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457.643 Structural Random Vibrations
In-Class Material: Class 17

I1I-2. Random Vibration Analysis of Linear Structures (contd.)

Response of a linear system to weakly stationary input
KFF(tl' tz) = FFF(T) Whel’e T= tl - tz

Assuming zero initial conditions,

Kxx(t,tz) = f f Kpp(T1, T2)h(t; — T)h(t; — 1p)dTdTy
o Jo

ty rty
= j f Iep(T)h(t; — T)h(t; — 12)dTdTy
o Jo

wheret =1, — 1,
Note FFF(T) = f_oooo q)pp(w)eiwrd(l)
Thus,
[oe] t]_ tz .
kxx(ty,tz) = j f f Gpp(w)h(ty — 1)h(t; — 12)e'dT,dT; dw
—00 Y0 0
© tl t2 . . .
= f f f G pp(w)h(t; — 1) h(ty, — 1y)e @t elo(tz=T2) pl@(ti=t) 41, 1, dw
—oJo Jo

By changing variable u = t; — 74, one can show

ty i t1 3
h(t; —t1)e @tmldr, = | h(u)e %du
0 0

t _
= f h(w)e '“Ydu

=H(w,t;)

This is so-called “incomplete” Fourier transform of the impulse response function.

cf. “complete” FT of IRF gives the FRF

H(w) = jooh(t)e‘i‘“tdt
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Therefore, kxx(t1, t;) for a weakly stationary input F(t) is expressed as

kxx(t1,tz) = f Opp(w) H (0, t)H*(w, t,)e“ dw

Note:

+ The response of a linear system to a stationary input is stationary
necessarily.

+ However, as t;,t, = oo, the incomplete FTs becomes independent of ¢; and ¢,,
Therefore, kyx(t;,t,) dependsonlyont =t; — t,

Observations:

1. tlim H(w,t) = H(w) for a “stable” system

Therefore, the response of a linear system to a stationary input becomes
e

2. Kxx(0,0) must be and it means 0%(0) = . This makes sense because we

assumed IC’s

3. For the stationary response, i.e. t;,t, » o

Kxx(ty, tz) = f Dpp(w) H (0, t)H*(w, t,)e™“ dw
= f Ppp(w) |H(w)|?e dw

That is,

Fex (@) = f O pp (@) | H(w) |26 doo

4. From this result, for a stationary response, it is found that

byy(w) =
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For example, let us consider...
H(w,t) and H(w) of standard SDOF oscillator
Recall

¢ h(t) = wiDe_f“’Ot sinwpt

2 .
o H(w)= 1 _ wi—wi-2iww

- = z
wi—w?t2ifwew  (wZ-w?) +(2Eww)?

1

H(w)|* =
(@)l (w3 — w?)? + 482 wi w?

v
v

t

1 .
j’[(a); t) = f w—e_fwol' sin wpT - U(T) e T T
—oo YD

wo + iw .
= H(w) [1 - (cos wpt + $®o sinth) e ¢Wot . gTiwt

Wp
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From this result, the terms in () has the same order as 1, and

e~ @t oscillates. Therefore, the rate of the convergence of the

v

termsin[]to is determined by
In other words, “sufficient” time to achieve stationarity depends

2
on Ewyt = fT—:t

Suppose we set fwot = ZnETi =m (note e™™ = 4%) and solve it for t, i.e. time to make the
0

exponentially decaying term as 4%, t,o, = ZT—"
eg E =0.1 9 t4_% = 5T0, Z = 0.05 9 t4% = 10T0

% Alternative (empirical) method:

Wang, Z., and Song, J. (2017) Equivalent linearization method using Gaussian mixture (GM-ELM) for nonlinear
random vibration analysis, Structural Safety, Vol. 64, 9-19. (http://dx.doi.org/10.1016/j.strusafe.2016.08.005)

3.1.1. Remark 1: Selecting sample points

One issue in selecting sample points in the aforementioned
algorithm is that the nonlinear response takes a certain amount
of time to achieve stationarity, thus using the whole time series
including a nonstationary part will introduce errors to the esti-
mated PDF. To reduce this error, for each of the M response histo-
ries obtained from the first step of the algorithm, we need to select
N stationary response values as the sample points.

Here we provide a method to crudely estimate the time that the
system would take to achieve stationarity. To begin with, the stan-
dard deviation of the response at a sequence of time points,
denoted as std[Z(jAt)], in whichj=1,2,... and At is the time step
of the nonlinear analysis, is estimated using the recorded M
response histories, and then a sigmoid function expressed as

1

1 + e—wAt+b (12)

ffir(j} =

is employed to fit the std[Z(jAt)] curve. Note that fg(-) € (0, 1), thus

the std[Z(jAt)] curve should be scaled by a factor J /Ej_ﬁtd[ZUAr)l
(JAt is the duration of the excitation) so that it approximately
ranges from O to 1. The parameters a and b in Eq. (12) can be deter-
mined from a least-square regression analysis. A typical scaled
std[Z(jAt)] curve and its corresponding fitting function fg(-) is illus-
trated in Fig. 3. With fﬁf(r) available, the time the system takes to
achieve stationarity, denoted by j, . At, can be estimated via

Jns = argmin{j|1 — f(jAt) < Tol,j=1,2,...} (13)

where Tol denotes a specified tolerance. With j,, determined, for
each of the M response histories, N = ] — j,. time points correspond-
ing to the stationary responses are selected to be the sample points,
and the total number of sample points is N=M:-N=M- (] —j,.).
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Figure 3. A typical scaled std[Z(jAt)] curve and the fitting function

Stationary response of standard SDOF oscillator to “white noise”

Useful for linear random vibration analysis of MDOF systems using modal combination, i.e.

each mode is represented by a standard SDOF oscillator (will be shown later)
Qpp(w) = Dy
PSD of the stationary response

Dyx(w) = Pg|H(w)|?
(wE — 02)? + 4820k w?

v

Thus,
G @ = | xp(@)erdo
oo eiw‘r
0 J_Oo (w3 — w2)? + 482w w?
How? We can use theorem

(to be continued...)
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