= The standard deviation of the mean, o,

- a measure of the uncertainty of the mean of n measurements.
Sample Method 1 Method 2
number (pa/l) (pa/l)
1 17.2 14.2
2 23.1 27.9
O 3 28.5 21.2
Op = T 4 15.3 15.9
n 5 23.1 32.1
6 32.5 22.0 Tt
7 39.5 37.0
8 38.7 41.5
9 52.5 42.6
10 42.6 42.8
11 52.7 41.1

= Uncertainty decreases

- by a factor of 2 by making four times as many measurements

- by a factor of 10 by making 100 times as many measurements.



4-2. Confidence Intervals

Calculating Confidence Intervals

= From a limited number of measurements,
- we cannot find the true population mean, y, or the true standard
deviation, o
- what we can determine are x and s,

the sample mean and the sample standard deviation.

» The confidence interval is an expression stating that
- at some level of confidence, a range of values that include the true

population mean.



» The confidence interval of u is given by

Confidence interval: =X —

= where
- s is the measured standard deviation,
- n is the number of observations,

- and t is Student’s t, taken from Table 4-4.

= Student’s t is a statistical tool used most frequently

1) to find confidence intervals

and ii) to compare mean values measured by different methods.



» The Student’s t table is used to look up “t-values” according to degrees of

freedom and confidence levels.

See Table 4-4



Example: Calculating Confidence Intervals

» The carbohydrate content of a glycoprotein (a protein with sugars attached
to it) is determined to be 12.6, 11.9, 13.0, 12.7, and 12.5 g of carbohydrate
per 100 g of protein in replicate analyses. Find the 50% and 90% confidence

intervals for the carbohydrate content.

Solution First calculate x (= 12.5,) and s (= 0.4,) for the five measurements. For the
50% confidence interval, look up 7 in Table 4-2 under 50 and across from four degrees of
freedom (degrees of freedom = n — 1.) The value of 715 0.741, so the 50% confidence
interval 1s

_ fs (0.741)(0.4y)
p=x*——==125, =% — = 12.5, = 0.14
\V'n VI
The 90% confidence interval is
_ ts (2.132)(0.4,)
\'n VI

There 1s a 50% chance that the true mean, ., lies within the range 12.5, = 0.1, (12.4,
to 12.65). There 1s a 90% chance that w lies within the range 12.5, = 0.35 (12.14 to 12.9,).




= The 50% confidence interval is

s

\V'n

B=x=* = 12.5, £ 0.1;4

J

= The 90% confidence interval is

= |f you repeated sets of five measurements
many times,

- half of 50 % confidence intervals are

expected to include the true mean, p

- nine tenths of 90 % confidence intervals

are expected to include the true mean, p

Carbohydrate content

13.0

12.9

12.8

12.7

12.6

12.5

12.4

12.3

12.2

12.1

12.0

50%
chance
that true
value
lies in

> this
interval

90%
chance
that true
value
lies in

> this
interval




The Meaning of a Confidence Interval

= A computer chose numbers at random
= from a Gaussian population with a population mean of 10 000 and a

population standard deviation of 1 000

= |n trial 1,
- four numbers were chosen,
- their mean (9526) and standard deviation were calculated
- then, the 50% confidence interval was calculated using t = 0.765 from
Table 4-4
(50% confidence, 3 degrees of freedom > t = 0.765).
= This trial is plotted as the first point at the left in Figure 4-5a;



See Fig 4-5

The square is centered at the mean value of 9 526,

The error bar extends from the lower limit to the upper limit of the 50%

confidence interval

The experiment was repeated 100 times to produce the points in Figure 4-
5a.




» |n Figure 4-5a , the experiment was performed 100 times,
> 45 of the error bars (open square) in Figure 4-5a pass through the
horizontal line at 10 000.

See Fig 4-5

= The 50% confidence interval is defined such that,
- if we repeated this experiment an infinite number of times,
50% of the error bars in Figure 4-5a would include the true population
mean of 10 000.



= Figure 4-5b shows the same experiment with the same set of random
numbers,
- but this time the 90% confidence interval was calculated.
= For an infinite number of experiments,
- we would expect 90% of the confidence intervals to include the
population mean of 10 000.
» |n Figure 4-5b, 89 of the 100 error bars cross the horizontal line at 10 000.

See Fig 4-5



Comparison of Mean with Student’s t

= |f you make two sets of measurements of the same quantity,
- because of small, random variations in the measurements,

the mean value from one set will generally not be equal to the mean

value from the other set

= We use a ttest to compare one mean value with another
- to decide whether there is a statistically significant difference between
the two.

- That is, do the two means agree “within experimental error”?



= |n inferential statistics, the term "null hypothesis" is a general statement

- that there is no relationship between two measured phenomena.

= Rejecting the null hypothesis corresponds to

- concluding that there is a relationship between two phenomena

= Until evidence indicates otherwise,

- the null hypothesis is generally assumed to be true



The null hypothesis in statistics regarding comparison of means
- states that the mean values from two sets of measurements are not

different.

Statistics gives us a probability

- that the observed difference between two means arises from random

measurement error.

If there is less than a 5% chance that that the observed difference arises
from random variations

- We customarily reject the null hypothesis

With this criterion, we have a 95% chance that our conclusion is correct.
- One time out of 20 when we conclude that two means are not different

: we will be wrong.



For example,

= Measure a quantity several times, obtaining an average value and standard

deviation.

= Compare our answer with an accepted answer.

= |f the average is not exactly the same as the accepted answer,
- Does our measured answer agree with the accepted answer “within

experimental error”?



You purchased a Standard Reference Material coal sample certified by the

National Institute of Standards and Technology to contain 3.19 wt% sulfur.

You are testing a new analytical method

- to see whether it can reproduce the known value.

The measured values are 3.29, 3.22, 3.30, and 3.23 wt% sulfur, giving a mean

of )_c:3.260 and a standard deviation of s = 0.04,.

Does your answer agree with the known answer?
- To find out,
1) compute the 95% confidence interval for your answer
2) see if that range includes the known answer.
- If the known answer is not within your 95% confidence interval,

then the results do not agree.



For four measurements,

- there are 3 degrees of freedom and tgse, = 3.182 in Table 4-4.

The 95% confidence interval is

e . : _ ts ) (3.182)(0.04,) _ i
95% confidence interval = x £ —= = 3.26, = = 3.26 = 0.065
n V4
95% confidence interval = 3.195 to 3.325 wt%

The known answer (3.19 wt%) is just outside the 95% confidence interval.

Therefore we conclude that

- there is less than a 5% chance that our method agrees with the known
answer.

- We conclude that our method gives a “different” result from the known

result.



Is My Red Blood Cell Count High Today?

= At the opening of this chapter,
- red cell counts on five “normal” days were 5.1, 5.3, 4.8, 5.4, and 5.2 x 10°

cells/L.

- The question was whether today’s count of 5.6 x 10° cells/L is

“significantly” higher than normal?

» Disregarding the factor of 106,
> the mean of the normal values is x=5.16
- the standard deviation is s = 0.23.

B 516+ 2770023 564006
Vn

J5

05% confidence interval = x =



= Today's value is 5.6 x 106

= Today's red cell count lies in the upper tail of the curve containing less than
2.5% of the area of the curve.

- There is less than a 5% probability of observing a count of 5.6 x 10°

cells/L on “normal” days.

= |t is reasonable to conclude that today’s count is elevated.

See Fig 4-9

x-axis : t-value



s 3.747-0.23
98% confidence interval =% * —== 5.16% o= 5162039

|+

S

_ 4.604-0.23
99% confidence interval =x = LA 5.16 + \E =5.16£0.47

SiE

= We see that 5.6 lies in 99% confidence levels.

= More specifically,

- There is less than a 2% probability of observing a count of 5.6 x 10°
cells/L on “normal” days.




Grubbs Test for an Outlier

» To tell how much of zinc was included in the nail, students
1) dissolved zinc from a galvanized nail

2) and measured the mass lost by the nalil

= Here are 12 results in mass loss (%):
- 10.2, 10.8, 11.6, 9.9, 94, 7.8, 10.0, 9.2, 11.3, 9.5, 10.6, 11.6

» The value 7.8 appears out of line.

Questionable value Mean

Y ;

\‘_J(L._;,, 0.9 9.9,

I | | | | |
7 8 9 10 11 12

Measured values

- A datum that is far from other points is called an outlier.




= Should 7.8 be discarded before averaging the rest of the data or should 7.8

be retained?

= We answer this question with the Grubbs test.
1) First compute
> the average (x=10.16)
- and the standard deviation (s = 1.11)
of the complete data set (all 12 points in this example).

2) Then compute the Grubbs statistic G, defined as

|questionable value — x

calculated —

Grubbs test: G
s



|questionable value — x

calculated —

Grubbs test: G

A)

where the numerator is the absolute value of

the difference between the suspected outlier

and the mean value.

If Gealculated 1S greater than G,pe in Table 4-6,
- the value in question is out of the 95% See Table 4-6

confidence interval
- the value in question can be rejected with
95% confidence.

- the questionable point should be discarded.



= In our example,

7.8—-10.16]

Gealculated = =2.13
lculated 111

= |n Table 4-6, " 3
Gigple = 2.285 for 12 observations. See Table 4-
= Because Gcalculated < Gtable/

- the questionable point should be retained.



The Method of Least Squares

For most chemical analyses,

- the response of the procedure must be evaluated for known quantities of
analyte (called standards)

- the response to an unknown quantity can be interpreted.

= For this purpose, we commonly prepare a calibration curve,

- such as the one for caffeine in Figure 0-7.

= Most often, we work in a region

- where the calibration curve is a straight line.

= We use the method of least squares to draw the "best” straight line.



Finding the Equation of the Line

Assumptions)
1) The procedure we use assumes that the errors in the y values are

substantially greater than the errors in the x values.

= This condition is often true in a calibration curve

- in which the experimental response (y values) is less certain than the

quantity of analyte (x values).

2) A second assumption is that uncertainties (standard deviations) in all y

values are similar.



= Suppose we seek to draw the best straight line through the points in Figure

4-11 by minimizing the vertical deviations between the points and the line.

See Fig 4-11

= The Gaussian curve drawn over the point (3,3) is a schematic indication of the

fact that each value of y; is normally distributed about the straight line.

= That is, the most probable value of y will fall on the line, but there is a finite

probability of measuring y some distance from the line.




See Fig 4-11

= We minimize only the vertical deviations because we assume that

uncertainties in y values are much greater than uncertainties in x values.

= Let the equation of the line be

Equation of straight line: y=mx + b



Equation of straight line: y=mx + b

in which m is the slope and b is the y-intercept.

The vertical deviation for the point (x; y;) in Figure 4-11 is y; -,

- where y is the ordinate of the straight line when x = x;.

Vertical deviation = d; = y; — vy = y; — (mx; + b)

Some of the deviations are positive and some are negative.

Because we wish to minimize the magnitude of the deviations irrespective of
their signs,

- we square all the deviations so that we are dealing only with positive

numbers:

~

di = (v; — y)* = (v; — mx; — b)*



Because we minimize the squares of the deviations,

- this is called the method of least squares.

Finding values of m and b that minimize the sum of the squares of the

vertical deviations involves some calculus, which we omit.

We express the final solution for slope and intercept in terms of

determinants, which summarize certain arithmetic operations.

e f
o h

C

The determinant

- represents the value eh — fg.

For example, 6 5

=(6X3)—(5X4)=-2




» The slope and the intercept of the "best” straight line are found to be

2 ( XiVi )

Slope: m =

L _ ) 2_\’,‘
east-squares |
“best” line >(x7)
Intercept: b = |
2.\‘,‘
: where D is
.
D= ‘2(.\7 ) 2X;
2X; n

. n is the number of points.

_ XXy — 2X2Y;

m
n= (x?) — (2x;)?

S(XP)ZYi — XY X

n(x7) — (=x;)*

2.\‘,'

n

> (x;vi)

2'\','

+~ D (4-16)

=D (@417



= Let's use these equations to find the slope and intercept of the best straight
line through the four points in Figure 4-11.
- The work is set out in Table 4-7.

See Table 4-7

Noting that n = 4 and putting the various sums into the determinants in

Equations 4-16, 4-17, and 4-18 gives

57 14 62 14 (57 X 4)— (14 X 14) 32 _
14 4|7 (14 4] (62x4) - (14X 14) 52

62 57 62 14 (62 X 14) — (57 X 14) 170

14 14 14 4 (62 X 4) — (14 X 14) 52



» The equation of the best straight line through the points in Figure 4-11 is

therefore

y = 0.61538x + 1.346 15

How Reliable Are Least-Squares Parameters?

= To estimate the uncertainties (expressed as standard deviations) in the slope

and intercept,

- an uncertainty analysis must be performed on Equations 4-16 and 4-17.

Slope:
Least-squares J
“best” line

Intercept:

m

b

E(.\',"\',‘) E-\.i =D (4'16)
2, n
S (x7) E(-w‘f)‘ D (4-17)

2X; 2,



= Because the uncertainties in m and b are related to the uncertainty in

measuring each value of y,

- we first estimate the standard deviation that describes the population of

y values.

= This standard deviation, o,, characterizes the little Gaussian curve inscribed

In Figure 4-11

See Fig 4-11



We estimate o,, the population standard deviation of all y values, by

calculating s,, the standard deviation, for the four measured values of y.

The deviation of each value of y; from the center of its Gaussian curve is

édi:yi—y:yi—(mxi+b).

The standard deviation of these vertical deviations is

2((/[ — ({)— (4_19)

(degrees of freedom)

0-\' — LS -\V —

But the average deviation, J . is O for the best straight line,

- so the numerator of Equation 4-19 reduces to

>(d?)



The degrees of freedom is the number of independent pieces of information

available.

- For n data points, there are n degrees of freedom.

If you were calculating the standard deviation of n points,
- you would first find the average to use in Equation 4-2.
- This calculation leaves n — 1 degrees of freedom in Equation 4-2 because

only n — 1 pieces of information are available in addition to the average.

If you know n — 1 values and you also know their average,

- then the nth value is fixed and you can calculate it.



