457.212 Statistics for Civil & Environmental Engineers In-Class Material: Class 10 Probability Distribution Functions and Partial Descriptors (A&T: 3.1)

- 1. Cumulative Distribution Function (CDF) of a continuous random variable X, $F_X(x)$
 - (a) Definition

$$F_X(x) = P($$
)
$$= \int f_X(x) dx$$

(b) Properties

- Non-decreasing (because we are integrating a non-negative function)
- $F_X(-\infty) = P($) =

•
$$F_X(\infty) = P($$
) =


```
ex01_sample = runif(10000, min=0, max=100)
# generate random numbers following uniform distribution U(0,100)
hist(ex01_sample, freq=FALSE, breaks=seq(0,100,5), main="PDF")
# plot empirical PDF from samples: use hist with freq=FALSE
plot(ecdf(ex01_sample), verticals=TRUE, pch="", main="CDF")
# plot empirical CDF using samples
ex01_c = subset(ex01_sample, (ex01_sample>=20 & ex01_sample<=50))
# subset of elements satisfying the condition
c_ans = length(ex01_c)/length(ex01_sample) # P(20≤x≤50)</pre>
```

Example 2: Suppose an object can fall anywhere within a 10-km radius circle at random (i.e. uniform likelihood over points inside the circle). PDF and CDF of the distance between the location and the center of the circle, R?


```
# creating a user-defined function
ex02 = function(num) { # create a function
samp = c()
repeat{ # repeated infinitely without 'break'
x = runif(1, min=-10, max=10)
jf(x^2+y^2 < 100){ # random sample is located inside of the circle
samp = rbind(samp, c(x,y))
}
if(dim(samp)[1]==num) break # break when number of sample is 'num'
return(samp) # result of function 'ex02' is 'samp'
}
# scatter plot of samples
ex02_sample = ex02(1000)
plot(ex02_sample, xlab="x", ylab="y", asp=1)
# draw CDF
distance = sqrt(ex02_sample[,1]^2+ex02_sample[,2]^2)
ex02_sample = cbind(ex02_sample, distance)
plot(ecdf(ex02_sample[,3]), verticals=TRUE, pch="", main="CDF")
```

)

2. Partial Descriptors of a random variable

- (a) "Complete" description by probability functions:
- (b) "Partial" descriptors: measures of key characteristics; can derive from (

Note:

- Expectation: $E[\cdot] = \int_{-\infty}^{\infty} (\cdot) f_X(x) dx$ (continuous) or $\sum_{\text{all } x} (\cdot) p_X(x)$ (discrete)
- Moment: $E[\cdot X^n] = \int_{-\infty}^{\infty} x^n f_X(x) dx$ or $\sum_{\text{all } x} x^n p_X(x)$
- Central Moment, $E[(X \mu_X)^n] = \int_{-\infty}^{\infty} (x \mu_X)^n f_X(x) dx$ or $\sum_{\text{all } x} (x \mu_X)^n p_X(x)$

	Name	Definition	Meaning (PDF/CDF)
Measure of Central Location	Mean, μ_{χ}	First moment, E[X]	Location of the () of an area underneath ()
	Median, x _{0.5}	$F_X(x_{0.5}) = 0.5$ $F_X^{-1}(0.5)$	The value of a r.v. at which values above and below it arelly probable. If symmetric?
	Mode, \tilde{x}	$\arg\max_{x} f_{X}(x)$	The outcome that has theest probability mass or density
Measure of Dispersion	Variance, σ_x^2	Second-order central moment $E[(X - \mu_X)^2]$ $= E[X^2] - E[X]^2$	Average of squared deviations
	Standard Deviation, σ_x	$\sqrt{\sigma_X^2}$	Radius of ()

	Coefficient of Variation (C.O.V.), δ_x	$\frac{\sigma_x}{ \mu_x }$	ed radius of ()
Asymmetry	Coefficient of Skewness, γ_x	Third-order central moment normalized by σ_X^3 , $\frac{E[(X - \mu_X)^3]}{\sigma_X^3}$	Behavior of two tails > 0 = 0 < 0
Flatness	Coefficient of Kurtosis, κ_x	Fourth-order central moment normalized by σ_X^4 , $\frac{E[(X - \mu_X)^4]}{\sigma_X^4}$	"Peakedness" - more of the variance is due to infrequent extreme deviations, as opposed to frequent modestly-sized deviations.

Example 3: Compute the mean, median, mode, variance, standard deviation and coefficient of variation for a discrete random variable X whose PMF is given as

x	$P_X(x)$
0	0.20
1	0.50
2	0.30

Example 4: Compute the mean, median, mode, variance, standard deviation and coefficient of variation for a continuous random variable *X* whose PDF is given by $f_X(x) = (3/1000)x^2$, $0 \le x \le 10$ and 0 elsewhere. What is your guess on the sign of the coefficient of the skewness? Confirm your guess by computing it.

```
# mean
ex04_pdf = function(x) {x*(3/1000)*x^2}
mean_data = integrate(ex04_mean, lower=0, upper=10) # integrate function
mean = mean_data$value # only 'value' of the integrate result
# variance
ex04_var = function(x) {(x-mean)^2*(3/1000)*x^2}
var_data = integrate(ex04_var, lower=0, upper=10)
var = var_data$value
std = sqrt(var)
# skewness
ex04_skew = function(x) {(x-mean)^3*(3/1000)*x^2}
skew_data = integrate(ex04_skew, lower=0, upper=10)
skew = skew_data$value/std^3
# kurtosis
ex04_kurt = function(x) {(x-mean)^4*(3/1000)*x^2}
kurt_data = integrate(ex04_kurt, lower=0, upper=10)
kurt = kurt_data$value/std^4
```