457.643 Structural Random Vibrations In-Class Material: Class 17

III-2. Random Vibration Analysis of Linear Structures (contd.)

Response of a linear system to weakly stationary input

 $\kappa_{FF}(t_1, t_2) = \Gamma_{FF}(\tau)$ where $\tau = t_1 - t_2$

Assuming zero initial conditions,

$$\kappa_{XX}(t_1, t_2) = \int_0^{t_1} \int_0^{t_2} \kappa_{FF}(\tau_1, \tau_2) h(t_1 - \tau_1) h(t_2 - \tau_2) d\tau_2 d\tau_1$$
$$= \int_0^{t_1} \int_0^{t_2} \Gamma_{FF}(\tau) h(t_1 - \tau_1) h(t_2 - \tau_2) d\tau_2 d\tau_1$$

where $\tau = \tau_1 - \tau_2$

Note $\Gamma_{FF}(\tau) = \int_{-\infty}^{\infty} \Phi_{FF}(\omega) e^{i\omega\tau} d\omega$

Thus,

$$\begin{aligned} \kappa_{XX}(t_1, t_2) &= \int_{-\infty}^{\infty} \int_{0}^{t_1} \int_{0}^{t_2} \Phi_{FF}(\omega) h(t_1 - \tau_1) h(t_2 - \tau_2) e^{i\omega\tau} d\tau_2 d\tau_1 d\omega \\ &= \int_{-\infty}^{\infty} \int_{0}^{t_1} \int_{0}^{t_2} \Phi_{FF}(\omega) h(t_1 - \tau_1) h(t_2 - \tau_2) e^{-i\omega(t_1 - \tau_1)} e^{i\omega(t_2 - \tau_2)} e^{i\omega(t_1 - t_2)} d\tau_2 d\tau_1 d\omega \end{aligned}$$

By changing variable $u = t_1 - \tau_1$, one can show

$$\int_0^{t_1} h(t_1 - \tau_1) e^{-i\omega(t_1 - \tau_1)} d\tau_1 = \int_0^{t_1} h(u) e^{-i\omega u} du$$
$$= \int_{-\infty}^{t_1} h(u) e^{-i\omega u} du$$
$$= \mathcal{H}(\omega, t_1)$$

This is so-called "incomplete" Fourier transform of the impulse response function.

cf. "complete" FT of IRF gives the FRF

$$H(\omega) = \int_{-\infty}^{\infty} h(t) e^{-i\omega t} dt$$

Therefore, $\kappa_{XX}(t_1, t_2)$ for a weakly stationary input F(t) is expressed as

$$\kappa_{XX}(t_1,t_2) = \int_{-\infty}^{\infty} \Phi_{FF}(\omega) \mathcal{H}(\omega,t_1) \mathcal{H}^*(\omega,t_2) e^{i\omega\tau} d\omega$$

Note:

- The response of a linear system to a stationary input is ______ stationary necessarily.
- However, as t₁, t₂ → ∞, the incomplete FTs becomes independent of t₁ and t₂, Therefore, κ_{XX}(t₁, t₂) depends only on τ = t₁ - t₂

Observations:

1. $\lim_{t \to \infty} \mathcal{H}(\omega, t) = H(\omega)$ for a "stable" system

Therefore, the response of a linear system to a stationary input becomes

_____ e_____

2. $\kappa_{XX}(0,0)$ must be _____ and it means $\sigma_X^2(0) =$. This makes sense because we assumed _____ IC's

3. For the stationary response, i.e.
$$t_1, t_2 \rightarrow \infty$$

$$\kappa_{XX}(t_1, t_2) = \int_{-\infty}^{\infty} \Phi_{FF}(\omega) \mathcal{H}(\omega, t_1) \mathcal{H}^*(\omega, t_2) e^{i\omega\tau} d\omega$$
$$= \int_{-\infty}^{\infty} \Phi_{FF}(\omega) |H(\omega)|^2 e^{i\omega\tau} d\omega$$

That is,

$$\Gamma_{XX}(\tau) = \int_{-\infty}^{\infty} \Phi_{FF}(\omega) |H(\omega)|^2 e^{i\omega\tau} d\omega$$

4. From this result, for a stationary response, it is found that

 $\Phi_{XX}(\omega) =$

For example, let us consider...

(a) $\mathcal{H}(\omega, t)$ and $\mathcal{H}(\omega)$ of standard SDOF oscillator

Recall

•
$$h(t) = \frac{1}{\omega_D} e^{-\xi \omega_0 t} \sin \omega_D t$$

•
$$H(\omega) = \frac{1}{\omega_0^2 - \omega^2 + 2i\xi\omega_0\omega} = \frac{\omega_0^2 - \omega^2 - 2i\xi\omega_0\omega}{(\omega_0^2 - \omega^2)^2 + (2\xi\omega_0\omega)^2}$$

$$|H(\omega)|^{2} = \frac{1}{(\omega_{0}^{2} - \omega^{2})^{2} + 4\xi^{2}\omega_{0}^{2}\omega^{2}}$$

$$\mathcal{H}(\omega,t) = \int_{-\infty}^{t} \frac{1}{\omega_{D}} e^{-\xi\omega_{0}\tau} \sin\omega_{D}\tau \cdot U(\tau) \cdot e^{-i\omega\tau} d\tau$$
$$= H(\omega) \left[1 - \left(\cos\omega_{D}t + \frac{\xi\omega_{0} + i\omega}{\omega_{D}} \sin\omega_{D}t \right) \cdot e^{-\xi\omega_{0}t} \cdot e^{-i\omega t} \right]$$

From this result, the terms in () has the same order as 1, and $e^{-i\omega t}$ oscillates. Therefore, the rate of the convergence of the

terms in [] to _____ is determined by _____

In other words, "sufficient" time to achieve stationarity depends

on $\xi \omega_0 t = \xi \frac{2\pi}{T_0} t$

Suppose we set $\xi \omega_0 t = 2\pi \xi \frac{t}{T_0} = \pi$ (note $e^{-\pi} = 4\%$) and solve it for *t*, i.e. time to make the exponentially decaying term as 4%, $t_{4\%} = \frac{T_0}{2\xi}$

e.g. $\xi = 0.1 \rightarrow t_{4\%} \cong 5T_0$, $\xi = 0.05 \rightarrow t_{4\%} \cong 10T_0$

* Alternative (empirical) method:

Wang, Z., and Song, J. (2017) Equivalent linearization method using Gaussian mixture (GM-ELM) for nonlinear random vibration analysis, *Structural Safety*, Vol. 64, 9-19. (<u>http://dx.doi.org/10.1016/j.strusafe.2016.08.005</u>)

3.1.1. Remark 1: Selecting sample points

One issue in selecting sample points in the aforementioned algorithm is that the nonlinear response takes a certain amount of time to achieve stationarity, thus using the whole time series including a nonstationary part will introduce errors to the estimated PDF. To reduce this error, for each of the *M* response histories obtained from the first step of the algorithm, we need to select \bar{N} stationary response values as the sample points.

Here we provide a method to crudely estimate the time that the system would take to achieve stationarity. To begin with, the standard deviation of the response at a sequence of time points, denoted as $\operatorname{std}[Z(j\Delta t)]$, in which $j = 1, 2, \ldots$ and Δt is the time step of the nonlinear analysis, is estimated using the recorded *M* response histories, and then a sigmoid function expressed as

$$f_{fit}(j) = \frac{1}{1 + e^{-aj\Delta t + b}}$$
(12)

is employed to fit the std[$Z(j\Delta t)$] curve. Note that $f_{fit}(\cdot) \in (0, 1)$, thus the std[$Z(j\Delta t)$] curve should be scaled by a factor $J/\sum_{j=1}^{J} \text{std}[Z(j\Delta t)]$ ($J\Delta t$ is the duration of the excitation) so that it approximately ranges from 0 to 1. The parameters *a* and *b* in Eq. (12) can be determined from a least-square regression analysis. A typical scaled std[$Z(j\Delta t)$] curve and its corresponding fitting function $f_{fit}(\cdot)$ is illustrated in Fig. 3. With $f_{fit}(t)$ available, the time the system takes to achieve stationarity, denoted by $j_{ns}\Delta t$, can be estimated via

$$j_{\rm ns} = \arg\min\{j|1 - f(j\Delta t) \leqslant Tol, j = 1, 2, \ldots\}$$

$$\tag{13}$$

where *Tol* denotes a specified tolerance. With j_{ns} determined, for each of the *M* response histories, $\bar{N} = J - j_{ns}$ time points corresponding to the stationary responses are selected to be the sample points, and the total number of sample points is $N = M \cdot \bar{N} = M \cdot (J - j_{ns})$.

Figure 3. A typical scaled std[$Z(j\Delta t)$] curve and the fitting function

Stationary response of standard SDOF oscillator to "white noise"

Useful for linear random vibration analysis of MDOF systems using modal combination, i.e. each mode is represented by a standard SDOF oscillator (will be shown later)

$$\Phi_{FF}(\omega) = \Phi_0$$

PSD of the stationary response

$$\Phi_{XX}(\omega) = \Phi_0 |H(\omega)|^2$$
$$= \frac{\Phi_0}{(\omega_0^2 - \omega^2)^2 + 4\xi^2 \omega_0^2 \omega^2}$$

Thus,

$$\begin{split} \Gamma_{XX}(\tau) &= \int_{-\infty}^{\infty} \Phi_{XX}(\omega) e^{i\omega\tau} d\omega \\ &= \Phi_0 \int_{-\infty}^{\infty} \frac{e^{i\omega\tau}}{(\omega_0^2 - \omega^2)^2 + 4\xi^2 \omega_0^2 \omega^2} d\omega \end{split}$$

How? We can use _____ theorem

(to be continued...)

