Writing half reactions – example

example 1) Glucose oxidation

Step 1) CO₂ \rightarrow C₆H₁₂O₆

Step 2) $CO_2 + H_2O + e^- \rightarrow C_6H_{12}O_6$

in redox reactions, water is almost always a reactant or a product

because we write half reactions in the direction of reduction, e- always appear on the left

Step 3) $6CO_2 + H_2O + e \rightarrow C_6H_{12}O_6$

Step 4) $6CO_2 + e^- \rightarrow C_6H_{12}O_6 + 6H_2O$

Step 5) $6CO_2 + 24H^+ + e^- \rightarrow C_6H_{12}O_6 + 6H_2O$

Step 6) $6CO_2 + 24H^+ + 24e^- \rightarrow C_6H_{12}O_6 + 6H_2O$

Step 7) $(1/4)CO_2 + H^+ + e^- \rightarrow (1/24)C_6H_{12}O_6 + (1/4)H_2O$

example 2) Nitrate reduction

Step	1)	NO ₃ -	\rightarrow	N_2
		0		_

- Step 2) $NO_3^- + H_2O + e^- \rightarrow N_2$
- Step 3) $2NO_3^- + H_2O + e^- \rightarrow N_2$
- Step 4) $2NO_3^- + e^- \rightarrow N_2 + 6H_2O$
- Step 5) $2NO_3^- + 12H^+ + e^- \rightarrow N_2 + 6H_2O$
- Step 6) $2NO_3^- + 12H^+ + 10e^- \rightarrow N_2 + 6H_2O$
- Step 7) $(1/5)NO_3^- + (6/5)H^+ + e^- \rightarrow (1/10)N_2 + (3/5)H_2O$

Textbook example: Alanine oxidation

 $(1/4)CO_2 + (1/12)NH_3 + H^+ + e^- \rightarrow (1/12)CH_3CHNH_2COOH + (1/3)H_2O$

Eq. [2.22] to [2.25] in the textbook: slightly different equations depending on different forms of carbonate species and ammonia, and different source of hydrogen (all are correct)

Ammonia $pK_a = 9.25 \rightarrow mostly$ in NH_4^+ in neutral pH

Carbonate $pK_{a1} = 6.3$, $pK_{a2} = 10.3 \rightarrow mostly$ in HCO₃⁻ with some in H₂CO₃ in neutral pH

Thus, some find it better to use NH_4^+ and HCO_3^- to write reactions, but some prefer others for different reasons

Overall reactions for bacterial growth

We can write up overall reactions for bacterial growth, which involves reactions for energy production and cell synthesis \rightarrow full stoichiometry of what's happening when you grow bacteria in a growth medium!

• Combining electron donor and acceptor half reactions, we get the overall reaction for respiration (energy reaction)

 $R_e = R_a - R_d$ (- sign on R_d because R_d is written in the direction of reduction)

ex) Benzoate respiration using nitrate as an electron acceptor (textbook)

R_a: (1/5)NO₃⁻ + (6/5)H⁺ + e⁻ → (1/10)N₂ + (3/5)H₂O -R_d: (1/30) C₆H₅COO⁻ + (13/30)H₂O → (1/5)CO₂ + (1/30)HCO₃⁻ + H⁺ + e⁻

R_e: $(1/30)C_6H_5COO^- + (1/5)NO_3^- + (1/5)H^+ \rightarrow (1/5)CO_2 + (1/10)N_2 + (1/30)HCO_3^- + (1/6)H_2O$

• Combining cell synthesis and electron donor half reactions, we get the overall reaction for cell synthesis using a specific electron donor (synthesis reaction)

 $R_s = R_c - R_d$

ex) Use of benzoate to synthesize cell with generic cell formula (textbook)

R_c: (1/5)CO₂ + (1/20)NH₄⁺ + (1/20)HCO₃⁻ + H⁺ e⁻ → (1/20)C₅H₇O₂N + (9/20)H₂O -R_d: (1/30) C₆H₅COO⁻ + (13/30)H₂O → (1/5)CO₂ + (1/30)HCO₃⁻ + H⁺ + e⁻ R_s: (1/30) C₆H₅COO⁻ + (1/20)NH₄⁺ + (1/60)HCO₃⁻ → (1/20)C₅H₇O₂N + (1/60)H₂O

• Now, note that for the overall reactions for bacterial growth, R_e occurs with a fraction of f_e and R_s occurs with a fraction of f_s. Therefore,

 $\mathbf{R} = \mathbf{f}_{e}\mathbf{R}_{e} + \mathbf{f}_{s}\mathbf{R}_{s} \qquad [\mathrm{Eq}\ (1)]$

ex) Overall cell synthesis reaction for benzoate as an electron donor and nitrate as an electron acceptor (textbook)

when $f_s = 0.40$,

 $f_e = 1 - f_s = 0.60$

 $R = 0.60 \ x \ R_e + 0.40 \ x \ R_s$

R: $0.0333C_6H_5COO^- + 0.12 \text{ NO}_3^- + 0.02 \text{ NH}_4^+ + 0.12 \text{ H}^+ → 0.02C_5H_7O_2N + 0.06N_2 + 0.12CO_2 + 0.0133HCO_3^- + 0.1067H_2O$

 \rightarrow Full stoichiometry obtained!

If you plug in the expressions for R_e and R_s in Eq (1),

 $R = f_e(R_a - R_d) + f_s(R_c - R_d) = f_eR_a + f_sR_c - R_d$

So, instead of calculating the energy and cell synthesis reactions separately, you can use the equation above to make the overall reaction.