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 457.643 Structural Random Vibrations 

In-Class Material: Class 25 

 

VI. Nonlinear Random Vibration Analysis 

 (Differential equation based) hysteretic constitutive models in structural dynamics 

“Hysteresis” 

- Origin: ferromagnetic materials 

- Memory-based multi-valued relation between an input signal & output (generally 

referring to “rate-independent” relationship only; viscous materials) 

Mechanical model for differential equation based hysteresis model 

𝑧: Auxiliary variable representing inelastic 

behavior (“internal variable” – Capecchi & de 

Felice 2001, ASCE JEM) ~ displacement of 

inelastic spring 

 𝑧 = 𝑥: no slide 

 𝑧 = 0: slide 

(nonlinearity determined by difference between 𝑧 and 𝑥) 

Resisting force: 

𝑓𝑠(𝑥, 𝑧) = 𝛼𝑘0𝑥 + (1 − 𝛼)𝑘0𝑧 

 

 𝛼: post-to-pre-yield stiffness ratio 

 𝛼 = 0: perfectly plastic 

 𝛼 = 1: linear elastic 

 𝑘0: initial stiffness 

 

Inelastic 

x, Total Displacement. 

z 
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Evolution of 𝑧 follows a nonlinear differential equation 

𝑧̇ = 𝑥̇ ⋅ ℎ(𝑥, 𝑥̇, 𝑧) 

Meaning of the nonlinear function ℎ(⋅)? 

𝑑𝑧

𝑑𝑡
=
𝑑𝑥

𝑑𝑡
⋅ ℎ(⋅) 

Therefore, ℎ(⋅) (=
𝑑𝑧

𝑑𝑥
) determines the slope of 𝑧 with respect to 𝑥 at a given time. 

 Bilinear model (Kaul & Penzien 1974 JEMD; Asano & Iwan 1984 EESD) 

Main idea: describe inelastic spring in the mechanical model by a Coulomb slider (i.e. no slide 

until it reaches the yield displacement) 

(1) −𝑥𝑦 < 𝑧 < 𝑥𝑦: 

      the Coulomb slider does not slide, i.e. 

     𝑧 = 𝑥 and 𝑧̇ = 𝑥̇ 

     𝑓𝑠(𝑥, 𝑧) = 𝛼𝑘0𝑥 + (1 − 𝛼)𝑘0𝑥 = 𝑘0𝑥 (linear) 

(2) 𝑧 > 𝑥𝑦, 𝑥̇ > 0 or 𝑧 < −𝑥𝑦, 𝑥̇ < 0: 

      Coulomb slider slides (i.e. 𝑧̇ = 0) 

(3) 𝑧 > 𝑥𝑦, 𝑥̇ < 0 or 𝑧 < −𝑥𝑦, 𝑥̇ > 0:    

     Coulomb slider stops sliding 𝑧̇ = 𝑥̇ 

Differential-equation model by Kaul & Penzien (1974): 

𝑧̇ = 𝑥̇ ⋅ {𝑈(𝑧 + 𝑥𝑦)−𝑈(𝑧 − 𝑥𝑦)+𝑈(𝑧 − 𝑥𝑦) ⋅ 𝑈(−𝑥̇)+𝑈(−𝑧− 𝑥𝑦) ⋅ 𝑈(𝑥̇)} 

where 𝑈(⋅) denotes the unit step function. 

How to solve the nonlinear system differential equation, i.e. 

E.O.M. with 𝑓𝑠 = α𝑘0𝑥 + (1 − α)𝑘0𝑧 plus 𝑧̇ = 𝑥̇ ⋅ ℎ(𝑥, 𝑥̇, 𝑧) 

e.g. Runge-Kutta method (after transforming to state-space formulation 𝒚̇ = 𝒈(𝒚) + 𝒇 ) 

(2) 

(3) 

(2) 

(3) xy 

fs 

x 

(1) 

Song, J., and A. Der Kiureghian (2006). Generalized Bouc-Wen model for highly asymmetric hysteresis. Journal 
of Engineering Mechanics. ASCE, 132(6), 610-618. 
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 Bouc-Wen class model 

Bouc (1967) first proposed, and Wen (1976) later modified to the form 

𝑧̇ = 𝑥̇ ⋅ [𝐴 − |𝑧|𝑛𝜓(𝑥, 𝑥̇, 𝑧)] 

where 

 𝐴: scale of hysteresis loop 

 𝑛: smoothness of transition from pre-yielding to post-yielding 

 𝜓(𝑥, 𝑥̇, 𝑧): “shape-control” function 

Reviews are available in Song & ADK (2006, JEM), and Ismail et al. (2009, Archi. Comp. 

Meth. Engrg.) 

1) Bouc (1967, 1971) 

 𝑛 = 1 

 𝜓(𝑥, 𝑥̇, 𝑧) = 𝛾 + 𝛽sgn(𝑥̇𝑧) 

2) Wen (1976) 

 𝑛: generalized 

 𝜓(𝑥, 𝑥̇, 𝑧) = 𝛾 + 𝛽sgn(𝑥̇𝑧) 

The parameters 𝛾 and 𝛽 in the 

“shape-control” function determine 

the shapes of the hysteresis loops (Song and ADK 2006) 
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3) Baber & Wen (1981): Considered the degradation effect by making the model 

parameters functions of ϵ, “the dissipated energy” 

4) Baber & Noori (1984): Introduced additional parameters to describe “pinching” effect 

5) Wang & Wen (1998): Described “asymmetric” shape by adding additional terms 

𝜓(𝑥, 𝑥̇, 𝑧) = 𝛾 + 𝛽sgn(𝑥̇𝑧) + 𝜙[sgn(𝑥̇) + sgn(𝑧)] 

 Added more DOFs (see the figure above) 

6) Generalized Bouc-Wen (Song & ADK, 2006) 

Generalize the “shape-control” function to describe highly asymmetric behavior 

𝜓(𝑥, 𝑥̇, 𝑧) = 𝛽1sgn(𝑥̇𝑧) + 𝛽2sgn(𝑥𝑥̇) + 𝛽3sgn(𝑥𝑧) + 𝛽4sgn(𝑥̇) + 𝛽5sgn(𝑧) + 𝛽6sgn(𝑥) 

 

Six phases can now have all different values, and the values are determined as 

 

The model parameters 𝛽𝑖, 𝑖 = 1,… ,6 can be fitted by use of 
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※ Weakness of Bouc-Wen class models: 

 can violate the requirement of classical plasticity 

theory (“Drucker’s postulate”; Bažant 1978); can 

create negative dissipative energy when “loading-

unloading” occurs without load reversal 

 But this problem is not critical if E[𝑓𝑠] ≅ 0 (Wen 

1989, Hurtado & Barbat 1996) 

※ Bouc-Wen class models are widely-used in structural dynamics and earthquake 

engineering because 

1) Can describe a wide-class of phenomena (pinching, degradation, etc.) 

2) Facilitates efficient time history analysis (no IF or THEN) 

3) Facilitates efficient random vibration analysis 

e.g. Nonlinear random vibration analysis for Bouc-Wen model by Equivalent 

Linearization Method (Wen 1980) 

 Nonlinear time-history analysis of structural system with Bouc-Wen class models 

𝐌𝐱̈ + 𝐂𝐱̇ + 𝐑(𝒙, 𝒙̇, 𝒛) = −𝐌𝟏𝑥̈𝑔 

where 𝐑(𝒙, 𝒙̇, 𝒛) uses 𝑓𝑠 = 𝛼𝑘0𝑥 + (1 − 𝛼)𝑘0𝑧 to describe the resistant force of each B-W 

element. The auxiliary variable follows the nonlinear differential equation 𝑧̇ = 𝑥̇ ⋅ ℎ(𝑥, 𝑥̇, 𝑧). 

Transformed to state-space formulation, i.e. 𝐲 = {𝑥1, 𝑥̇1, 𝑥2, 𝑥̇2, … , 𝑧1, … , 𝑧𝑚} 
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Example: Two connected equipment items in an electrical substation (Song, 2004) 

 

𝒚̇ = 𝒈(𝒚) + 𝒇 

where 

𝒚 = {𝑢1, 𝑢̇1, 𝑢2, 𝑢̇2, 𝑧}
T 

𝒈(𝒚) =

{
 
 
 

 
 
 

𝑢̇1

−(
𝑘1 + 𝛼𝑘0
𝑚1

)𝑢1 − (
𝑐1 + 𝑐0
𝑚1

) 𝑢̇1 +
𝛼𝑘0
𝑚1

𝑢2 +
𝑐0
𝑚1

𝑢̇2 +
(1 − 𝛼)𝑘0

𝑚1
𝑧

𝑢̇2
𝛼𝑘0
𝑚2

𝑢1 +
𝑐0
𝑚2

𝑢̇1 − (
𝑘2 + 𝛼𝑘0
𝑚2

)𝑢2 − (
𝑐2 + 𝑐0
𝑚2

) 𝑢̇2 −
(1 − 𝛼)𝑘0

𝑚2
𝑧

Δ𝑢̇ ⋅ ℎ(Δ𝑢, Δ𝑢̇, 𝑧) }
 
 
 

 
 
 

 

𝒇 = {0  −
𝑙1
𝑚1

𝑥̈𝑔   0  −
𝑙2
𝑚2

𝑥̈𝑔   0}
T

 

Can solve the differential equation by a numerical method such as the fourth and fifth order 

Runge-Kutta-Fehlberg (RKF) algorithm. 
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 Equivalent Linearization Method (ELM; a.k.a. stochastic linearization method) 

Among various methods such as Fokker-Planck equation, stochastic averaging, moment 

closure, perturbation (Lutes and Sarkani 2004), ELM is considered as a nonlinear random 

vibration approach with the highest potential for practical use (Pradlwarter & Schuëller 1991) 

- Applicable to both stationary and nonstationary processes 

- Applicable to a wide class of nonlinear behavior 

- Can handle MDOF systems and FE models 

- Takes significantly less efforts than Monte Carlo simulations (especially for low-
probability events) 

Consider an original nonlinear system: 𝐲̇ = 𝒈(𝒚) + 𝒇: 

One can find an “equivalent linear” system: 𝐲̇𝑒 = 𝐀 ⋅ 𝐲e + 𝒇 such that the mean-square error 

(caused by linearization) E[(𝒈(𝒚) − 𝐀𝒚)T(𝒈(𝒚) − 𝐀𝒚)] is minimized. 

Note: ELM based on the error definition above is considered “standard” ELM while the error 

measure E[(𝒈(𝒚𝑒) − 𝐀𝒚𝑒)
T(𝒈(𝒚𝑒) − 𝐀𝒚𝑒)] is called “SPEC-alternative” ELM (Crandall 2001). 

 

Crandall, S.H. (2001) Is stochastic equivalent linearization a subtly flawed procedure? Probabilistic Engineering 
Mechanics, 16:169-176 
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