Wastewater treatment processes overview I

Today's lecture

- Sewer networks
- Municipal wastewater treatment systems
 - Overview
 - Pretreatment: Screens, Grit chamber, flow equalization
 - Primary treatment
 - Secondary treatment: conventional process for BOD removal

Sewer networks

- Combined sewer
 - Sewage and stormwater are collected by a single pipeline
 - For old cities

- Separate sewer
 - Dual pipeline system to collect sewage and stormwater separately
 - New constructions adopt separate sewer

Combined sewer overflow (CSO)

- A non-point source pollution problem
- Some diluted wastewater flows directly to the water body during storm events
- Constant CSO (not diluted!) in some cases due to exceedance of design sewage flowrate

Raw sewage Bar rack Pretreatment Grit chamber Equalization basin **Primary** Primary settling treatment Biological treatment Secondary treatment Secondary settling Advanced Tertiary waste treatment treatment Receiving -

Municipal wastewater treatment systems

- Pretreatment: removes materials that can cause operational problems, equalization optional
- Primary treatment: remove ~60% of SS and ~35% of BOD
- Secondary treatment remove ~85% of BOD and SS
- Advanced (tertiary) treatment more BOD and/or SS removal, nutrient removal, refractory organics, or others

Bar racks (screens)

 Purpose: to remove large objects that would damage or foul pumps, valves, and other mechanical equipment

Top: Manually-cleaned bar screen

http://techalive.mtu.edu

Bottom: Mechanically-cleaned bar screen

http://www.degremont-technologies.com

Grit chamber

- Grits: inert dense materials such as sand, broken glass, silt, and pebbles
- Purpose: to remove grits that can abrade pumps and other mechanical devices

Rectangular horizontal flow grit chamber

8

Flow equalization

Daily variations

- Significant daily variations of flowrate especially for small collections systems
- * note the lag time for wastewater to reach the treatment plant
- Constituent concentration also varies over time

Flow equalization

- Purpose: dampen flowrate variations (and concentration variations) to
 - i) overcome the operational problems caused by flowrate variations
 - ii) improve the performance of the downstream processes
 - iii) reduce the size and cost of downstream treatment facilities

Flow equalization

Method of application: in-line or off-line

- In-line: can achieve dampening of constituent concentration in addition to the dampening of flowrate
- Off-line: pumping requirements are minimized

Primary sedimentation basins

- Removal of suspended solids by settling
- This removes some BOD as well!
- Removes ~60% of SS and ~35% of BOD
- Sludge settled at the bottom and collected by mechanical devices
- Floating materials such as oil and grease are also removed

Primary sedimentation basins

- Design parameters
 - Retention time: ~2 hr
 - Overflow rate, v_0 : determines particle removal efficiency

$$v_{o}=rac{Q}{A_{c}}$$
 $Q=$ water flow rate (m³/s) $A_{c}=$ surface area of the sedimentation basin (m²)

Removal of particles in sedimentation basins

Assume a rectangular sedimentation basin:

particle 1: $v_{s1} < v_o \rightarrow$ partial removal

particle 2: $v_{s2} = v_o \rightarrow$ 100% removal

particle 3: $v_{s3} > v_o \rightarrow$ 100% removal

Removal of particles in sedimentation basins

From the diagram in the previous slide,

(time for water to flow through the settling zone) [1]

= (settling zone length, L) / (horizontal velocity, v_h)

(time for particle with settling vel. of v_o entering at the top to settle) [2]

= (settling zone height, H) / (settling velocity, v_o)

Equating [1] and [2],
$$\frac{L}{v_h} = \frac{H}{v_o}$$

 $v_o = \underline{overflow\ rate}\ (m/s)$ $A = surface\ area\ of\ settling\ zone\ (m^2)$ For particles with settling velocity (v_s) greater than v_o , 100% removed;

For particle with v_s smaller than v_o , removal efficiency is v_s/v_o x 100 (%)

Primary sedimentation basins

Rectangular or circular

http://www.mlive.com

http://www.lgam.info

Secondary treatment

- Goal: provide BOD removal beyond what is achieved in primary treatment
 - Removal of soluble BOD
 - Additional removal of SS
- How: by providing favorable conditions for microbial activities
 - Availability of high density of microorganisms
 - Good contact between organisms and wastes
 - Favorable temperature, pH, nutrients, carbon source (food)
 - Oxygen (or other electron acceptors)
 - No or little toxic chemicals present

Analyzing activated sludge process

Remember:

$$S = K \frac{1 + b\theta_{x}}{\theta_{x}(Y\hat{q} - b) - 1}$$

$$X_a = \frac{\theta_x}{\theta} \frac{Y(S^0 - S)}{1 + b\theta_x}$$

SRT a key parameter

Other important parameters

Food-to-microorganism ratio (F/M)

$$F/M = \frac{Q^0 S^0}{VX}$$
 X = total suspended solids (MLSS) in aeration tank (mg/L)

 Volumetric organic loading rate (Volumetric OLR): the amount of BOD or COD applied to the aeration tank volume per day

$$Volumetric OLR = \frac{Q^0 S^0}{V}$$

Sludge production

• Sludge production, $P_{X,VSS}$

$$P_{X,VSS} = Y_{obs}(Q)(S^{0} - S) + QX_{i}^{0}$$

$$= QY(S^{0} - S) \frac{1 + (1 - f_{d})b\theta_{x}}{1 + b\theta_{x}} + QX_{i}^{0}$$

 $P_{X,VSS}$ = daily net sludge production (g VSS/d) Y_{obs} = observed yield (g VSS/g substrate)

Settling problems: bulking sludge

- Sludge blanket not stable; large quantities of MLSS carried along with the clarifier effluent
- Exceeding the effluent standard for SS & BOD/COD
- Two principal types of sludge bulking
 - Filamentous bulking: growth of filamentous organisms
 - Viscous bulking: production of excessive amount of extracellular biopolymer

Filamentous vs. viscous bulking

Filamentous bulking

- Bacteria form filaments of single-cell organisms that attach endto-end, and the filaments protrude out of the sludge floc
- Filamentous bacteria are competitive at low DO, low organic conc., low nutrient conc. → need control of these variables!

Viscous bulking

- Results in a sludge with a slimy, jellylike consistency
- Biopolymers are hydrophilic → contains significant amount of water in the floc → low density, poor compaction
- Found at nutrient-limited systems and at a very high F/M ratio

Settling problems: Nocardioform foam

- "Nocardioform" bacteria have hydrophobic cell surfaces and attach to air bubbles, causing foaming
- Thick foam (0.5~1 m) of brown color forms
- Can occur in diffused aeration systems and also in anaerobic treatment systems
- Major solutions
 - Avoid trapping foam in the aeration tank effluent
 - Surface wasting of activated sludge
 - Avoid the recycle of skimmings

Settling problem: rising sludge

- Rising of sludge having relatively good settling properties due to gas formation
- Gas commonly produced: N₂
- Gas bubble attaches to the sludge and increases buoyant force
- Solutions
 - Increasing the return activated sludge withdrawal rate from the clarifier (less residence time of sludge in the clarifier)
 - Temporally decreasing the rate of flow of aeration liquor into the clarifier
 - Increasing the speed of the sludge collecting mechanism
 - Decreasing the SRT (prevent nitrification) or add an anoxic reactor (complete nitrification-denitrification)