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VI. Nonlinear Random Vibration Analysis

(Differential equation based) hysteretic constitutive models in structural dynamics

“Hysteresis”
- Origin: ferromagnetic materials

- Memory-based multi-valued relation between an input signal & output (generally
referring to “rate-independent” relationship only; viseeus-aterials)

Mechanical model for differential equation based hysteresis model

LX’ Total Displacement. z: Auxiliary variable representing inelastic
behavior (“internal variable” — Capecchi & de
Felice 2001, ASCE JEM) ~ displacement of
. inelastic spring

Inelastic ¢ z=x:noslide

S \ ¢ z=0:slide

(nonlinearity determined by difference between z and x)

Resisting force:

fs(x,2) = akox + (1 — a)kyz

+ q: post-to-pre-yield stiffness ratio
v a = 0: perfectly plastic

v «a = 1: linear elastic

v

* ko initial stiffness
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Evolution of z follows a nonlinear differential equation

z=1x-h(x % 2)

Meaning of the nonlinear function h(:)?

Song, J., and A. Der Kiureghian (2006). Generalized Bouc-Wen model for highly asymmetric hysteresis. Journal
of Engineering Mechanics. ASCE, 132(6), 610-618.

dz_dx he)
dt — dt

Therefore, h(-) (: Z—i) determines the slope of z with respect to x at a given time.

Bilinear model (Kaul & Penzien 1974 JEMD; Asano & lwan 1984 EESD)

Main idea: describe inelastic spring in the mechanical model by a Coulomb slider (i.e. no slide
until it reaches the yield displacement)

1) —x, <z<x,:
fs A (@) y y

(2) the Coulomb slider does not slide, i.e.
z=xand z =x

1)

fs(x,z) = akox + (1 — a)kox = kox (linear)

3)
(3) 287 X (2) z>xy,x>00rz<—xy,%<0:

Coulomb slider slides (i.e. z = 0)

(2) (3) Z>.X'y,.9.C<00rZ<—Xy,9.C>O:

Coulomb slider stops sliding z = x
Differential-equation model by Kaul & Penzien (1974):
=% {U(z+xy)—U(z—x,)+U(z—xy) - U(=%) + U(~z—x,) - U(x)}
where U(+) denotes the unit step function.
How to solve the nonlinear system differential equation, i.e.
E.O.M. with f; = akox + (1 — w)kgz plus z = x - h(x, X, z)

e.g. Runge-Kutta method (after transforming to state-space formulation y = g(y) + f)
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Bouc-Wen class model

Bouc (1967) first proposed, and Wen (1976) later modified to the form

Z=Xx- [A - |Z|nl/J(x: )Z,Z)]

where
e A: scale of hysteresis loop
e n: smoothness of transition from pre-yielding to post-yielding
e Y(x,x,z): “shape-control” function

Reviews are available in Song & ADK (2006, JEM), and Ismail et al. (2009, Archi. Comp.
Meth. Engrg.)

1) Bouc (1967, 1971) : : L

¢ n=1 _:I / /

o Y(oi2) =y + Bsgn(iz) o B B I R

2) Wen (1976) 0 ﬂ .

+ n: generalized . Ny /

¢ P&, x,2) =y + Psgn(kz) .
The parameters y and g in the o a

Figure 3.3 Hysteresis loops by Bouc-Wen model (4=1#=1) (a) y=05, p=05. (b) y=0.1,

“shape-control” function determine $-09.1017-05,b--05 (@ 1075, p--015

“‘k\;\
\
I ——

the shapes of the hysteresis loops (Song and ADK 2006)
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Fig. 2. Values of shape-control function for: (a) original Bouc—Wen
model; and (b) model by Wang and Wen
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3) Baber & Wen (1981): Considered the degradation effect by making the model

parameters functions of €, “the dissipated energy”
4) Baber & Noori (1984): Introduced additional parameters to describe “pinching” effect
5) Wang & Wen (1998): Described “asymmetric” shape by adding additional terms
Y(x, %, 2) =y + Bsgn(xz) + P[sgn(x) + sgn(z)]
= Added more DOFs (see the figure above)
6) Generalized Bouc-Wen (Song & ADK, 2006)

Generalize the “shape-control” function to describe highly asymmetric behavior

Y(x, X, z) = Brsgn(xz) + Bosgn(xx) + B3sgn(xz) + Basgn(x) + Bssgn(z) + Besgn(x)

z W
4/
Wb
L4
> X
Vs
Vs
Yy
Fig. 3. Values of shape-control function for generalized Bouc—Wen

model

Six phases can now have all different values, and the values are determined as

U, o111 11 ||,
bl =1 =1 1 -1 1 1 ||B,
Uy =1 =1 =1 =1 1 ||Bs
Wl 1 o1t 1 -1 -1 =1 ||Bs
s | =1 =1 1 1 =1 —1|Bs
Uie =1 =1 1 1 —1]|Be

The model parameters g;,i = 1, ...,6 can be fitted by use of


mailto:junhosong@snu.ac.kr

Seoul National University Instructor: Junho Song

Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr
B 1 0 1 0 1 s,
B 0O -1 -1 0 =1 —11[]{>
B 1|1 1 0 1 1 0 Py
Bl 4|1 =1 0 -1 1 0 [l
Bs O 1 -1 0 -1 ss
Be 1 0 I -1 0 =11y

¢ Weakness of Bouc-Wen class models:

¢ can violate the requirement of classical plasticity
theory (“Drucker’s postulate”; Bazant 1978); can
create negative dissipative energy when “loading-

unloading” occurs without load reversal

\ 4

+ But this problem is not critical if E[f;] = 0 (Wen
1989, Hurtado & Barbat 1996)

¥ Bouc-Wen class models are widely-used in structural dynamics and earthquake

engineering because
1) Can describe a wide-class of phenomena (pinching, degradation, etc.)
2) Facilitates efficient time history analysis (no IF or THEN)
3) Facilitates efficient random vibration analysis

e.g. Nonlinear random vibration analysis for Bouc-Wen model by Equivalent
Linearization Method (Wen 1980)

Nonlinear time-history analysis of structural system with Bouc-Wen class models
Mx + Cx + R(x, %, z) = —M1%,

where R(x, x,z) uses f; = akyx + (1 — a)kyz to describe the resistant force of each B-W

element. The auxiliary variable follows the nonlinear differential equation z = x - h(x, x, z).

Transformed to state-space formulation, i.e. y = {xq, X1, X3, X2, e, Z1, ) Zim}
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Example: Two connected equipment items in an electrical substation (Song, 2004)

®)

o)

(©

Figure 2.1 Mechanical models of equipment items connected by rigid bus connectors: (a) RB-

FSC-connected system, (b) Bus-slider-connected system, and (c) idealized system
with SDOF equipment models

y=g+f
where

y= {uli ul! Uy, uZi Z}T

( Uy )
ki + ak ¢ +c¢ ak c 1-a)k
_(—1 0)u1_(1 0)111+ 0u2+—0il.2+—( ) OZ
my my my m my
g) =1 i, |
ak, Co . k, + akg cy +Co) . (1 - )k,
—u1+—u1—(—)u2—( )uz— z
m, m, m, m, m;
\ AtL - h(Au, AL, 2) J
L 2 '
=40 —— 0 ——%, O
f { my *g m, *g }

Can solve the differential equation by a numerical method such as the fourth and fifth order
Runge-Kutta-Fehlberg (RKF) algorithm.
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Equivalent Linearization Method (ELM; a.k.a. stochastic linearization method)

Among various methods such as Fokker-Planck equation, stochastic averaging, moment
closure, perturbation (Lutes and Sarkani 2004), ELM is considered as a nonlinear random

vibration approach with the highest potential for practical use (Pradlwarter & Schuéller 1991)

- Applicable to both stationary and nonstationary processes
- Applicable to a wide class of nonlinear behavior
- Can handle MDOF systems and FE models

- Takes significantly less efforts than Monte Carlo simulations (especially for low-
probability events)

Consider an original nonlinear system: y = g(y) + f:

One can find an “equivalent linear” system: y, = A - y. + f such that the mean-square error

(caused by linearization) E[(g(y) — Ay)T(g(y) — Ay)] is minimized.

Note: ELM based on the error definition above is considered “standard” ELM while the error
measure E[(g(y.) — Ay.)T(g(y.) — Ay,)] is called “SPEC-alternative” ELM (Crandall 2001).

Crandall, S.H. (2001) Is stochastic equivalent linearization a subtly flawed procedure? Probabilistic Engineering
Mechanics, 16:169-176

Probability Density Functions
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Fig. 2. Probability density functions for cubic oscillator.
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