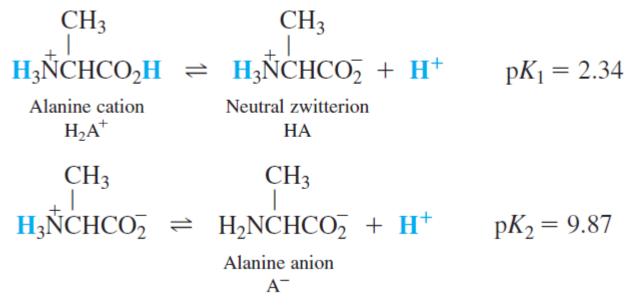
- Figure 10-4 shows the fractions α_{H2A} , α_{HA-} , α_{A2-} and for fumaric acid, \rightarrow whose two pKa values are only 1.46 units apart.
- α_{HA-} rises only to 0.73 because the two pK values are so close together.
- In the region $pK_1 < pH < pK_2$.

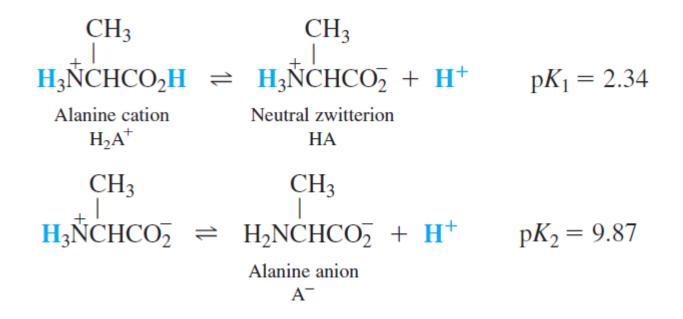

 $\boldsymbol{\rightarrow}$ there are substantial quantities of H_2A and A^{2-}

See Fig 10-4

10.6 Isoelectric and Isoionic pH

• The isoelectric or isoionic pH of polyprotic molecules, such as proteins.

 \rightarrow a diprotic system such as the amino acid alanine.



Isoionic pH

 \rightarrow the pH of the pure, neutral, polyprotic acid.

Isoelectric pH

 \rightarrow the pH at which average charge of the polyprotic acid is 0.

Isoionic point (or isoionic pH)

→ the pH obtained when the pure, neutral polyprotic acid HA (the neutral zwitterion) is dissolved in water.

- The only ions are H₂A⁺, A⁻, H⁺, and OH⁻.
- Most alanine is in the form HA
- The concentrations of H₂A⁺ and A⁻ are **not equal** to each other.

When alanine is dissolved in water,

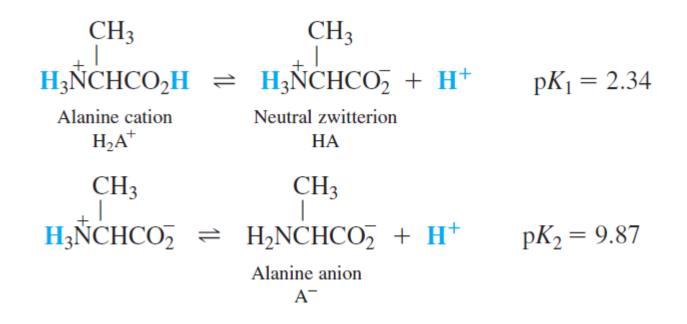
 \rightarrow the pH of the solution, by definition, is the isoionic pH.

Because alanine (HA) is the intermediate form of the diprotic acid, H₂A⁺,
 → [H⁺] is given by

Isoionic point:
$$[\mathrm{H}^+] = \sqrt{\frac{K_1 K_2 \mathrm{F} + K_1 K_{\mathrm{w}}}{K_1 + \mathrm{F}}}$$

 \rightarrow where F is the formal concentration of alanine.

• For 0.10 M alanine, the isoionic pH is found from


$$[\mathrm{H}^+] = \sqrt{\frac{K_1 K_2 (0.10) + K_1 K_{\mathrm{w}}}{K_1 + (0.10)}} = 7.7 \times 10^{-7} \mathrm{M} \Rightarrow \mathrm{pH} = 6.11$$

• From [H⁺], K₁, and K₂,

→ calculate [H₂A⁺] = 1.68 × 10⁻⁵ M [A⁻] = 1.76 × 10⁻⁵ M

for pure alanine in water (the isoionic solution)

- There is a slight excess of A-
 - \rightarrow because HA is a slightly stronger acid than it is a base.
 - → HA dissociates to make A⁻ a little more than it reacts with water to make H_2A^+ .

Isoelectric point (or isoelectric pH)

 \rightarrow the pH at which the average charge of the polyprotic acid is 0.

- Most of the molecules are in the uncharged form HA
- The concentrations of H₂A⁺ and A⁻ are equal to each other.

- The isoelectric point
 - \rightarrow the pH at which $[H_2A^+] = [A^-]$

 \rightarrow therefore, the average charge of alanine is 0.

- To go from the isoionic solution (pure HA in water) to the isoelectric solution,
 → we could add just enough strong acid to decrease [A-] and increase [H₂A+] until they are equal.
- Adding acid necessarily lowers the pH.

 \rightarrow For alanine, the isoelectric pH must be lower than the isoionic pH.

We calculate the isoelectric pH

 \rightarrow by first writing expressions for [H₂A⁺] and [A⁻]

$$[H_2A^+] = \frac{[HA][H^+]}{K_1}$$
 $[A^-] = \frac{K_2[HA]}{[H^+]}$

• Setting $[H_2A^+] = [A^-]$, we find

$$\frac{[\text{HA}][\text{H}^+]}{K_1} = \frac{K_2[\text{HA}]}{[\text{H}^+]} \Rightarrow [\text{H}^+] = \sqrt{K_1 K_2}$$
Isoelectric point: $\text{pH} = \frac{1}{2}(\text{p}K_1 + \text{p}K_2)$

)

For a diprotic amino acid,

 \rightarrow the isoelectric pH is halfway between the two pK_a values.

 \rightarrow the isoelectric pH of alanine is $\frac{1}{2}(2.34 + 9.87) = 6.10$.

Analytical Chemistry

Chapter 11. Acid-Base Titrations

In this chapter,

- \rightarrow We learn to predict the shapes of titration curves and to find end points
- → How to deduce the quantities and pK_a values of acidic and basic substances in a mixture from an acid-base titration curve

11.1 Titration of Strong Base with Strong Acid

- For each type of titration in this chapter, our goal is
 - \rightarrow to construct a graph showing how pH changes as titrant is added.
 - i) Titration of Strong Base with Strong Acid
 - ii) Titration of Weak Acid with Strong Base
 - iii) Titration of Weak Base with Strong Acid

- Can understand what is happening during the titration
- Can interpret an experimental titration curve.

11.1 Titration of Strong Base with Strong Acid

• The first step in each case

 \rightarrow to write the chemical reaction between titrant and analyte.

- Then use that reaction to calculate the composition and pH after each addition of titrant.
- As a simple example,
 - → let's focus on the titration of 50.00 mL of 0.020 00 M KOH with 0.100 0 M HBr.
 - \rightarrow the chemical reaction between titrant and analyte is merely

$$\mathrm{H^{+} + OH^{-} \rightarrow H_2O}$$
 $K = 1/K_{\mathrm{w}} = 10^{14}$

Because the equilibrium constant for this reaction is 10¹⁴,

 \rightarrow it is fair to say that it "goes to completion."

- \rightarrow any amount of H⁺ added will consume a stoichiometric amount of OH⁻.
- It is useful to know the volume of HBr (V_e) needed to reach the equivalence point,
 - → which we find by equating moles of KOH being titrated to moles of added HBr:

$$\underbrace{(V_{e}(\mathcal{L}))\left(0.100\ 0\ \frac{\text{mol}}{\mathcal{L}}\right)}_{\text{mol of HBr}} = \underbrace{(0.050\ 00\ \mathcal{L})\left(0.020\ 00\ \frac{\text{mol}}{\mathcal{L}}\right)}_{\text{mol of OH}^{-}} \Rightarrow V_{e} = 0.010\ 00\ \text{L}}_{\text{mol of OH}^{-}}$$

$$\underbrace{(V_{e}(\text{mL}))(0.100\ 0\ \text{M})}_{\text{mmol of HBr}} = \underbrace{(50.00\ \text{mL})(0.020\ 00\ \text{M})}_{\text{mmol of OH}^{-}} \Rightarrow V_{e} = 10.00\ \text{mL}}_{\text{mmol of OH}^{-}}$$

$\underbrace{(V_{e} (mL))(0.100 \ 0 \ M)}_{\text{mmol of HBr}} = \underbrace{(50.00 \ mL)(0.020 \ 00 \ M)}_{\text{mmol of OH}^{-}} \Rightarrow V_{e} = 10.00 \ mL}_{\text{being titrated}}$

• When 10.00 mL of HBr have been added,

 \rightarrow the titration is complete.

• Prior to this point,

 \rightarrow there is excess, unreacted OH- present.

• After V_e,

 \rightarrow there is excess H⁺ in the solution.

- In the titration of any strong base with any strong acid,
 - → there are three regions of the titration curve that require different kinds of calculations:
- 1. Before the equivalence point,
 - \rightarrow the pH is determined by excess OH- in the solution.
- 2. At the equivalence point,
 - \rightarrow H⁺ is just sufficient to react with all OH⁻ to make H₂O.
 - \rightarrow The pH is determined by dissociation of water.
- 3. After the equivalence point,
 - \rightarrow pH is determined by excess H⁺ in the solution.

• We will do one sample calculation for each region.

Region 1: Before the Equivalence Point

- When 3.00 mL of 0.1 M HBr have been added to 50.00 mL of 0.02 M NaOH,
 → the total volume is 53.00 mL.
 - \rightarrow HBr is consumed by NaOH, leaving excess NaOH.
- The moles of added HBr
 - → $(0.100 \ 0 \ M)(0.003 \ 00 \ L) = 0.300 \times 10^{-3} \ mol \ HBr = 0.300 \ mmol \ HBr.$
- The initial moles of NaOH
 - → $(0.020 \ 00 \ M)(0.050 \ 00 \ L) = 1.000 = 10^{-3} \ mol \ NaOH = 1.000 \ mmol \ NaOH.$

Unreacted OH⁻

 \rightarrow the difference 1.000 mmol - 0.300 mmol = 0.700 mmol

- The concentration of unreacted OH → (0.700 mmol)/(53.00 mL) = 0.013 2 M
- So, $[H^+] = K_w/[OH^-] = 7.57 \times 10^{-13} M$ $\rightarrow pH = -log[H^+] = 12.12.$

Region 2: At the Equivalence Point

Region 2 is the equivalence point

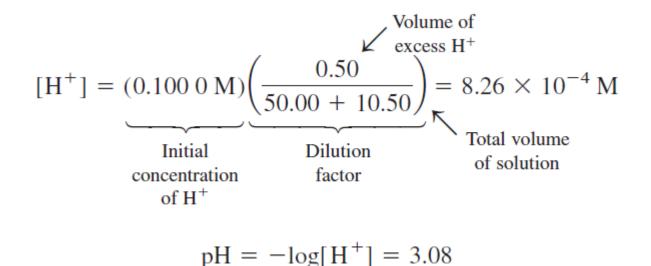
 \rightarrow where just enough H⁺ has been added to consume OH⁻.

- We could prepare the same solution by dissolving KBr in water.
- pH is determined by dissociation of water:

$$H_2O \rightleftharpoons H_x^+ + OH_x^-$$

 $K_w = x^2 \Rightarrow x = 1.00 \times 10^{-7} M \Rightarrow pH = 7.00$

→ The pH at the equivalence point in the titration of any strong base (or acid) with strong acid (or base) will be 7.00 at 25°C.


- We will soon discover that
 - → the pH is not 7.00 at the equivalence point in the titration of weak acids or bases.
- The pH is 7.00 only if the titrant and analyte are both strong.

Region 3: After the Equivalence Point

- Beyond the equivalence point,
 - \rightarrow we are adding excess HBr to the solution.
 - \rightarrow After the equivalence point, there is excess H⁺.

Region 3: After the Equivalence Point

The concentration of excess H⁺ at, say, 10.50 mL is given by

At V_a = 10.50 mL,

- \rightarrow there is an excess of just V_a V_e = 10.50 10.00 = 0.50 mL of HBr.
- \rightarrow That is the reason why 0.50 appears in the dilution factor.

The Titration Curve

• Complete results are shown in Table 11-1 and Figure 11-1.

See Table 11-1

See Figure 11-1

- The titration curve in Figure 11-1 exhibits a rapid change in pH near the equivalence point.
- The equivalence point
 - → where the slope (dpH/dV_a) is greatest
 - \rightarrow the second derivative is 0
 - \rightarrow which makes it an inflection point

See Figure 11-1

- As a reminder, the equivalence point occurs when added titrant is exactly enough for stoichiometric reaction with the analyte.
- The equivalence point is the ideal result we seek in a titration.
- What we actually measure is the end point
 - \rightarrow which is marked by a sudden physical change,
 - \rightarrow such as indicator color or an electrode potential

11.2 Titration of Weak Acid with Strong Base

- The titration of 50.00 mL of 0.020 00 M MES with 0.100 0 M NaOH.
 - \rightarrow MES is an abbreviation for 2-(N-morpholino)ethanesulfonic acid

 \rightarrow MES is a weak acid with pK_a = 6.27.

• Always **start by** writing the titration reaction.

 \rightarrow The titration reaction is

$$O \longrightarrow^{+} \mathbf{H} \mathbf{C} \mathbf{H}_{2} \mathbf{C} \mathbf{H}_{2} \mathbf{S} \mathbf{O}_{3}^{-} + \mathbf{O} \mathbf{H}^{-} \rightarrow O \longrightarrow \mathbf{N} \mathbf{C} \mathbf{H}_{2} \mathbf{C} \mathbf{H}_{2} \mathbf{S} \mathbf{O}_{3}^{-} + \mathbf{H}_{2} \mathbf{O}$$
$$\mathbf{H} \mathbf{A} \qquad \mathbf{A}^{-}$$

$$O \overset{+}{\underset{\text{NHCH}_2\text{CH}_2\text{SO}_3^-}} + OH^- \rightarrow O \overset{-}{\underset{\text{NCH}_2\text{CH}_2\text{SO}_3^-}} + H_2O$$

$$HA \overset{-}{\underset{\text{A}^-}} (11-2)$$

Reaction 11-2 is the reverse of the K_b reaction for the base A⁻.

 \rightarrow the equilibrium constant for Reaction 11-2 is

 $K = 1/K_b = 1/(K_w/K_a \text{ (for HA)}) = 5.4 \times 10^7.$

- The equilibrium constant is so large that we can say that the reaction goes "to completion" after each addition of OH-.
 - \rightarrow strong plus weak react completely.

- The titration calculations for this problem are of **four types**:
- **1.** Before any base is added,
 - \rightarrow the solution contains just HA in water.
 - \rightarrow This is a weak acid whose pH is determined by the equilibrium

$$HA \rightleftharpoons K_a H^+ + A^-$$

- From the first addition of NaOH until immediately before the equivalence point,
 - \rightarrow there is a mixture of unreacted HA plus the A- produced by Reaction 11-2.
 - \rightarrow We can use the Henderson-Hasselbalch equation to find the pH.

3. At the equivalence point,

- \rightarrow "all" HA has been converted into A⁻.
- \rightarrow The same solution could have been made by dissolving A⁻ in water.
- \rightarrow We have a weak base whose pH is determined by the reaction

$$A^- + H_2O \rightleftharpoons K_b HA + OH^-$$

 Let's calculate the volume of base, V_b, needed to reach the equivalence point:

$$\underbrace{(V_{b} (mL))(0.100 \ 0 \ M)}_{mmol \text{ of base}} = \underbrace{(50.00 \ mL)(0.020 \ 00 \ M)}_{mmol \text{ of HA}} \Rightarrow V_{b} = 10.00 \ mL$$

4. Beyond the equivalence point,

- \rightarrow excess NaOH is being added to a solution of A⁻.
- \rightarrow To a good approximation, pH is determined by the strong base.
- \rightarrow We calculate the pH as if we had simply added excess NaOH to water.
- \rightarrow We neglect the tiny effect of A⁻.

• We will do one sample calculation for each region.

Region 1: Before Base Is Added

- Before adding any base,
 - \rightarrow we have a solution of 0.020 00 M HA with pK_a = 6.27.
 - \rightarrow This is simply a weak-acid problem.

$$HA \rightleftharpoons H^{+} + A^{-} \qquad K_{a} = 10^{-6.27}$$

$$F - x \qquad x \qquad x$$

$$\frac{x^{2}}{0.020\ 00 - x} = K_{a} \Rightarrow x = 1.03 \times 10^{-4} \Rightarrow pH = 3.99$$

Region 2: Before the Equivalence Point

- Adding OH- creates a mixture of HA and A-.
 - \rightarrow This mixture is a buffer
 - → whose pH can be calculated with the Henderson-Hasselbalch equation from the quotient [A-]/[HA].

$$pH = pK_a + \log\left(\frac{[A^-]}{[HA]}\right)$$

We only need relative concentrations

 \rightarrow because pH depends on the quotient [A-]/[HA].

 Suppose we wish to calculate [A-]/[HA] when 3.00 mL of OH- have been added. • Because $V_e = 10.00 \text{ mL}$,

 \rightarrow we have added enough base to react with three-tenths of the HA.

 We can make a table showing the relative concentrations before and after the reaction:

Titration reaction:	HA +	$OH^- \rightarrow$	A ⁻ +	H_2O
Relative initial quantities (HA \equiv 1) Relative final quantities	1 <u>7</u> 10	$\frac{3}{10}$	$\frac{3}{10}$	_

• Once we know the quotient [A-]/[HA] in any solution, we know its pH:

pH = pK_a + log
$$\left(\frac{[A^-]}{[HA]}\right)$$
 = 6.27 + log $\left(\frac{3/10}{7/10}\right)$ = 5.90

• The point at which the volume of titrant is $\frac{1}{2}V_e$ is a special one in any titration.

Titration reaction:	HA +	$\cdot \text{OH}^- \rightarrow$	• A ⁻ +	H_2O
Relative initial quantities Relative final quantities	$\frac{1}{\frac{1}{2}}$	<u>1</u> 	$\frac{1}{2}$	_

$$pH = pK_a + \log\left(\frac{1/2}{1/2}\right) = pK_a$$

- When the volume of titrant is $\frac{1}{2}V_e$, pH = pK_a for the acid HA (neglecting activity coefficients).
- From an experimental titration curve,
 - → you can find the approximate value of pK_a by reading the pH when $V_b = \frac{1}{2}V_{e}$
 - \rightarrow V_b is the volume of added base.

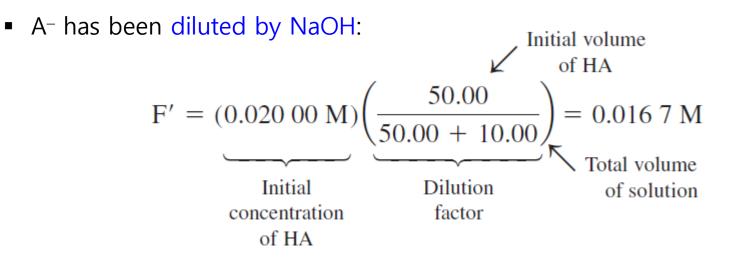
Region 3: At the Equivalence Point

• At the equivalence point, there is exactly enough NaOH to consume HA.

Titration reaction:	$\rm HA + OH^- \rightarrow A^- + H_2O$			
Relative initial quantities	1	1		
Relative initial quantities		—	1	

• At the equivalence point, HA has been converted into A-, a weak base.

 \rightarrow The solution contains "just" A⁻.


- We could have prepared the same solution by dissolving the salt NaA in distilled water.
- A solution of NaA is merely a solution of a weak base.

 To compute the pH of a weak base, we write the reaction of the weak base with water:

$$A^{-} + H_2 O \rightleftharpoons HA + OH^{-} \qquad K_b = \frac{K_w}{K_a}$$

F - x x x

The only tricky point is that the formal concentration of A⁻ is no longer
 0.020 00 M,

 \rightarrow which was the initial concentration of HA.

• With this value of F', we can solve the problem:

$$A^{-} + H_2 O \rightleftharpoons HA + OH^{-} \qquad K_b = \frac{K_w}{K_a}$$
$$\frac{x^2}{F' - x} = K_b = \frac{K_w}{K_a} = 1.86 \times 10^{-8} \Rightarrow x = 1.76 \times 10^{-5} M$$
$$pH = -\log[H^+] = -\log\left(\frac{K_w}{x}\right) = 9.25$$

V

- The pH at the equivalence point in this titration is 9.25.
 → It is not 7.00.
- The equivalence point pH will always be above 7 in the titration of a weak acid with a strong base,
 - → because the acid is converted into its conjugate base at the equivalence point.