 

confidence interval, which are discussed in Chapter 4. 

§ This section applies only to random error. 



§ For most experiments, we need to perform arithmetic operations on several 

numbers, each of which has a random error. 

§ The most likely uncertainty in the result is not simply the sum of the 

individual errors, 

à because some of them are likely to be positive and some negative. 

à We expect some cancellation of errors.



Addition and Subtraction

§ Suppose you wish to perform the following arithmetic, in which the 

experimental uncertainties, designated e1, e2, and e3 are given in parentheses.

§ The arithmetic answer is 3.06. 

à But what is the uncertainty associated with this result?

§ For addition and subtraction, the uncertainty in the answer is obtained from 

the absolute uncertainties of the individual terms as follows:



§ The absolute uncertainty e4 is ± 0.04

à we express the answer as 3.06 ± 0.04

§ Although there is only one significant figure in the uncertainty, 

à we wrote it initially as with the first insignificant figure subscripted. 

à we retain one or more insignificant figures to avoid introducing round-off 

errors into later calculations through the number 



§ To find the percent relative uncertainty in the sum, we write

§ The uncertainty, 0.041 is 1.3 % of the result, 3.06. 

à The subscript 3 in 1.3% is not significant.

§ When we express the final result,



Multiplication and Division

§ For multiplication and division, 

à first convert all uncertainties into percent relative uncertainties.

à Then calculate the error of the product or quotient as follows:

§ For example, consider the following operations:

§ First convert absolute uncertainties into percent relative uncertainties.



§ Then find the percent relative uncertainty of the answer by using Equation 3-

6.

§ The answer is

§ To convert relative uncertainty into absolute uncertainty, 

à find 4.0 % of the answer.



§ The answer is 

§ Finally, drop the insignificant digits.

à The denominator of the original problem, 0.59, limits the answer to two 

digits.



Mixed Operations

§ Now consider a computation containing subtraction and division:

1)  Work out the difference in the numerator, using absolute uncertainties. 

2) Convert into percent relative uncertainties



§ The percent relative uncertainty is 3.3% 

à so the absolute uncertainty is 0.033 ｘ 0.6190 = 0.020

§ The final answer can be written as

§ (Caution) The result of a calculation ought to be written in a manner 

consistent with its uncertainty.

à Because the uncertainty begins in the 0.01 decimal place, 

it is reasonable to round the result to the 0.01 decimal place:



The Real Rule for Significant Figures

§ The real rule: The first uncertain figure is the last significant figure.

à The first digit of the absolute uncertainty is the last significant digit in the 

answer. 

§ For example, in the quotient

à the uncertainty (± 0.000 2) occurs in the fourth decimal place. 

à even though the original data have four figures, 

the answer 0.094 6 is properly expressed with three significant figures 

0.09456 (± 0.000 2)



§ Even though the dividend and divisor each have three figures, 

à The quotient is expressed with four figures

§ The quotient 82/80 is better written as 1.02 than 1.0, if we do not 

know its uncertainty.

à The actual uncertainty lies in the second decimal place, not the first 

decimal place, if uncertainties are in ones place

à If I write 1.0, 

you can surmise that the uncertainty is at least 1.0 ± 0.1 = ±10%

§ Therefore, when an answer lies between 1 and 2,

à It is all right to keep one extra digit 



Exponents and Logarithms

§ For the function y = xa,

à the percent relative uncertainty in y (%ey) is equal to a times the percent 

relative uncertainty in x (%ex)

§ For the function y = x1/2,

à a 2% uncertainty in x will yield a (1/2)(2%) = 1% uncertainty in y.

§ If y = x2, 

à a 3% uncertainty in x leads to a (2)(3%) = 6% uncertainty in y



§ If y is the base 10 logarithm of x, 

à then the absolute uncertainty in y (ey) is proportional to the relative 

uncertainty in x (ex/x):

§ Now consider y = antilog x, which is the same as saying y = 10x

à the relative uncertainty in y is proportional to the absolute uncertainty in 

x.



§ Table 3-1 summarizes rules for propagation of uncertainty. 

à You need not memorize the rules for exponents, logs, and antilogs, but 

you should be able to use them.

See Table 3-1



Analytical Chemistry

Chapter 4. Statistics



§ Standard deviation and error curve

§ Confidence interval

§ Student t

§ The method of least squares

§ Calibration curves



Statistics

§ All measurements contain experimental error, 

à so it is never possible to be completely certain of a result.

à Statistics gives us tools to accept conclusions that have a high probability

of being correct and to reject conclusions that do not



Count on “normal” days Today’s count

5.1

5.3

4.8 ´ 106 cells/µL

5.4

5.2

5.6 ´ 106 cells/µL

§ “Is my red blood cell count today higher than usual?” 

§ If today’s count is twice as high as usual, 

à it is probably truly higher than normal. 

§ But what if the “high” count is not excessively above “normal” counts?

à To scientifically answer the question, we need statistics



4-1. Gaussian Distribution

§ If an experiment is repeated a great many times and if the errors are purely 

random, 

à the results tend to cluster symmetrically about the average value 

§ The more times the experiment is repeated, 

à the more closely the results approach an ideal smooth curve 

à the Gaussian distribution. 

See Fig 4-1



Mean Value and Standard Deviation

§ In the hypothetical case, 

à A manufacturer tested the lifetimes of 4768 electric light bulbs. 

à The bar graph shows the number of bulbs with a lifetime in each 20-h 

interval.

§ Because variations in the construction of light bulbs, such as filament 

thickness and quality of attachments, are random,

à Lifetimes approximate a Gaussian distribution that best fits the data. 

See Fig 4-1



§ Light bulb lifetimes, and the corresponding Gaussian curve, are characterized 

by two parameters. 

1) Arithmetic mean (also called the average) 

à the sum of the measured values (xi) divided by n, the number of measurements:

2) Standard deviation, s, 

à measures how closely the data are clustered about the mean.

à a measure of the uncertainty of individual measurements

à the smaller the standard deviation, 

the more closely the data are clustered about the mean

(n-1): the degrees of freedom



Standard Deviation and Probability

§ The formula for a Gaussian curve is
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x : values of individual measurements

µ : mean for an infinite set of data 

(the population mean)

x-µ : deviation from the mean

y : frequency of occurrence for each value of x-µ

σ : standard deviation for an infinite set of data 

(the population standard deviation)

: normalization factor 

à which guarantees that the area under the entire curve is unityps 2
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See Fig 4-3
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§ It is useful to express deviations from 

the mean value in multiples, z, of the 

standard deviation
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§ The probability of measuring z in a certain range is equal to the area of that 

range. 

§ For example, the probability of observing z between -2 and -1 is 0.136.

See Fig 4-3



The standard deviation measures the width of the Gaussian curve

§ In any Gaussian curve, 

à 68.3% of the area is in the range from μ - 1σ to µ + 1σ

à more than two-thirds of the measurements are expected to lie 

within one standard deviation of the mean. 

§ 95.5% of the area lies within µ± 2σ

§ 99.7% of the area lies within µ± 3σ



§ The mean gives the center of the distribution.

§ The standard deviation measures the width of 

the distribution

à The larger the value of s, the broader the 

curve. 

§ An experiment that produces a small standard 

deviation is more precise than one that 

produces a large standard deviation. 

§ Greater precision does not necessarily imply 

greater accuracy, which means nearness to the 

“truth.”

See Fig 4-2



§ Suppose that you use two different techniques to measure sulfur in coal: 

Method A has a standard deviation of 0.4%, and method B has a standard 

deviation of 1.1%. 

§ You can expect that approximately two-thirds of measurements from 

method A will lie within 0.4% of the mean. 

§ For method B, two-thirds will lie within 1.1% of the mean. 

§ You can say that method A is more precise.



§ Example: Mean and Standard Deviation

à Find the average and the standard deviation for 821, 783, 834, and 855.

§ We commonly express experimental results in the form: 

à mean ± standard deviation

à We will retain one or more insignificant digits to avoid introducing

round-off errors into subsequent work


