The standard deviation of the mean, σ_n

 \rightarrow a measure of the uncertainty of the mean of n measurements.

$$\sigma_n = \frac{\sigma}{\sqrt{n}}$$

Sample	Method 1	Method 2
number	(µg/L)	(µg/L)
1	17.2	14.2
2	23.1	27.9
3	28.5	21.2
4	15.3	15.9
5	23.1	32.1
6	32.5	22.0
7	39.5	37.0
8	38.7	41.5
9	52.5	42.6
10	42.6	42.8
11	52.7	41.1

.

- Uncertainty decreases
 - \rightarrow by a factor of 2 by making four times as many measurements
 - \rightarrow by a factor of 10 by making 100 times as many measurements.

4-2. Confidence Intervals

Calculating Confidence Intervals

- From a limited number of measurements,
 - → we cannot find the true population mean, μ , or the true standard deviation, σ
 - \rightarrow what we can determine are \overline{x} and s,

the sample mean and the sample standard deviation.

- The **confidence interval** is an expression stating that
- → at some level of confidence, a range of values that include the true population mean.

The confidence interval of μ is given by

$$\mu = \overline{x} \pm \frac{ts}{\sqrt{n}}$$

- where
 - \rightarrow s is the measured standard deviation,
 - \rightarrow n is the number of observations,
 - \rightarrow and t is Student's t, taken from Table 4-4.
- Student's t is a statistical tool used most frequently

 to find confidence intervals

 to compare mean values measured by different methods.

 The Student's t table is used to look up "t-values" according to degrees of freedom and confidence levels.

See Table 4-4

Example: Calculating Confidence Intervals

 The carbohydrate content of a glycoprotein (a protein with sugars attached to it) is determined to be 12.6, 11.9, 13.0, 12.7, and 12.5 g of carbohydrate per 100 g of protein in replicate analyses. Find the 50% and 90% confidence intervals for the carbohydrate content.

Solution First calculate \overline{x} (= 12.5₄) and s (= 0.4₀) for the five measurements. For the 50% confidence interval, look up *t* in Table 4-2 under 50 and across from *four* degrees of freedom (degrees of freedom = n - 1.) The value of *t* is 0.741, so the 50% confidence interval is

$$\mu = \overline{x} \pm \frac{ts}{\sqrt{n}} = 12.5_4 \pm \frac{(0.741)(0.4_0)}{\sqrt{5}} = 12.5_4 \pm 0.1_3$$

The 90% confidence interval is

$$\mu = \overline{x} \pm \frac{ts}{\sqrt{n}} = 12.5_4 \pm \frac{(2.132)(0.4_0)}{\sqrt{5}} = 12.5_4 \pm 0.3_8$$

There is a 50% chance that the true mean, μ , lies within the range $12.5_4 \pm 0.1_3$ (12.4_1 to 12.6_7). There is a 90% chance that μ lies within the range $12.5_4 \pm 0.3_8$ (12.1_6 to 12.9_2).

The 50% confidence interval is

$$\mu = \overline{x} \pm \frac{ts}{\sqrt{n}} = 12.5_4 \pm 0.1_3$$

The 90% confidence interval is

$$\mu = \overline{x} \pm \frac{ts}{\sqrt{n}} = 12.5_4 \pm 0.3_8$$

- If you repeated sets of five measurements many times,
 - → half of 50 % confidence intervals are
 expected to include the true mean, μ
 → nine tenths of 90 % confidence intervals
 - are expected to include the true mean, μ

The Meaning of a Confidence Interval

- A computer chose numbers **at random**
 - → from a Gaussian population with a population mean of 10 000 and a population standard deviation of 1 000
- In trial 1,
 - \rightarrow four numbers were chosen,
 - \rightarrow their mean (9526) and standard deviation were calculated
 - → then, the 50% confidence interval was calculated using t = 0.765 from Table 4-4

(50% confidence, 3 degrees of freedom \rightarrow t = 0.765).

• This trial is plotted as the first point at the left in Figure 4-5a;

- The square is centered at the mean value of 9 526,
- The error bar extends from the lower limit to the upper limit of the 50% confidence interval
- The experiment was <u>repeated 100 times</u> to produce the points in Figure 4-5a.

- In Figure 4-5a, the experiment was performed 100 times,
 - → 45 of the error bars (open square) in Figure 4-5a pass through the horizontal line at 10 000.

- The 50% confidence interval is defined such that,
 - → if we repeated this experiment an infinite number of times, 50% of the error bars in Figure 4-5a would include the true population mean of 10 000.

- Figure 4-5b shows the same experiment with the same set of random numbers,
 - \rightarrow but this time the 90% confidence interval was calculated.
- For an infinite number of experiments,
 - → we would expect 90% of the confidence intervals to include the population mean of 10 000.
- In Figure 4-5b, 89 of the 100 error bars cross the horizontal line at 10 000.

Comparison of Mean with Student's t

- If you make two sets of measurements of the same quantity,
 - → because of small, random variations in the measurements,
 the mean value from one set will generally not be equal to the mean value from the other set
- We use a *t* test to compare one mean value with another
 → to decide whether there is a statistically significant difference between the two.
 - \rightarrow That is, do the two means agree "within experimental error"?

- In inferential statistics, the term "null hypothesis" is a general statement
 → that there is no relationship between two measured phenomena.
- Rejecting the null hypothesis corresponds to

 \rightarrow concluding that there is a relationship between two phenomena

Until evidence indicates otherwise,

 \rightarrow the null hypothesis is generally assumed to be true

- The null hypothesis in statistics regarding comparison of means
 → states that the mean values from two sets of measurements are not different.
- Statistics gives us a probability

 \rightarrow that the observed difference between two means arises from random measurement error.

 If there is less than a 5% chance that that the observed difference arises from random variations

 \rightarrow We customarily reject the null hypothesis

With this criterion, we have a 95% chance that our conclusion is correct.
 → One time out of 20 when we conclude that two means are not different
 : we will be wrong.

For example,

- Measure a quantity several times, obtaining an average value and standard deviation.
- Compare our answer with an accepted answer.
- If the average is not exactly the same as the accepted answer,
 → Does our measured answer agree with the accepted answer "within experimental error"?

- You purchased a Standard Reference Material coal sample certified by the National Institute of Standards and Technology to contain 3.19 wt% sulfur.
- You are testing a new analytical method
 → to see whether it can reproduce the known value.
- The measured values are 3.29, 3.22, 3.30, and 3.23 wt% sulfur, giving a mean of $\overline{x} = 3.26_0$ and a standard deviation of s = 0.04₁.
- Does your answer agree with the known answer?
 - \rightarrow To find out,
 - 1) compute the 95% confidence interval for your answer
 - 2) see if that range includes the known answer.
 - → If the known answer is not within your 95% confidence interval, then the results do not agree.

For four measurements,

 \rightarrow there are 3 degrees of freedom and t_{95%} = 3.182 in Table 4-4.

• The 95% confidence interval is

95% confidence interval = $\overline{x} \pm \frac{ts}{\sqrt{n}} = 3.26_0 \pm \frac{(3.182)(0.04_1)}{\sqrt{4}} = 3.26_0 \pm 0.06_5$ 95% confidence interval = 3.19_5 to 3.32_5 wt%

- The known answer (3.19 wt%) is just outside the 95% confidence interval.
- Therefore we conclude that

 \rightarrow there is less than a 5% chance that our method agrees with the known answer.

 \rightarrow We conclude that our method gives a "different" result from the known result.

Is My Red Blood Cell Count High Today?

- At the opening of this chapter,
 - \rightarrow red cell counts on five "normal" days were 5.1, 5.3, 4.8, 5.4, and 5.2 \times 10⁶ cells/L.
 - \rightarrow The question was whether today's count of 5.6 \times 10⁶ cells/L is "significantly" higher than normal?
- Disregarding the factor of 10⁶,
 - \rightarrow the mean of the normal values is $\overline{x} = 5.16$
 - \rightarrow the standard deviation is s = 0.23.

95% confidence interval =
$$\bar{x} \pm \frac{ts}{\sqrt{n}} = 5.16 \pm \frac{2.776 \cdot 0.23}{\sqrt{5}} = 5.16 \pm 0.26$$

- Today's value is 5.6 × 10⁶
- Today's red cell count lies in the upper tail of the curve containing less than
 2.5% of the area of the curve.
 - → There is less than a 5% probability of observing a count of 5.6 × 10⁶ cells/L on "normal" days.
- It is reasonable to conclude that today's count is elevated.

98% confidence interval $= \bar{x} \pm \frac{ts}{\sqrt{n}} = 5.16 \pm \frac{3.747 \cdot 0.23}{\sqrt{5}} = 5.16 \pm 0.39$

99% confidence interval $= \bar{x} \pm \frac{ts}{\sqrt{n}} = 5.16 \pm \frac{4.604 \cdot 0.23}{\sqrt{5}} = 5.16 \pm 0.47$

- We see that 5.6 lies in 99% confidence levels.
- More specifically,

→ There is less than a 2% probability of observing a count of 5.6×10^{6} cells/L on "normal" days.

Grubbs Test for an Outlier

- To tell how much of zinc was included in the nail, students
 1) dissolved zinc from a galvanized nail
 2) and measured the mass lost by the nail
- Here are 12 results in mass loss (%):
 → 10.2, 10.8, 11.6, 9.9, 9.4, 7.8, 10.0, 9.2, 11.3, 9.5, 10.6, 11.6
- The value 7.8 appears out of line.

 \rightarrow A datum that is far from other points is called an **outlier**.

- Should 7.8 be discarded before averaging the rest of the data or should 7.8 be retained?
- We answer this question with the **Grubbs test**.
 - 1) First compute

 \rightarrow the average ($\overline{x} = 10.16$)

 \rightarrow and the standard deviation (s = 1.11)

of the complete data set (all 12 points in this example).

2) Then compute the Grubbs statistic *G*, defined as

Grubbs test:

$$G_{\text{calculated}} = \frac{|\text{questionable value} - \overline{x}|}{s}$$

Grubbs test:

$$G_{\text{calculated}} = \frac{|\text{questionable value} - \overline{x}|}{s}$$

- where the numerator is the absolute value of the difference between the suspected outlier and the mean value.
- If G_{calculated} is greater than G_{table} in Table 4-6,
 → the value in question is out of the 95% confidence interval
 → the value in question can be rejected with

95% confidence.

 \rightarrow the questionable point should be discarded.

See Table 4-6

In our example,

$$G_{\text{calculated}} = \frac{|7.8 - 10.16|}{1.11} = 2.13$$

In Table 4-6,

 G_{table} = 2.285 for 12 observations.

See Table 4-6

- Because G_{calculated} < G_{table},
 - \rightarrow the questionable point should be retained.

The Method of Least Squares

For most chemical analyses,

 \rightarrow the response of the procedure must be evaluated for known quantities of analyte (called standards)

 \rightarrow the response to an unknown quantity can be interpreted.

- For this purpose, we commonly prepare a calibration curve,
 → such as the one for caffeine in Figure 0-7.
- Most often, we work in a region

 \rightarrow where the calibration curve is a straight line.

• We use the method of least squares to draw the "best" straight line.

Finding the Equation of the Line

Assumptions)

- 1) The procedure we use assumes that the errors in the y values are substantially greater than the errors in the x values.
- This condition is often true in a calibration curve
 → in which the experimental response (y values) is less certain than the quantity of analyte (x values).
- 2) A second assumption is that uncertainties (standard deviations) in all y values are similar.

Suppose we seek to draw the best straight line through the points in Figure
 4-11 by minimizing the vertical deviations between the points and the line.

- The Gaussian curve drawn over the point (3,3) is a schematic indication of the fact that each value of y_i is normally distributed about the straight line.
- That is, the most probable value of y will fall on the line, but there is a finite probability of measuring y some distance from the line.

- We minimize only the vertical deviations because we assume that uncertainties in y values are much greater than uncertainties in x values.
- Let the equation of the line be

Equation of straight line:

$$y = mx + b$$

Equation of straight line:

$$y = mx + b$$

- in which m is the slope and b is the y-intercept.
- The vertical deviation for the point (x_i, y_i) in Figure 4-11 is $y_i y_i$. \rightarrow where y is the ordinate of the straight line when $x = x_i$.

Vertical deviation $= d_i = y_i - y = y_i - (mx_i + b)$

- Some of the deviations are positive and some are negative.
- Because we wish to minimize the magnitude of the deviations irrespective of their signs,
 - \rightarrow we square all the deviations so that we are dealing only with positive numbers:

$$d_i^2 = (y_i - y)^2 = (y_i - mx_i - b)^2$$

- Because we minimize the squares of the deviations,
 - → this is called **the method of least squares**.
- Finding values of m and b that minimize the sum of the squares of the vertical deviations involves some calculus, which we omit.
- We express the final solution for slope and intercept in terms of determinants, which summarize certain arithmetic operations.
- The determinant $\begin{bmatrix} e & f \\ g & h \end{bmatrix}$
 - \rightarrow represents the value eh fg.
- For example, $\begin{vmatrix} 6 & 5 \\ 4 & 3 \end{vmatrix} = (6 \times 3) (5 \times 4) = -2$

• The slope and the intercept of the "best" straight line are found to be

Least-squares
$$\begin{cases} \text{Slope:} \quad m = \begin{vmatrix} \Sigma(x_i y_i) & \Sigma x_i \\ \Sigma y_i & n \end{vmatrix} \div D \quad (4-16) \\ \text{Intercept:} \quad b = \begin{vmatrix} \Sigma(x_i^2) & \Sigma(x_i y_i) \\ \Sigma x_i & \Sigma y_i \end{vmatrix} \div D \quad (4-17) \end{cases}$$

: where D is

$$D = \begin{vmatrix} \Sigma(x_i^2) & \Sigma x_i \\ \Sigma x_i & n \end{vmatrix}$$

: n is the number of points.

$$m = \frac{n\Sigma(x_iy_i) - \Sigma x_i\Sigma y_i}{n\Sigma(x_i^2) - (\Sigma x_i)^2}$$
$$b = \frac{\Sigma(x_i^2)\Sigma y_i - \Sigma(x_iy_i)\Sigma x_i}{n\Sigma(x_i^2) - (\Sigma x_i)^2}$$

- Let's use these equations to find the slope and intercept of the best straight line through the four points in Figure 4-11.
 - \rightarrow The work is set out in Table 4-7.

See Table 4-7

 Noting that n = 4 and putting the various sums into the determinants in Equations 4-16, 4-17, and 4-18 gives

$$m = \begin{vmatrix} 57 & 14 \\ 14 & 4 \end{vmatrix} \div \begin{vmatrix} 62 & 14 \\ 14 & 4 \end{vmatrix} = \frac{(57 \times 4) - (14 \times 14)}{(62 \times 4) - (14 \times 14)} = \frac{32}{52} = 0.615\ 38$$
$$b = \begin{vmatrix} 62 & 57 \\ 14 & 14 \end{vmatrix} \div \begin{vmatrix} 62 & 14 \\ 14 & 4 \end{vmatrix} = \frac{(62 \times 14) - (57 \times 14)}{(62 \times 4) - (14 \times 14)} = \frac{70}{52} = 1.346\ 15$$

 The equation of the best straight line through the points in Figure 4-11 is therefore

$$y = 0.615\ 38x + 1.346\ 15$$

How Reliable Are Least-Squares Parameters?

- To estimate the uncertainties (expressed as standard deviations) in the slope and intercept,
 - \rightarrow an uncertainty analysis must be performed on Equations 4-16 and 4-17.

Least-squares
$$\begin{cases} \text{Slope:} \quad m = \begin{vmatrix} \Sigma(x_i y_i) & \Sigma x_i \\ \Sigma y_i & n \end{vmatrix} \div D & (4-16) \\ \text{Intercept:} \quad b = \begin{vmatrix} \Sigma(x_i^2) & \Sigma(x_i y_i) \\ \Sigma x_i & \Sigma y_i \end{vmatrix} \div D & (4-17) \end{cases}$$

 Because the uncertainties in m and b are related to the uncertainty in measuring each value of y,

 \rightarrow we first estimate the standard deviation that describes the population of y values.

• This standard deviation, σ_{y} , characterizes the little Gaussian curve inscribed in Figure 4-11

- We estimate σ_y, the population standard deviation of all y values, by calculating s_y, the standard deviation, for the four measured values of y.
- The deviation of each value of y_i from the center of its Gaussian curve is $\rightarrow d_i = y_i - y = y_i - (mx_i + b).$
- The standard deviation of these vertical deviations is

$$\sigma_y \approx s_y = \sqrt{\frac{\sum (d_i - \overline{d})^2}{(\text{degrees of freedom})}}$$
 (4-19)

• But the average deviation, \overline{d} , is 0 for the best straight line, \rightarrow so the numerator of Equation 4-19 reduces to

$$\Sigma(d_i^2)$$

- <u>The degrees of freedom</u> is the number of independent pieces of information available.
 - \rightarrow For n data points, there are n degrees of freedom.
- If you were calculating the standard deviation of n points,
 → you would first find the average to use in Equation 4-2.
 → This calculation leaves n 1 degrees of freedom in Equation 4-2 because only n 1 pieces of information are available in addition to the average.
- If you know n − 1 values and you also know their average,
 → then the nth value is fixed and you can calculate it.