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Introduction

Work Done Equals the Gain in Kinetic Energy (운동에너지)

The work done by a force F along a curve C is due 

entirely to the tangential component of F
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10.1 Line Integrals

 Concept of a line integral (선적분) 

: A simple and natural generalization of a definite integral known from 

calculus

 Line Integral (선적분) or Curve Integral (곡선적분): We integrate a given 

function (Integrand, 피적분함수) along a curve C in space (or in the plane). 

 Path of Integration

C : r(t) = [ x(t) , y(t) , z(t) ] = x(t)i + y(t)j + z(t)k ( a<t<b )

 General Assumption

: Every path of integration of a line integral is assumed to be piecewise 

smooth.

Oriented Curve
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10.1 Line Integrals

 Definition and Evaluation of Line Integrals

 A line integral of F(r) over a curve C (= work integral) 

 The interval a≤t≤b on t-axis: the positive direction, the increasing t
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Example 1

10.1 Line Integrals

 Example 1 Evaluation of a Line Integral in the Plane

 Find the value of the line integral when F(r) = [– y , – xy ] = – yi – xyj

along C. C :  r(t) = [ cos t , sin t ] = cos t i + sin t j, where 0≤ t ≤π/2. 

 x(t) = cos t, y(t) = sin t , 

Sol) F(r(t)) = – y(t)i – x(t)y(t)j = – sin t i – cos t sin t j

 By differentiation

     
/2

0
    sin cos sin sin cos

C

d t, t t t, t dt


       F r r

    sin cos sin cost t, t t t     r i j
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Formula (5c)

10.1 Line Integrals

 Simple general properties of the line integral

 Theorem 1 Direction-Preserving Parametric 

Transformations (방향을 유지하는 매개변수 변환) 

 Any representations of C that give the same positive direction on C 

also yield the same value of the line integral

 

 

1 2
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10.1 Line Integrals

Work Done Equals the Gain in Kinetic Energy

The work done by a force F along a curve C is due entirely to the 

tangential component of F
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10.1 Line Integrals

 Ex.4 Work Done Equals the Gain in Kinetic Energy

Let F be a force and t be time, then dr/dt = v, velocity.

By Newton’s second law,
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10.1 Line Integrals

 Example

9/8
4

Solution)

Find the work done by 

(a) F=xi +yj and 

(b) F=¾ i+½ j along the curve C traced 
by r(t)=cos t i+sin t j from t=0 to t=π.
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Q : solve it
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10.1 Line Integrals

 Other Forms of Line Integrals: 

 When

 When without taking a dot product, we can obtain a line integral whose 

value is a vector rather than a scalar

 Ex.5 Integrate F(r) = [ xy , yz , z ] along the helix. 

             1 2 3,   ,   

b b

C a a

dt t dt F t F t F t dt      F r F r r r r
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Proof of Theorem 2

10.1 Line Integrals

 Theorem 2 Path Dependence (경로관련성)

 The line integral generally depends not only on F and on the 

endpoints A and B of the path, but also on the path itself which the 

integral is taken.

 Ex. Integrate F = [ 0 , xy , 0 ] on the straight segment C1 : r1(t)=[t, t, 0] 

and the parabola C2 : r2(t)=[t, t2, 0] with 0 ≤t ≤ 1, respectively.

Sol)
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2

2
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10.2 Path Independence of Line Integrals

 Theorem 1 Path Independence (경로독립성, 경로무관성)

 A line integral with continuous F1,F2,F3 in a domain D in space is 

path independent in D if and only if F = [F1,F2,F3] is the gradient of 

some function f in D (F is gradient field),
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dz
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A line integral is independent of path.
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10.2 Path Independence of Line Integrals

 Ex.1 Path Independence

Show that the integral                          is path independent in 

any domain in space and find its value in the integration from A : (0, 0, 

0) to B : (2, 2, 2).

Hence the integral is independent of path according to Theorem 1.

 2 2 4
C

xdx ydy zdz 

 

1 2 3

2 2 2

2 2 ,4z grad     

    2 ,   2 ,   4  

      2

x, y f

f f f
x F y F z F

x y z

f x y z

 

  
      

  

   

F

         2 2 4 2,2,2 0,0,0 4 4 8 16
C

xdx ydy zdz f B f A f f         

Sol)
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10.2 Path Independence of Line Integrals

 Theorem 2 Path Independence

 The integral is path independent in a domain D if and only if its 

value around every closed path in D is zero.

Proof 1) path independence → integral is zero

The integral around closed path is zero.

  0
C

d F r r

   
1 2C C

d d F r r F r r

   1 2

B B

A A
d d F r r F r r    1 2 0

B B

A A
d d  F r r F r r

   1 2 0
B A

A B
d d  F r r F r r

,:1 BAC  ABC :2
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10.2 Path Independence of Line Integrals

 Theorem 2 Path Independence

 The integral is path independent in a domain D if and only if its 

value around every closed path in D is zero.

Proof 2) path independence ← integral is zero
for given any points A and B and any two curves C1  and C2 from A to B

1 2
1 1 2 2( ) ( ) ( ) 0

C C C
d d d    F r r F r r F r r

1 1 2 2( ) ( ) 0
B A

A B
d d  F r r F r r

,:1 BAC  ABC :2

1 1 2 2 2 2( ) ( ) ( )
B A B

A B A
d d d    F r r F r r F r r

Move 2nd term to the right.

In conclusion, a line integral is path independent .
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10.2 Path Independence of Line Integrals

Work. Conservative and Nonconservative (Dissipative, 소산
하는) Physical Systems

 Theorem 2: work is path independent in D if and only if its value is 

zero for displacement around every closed path in D.

 Theorem 1: this happens if and only if F is the gradient of a 

potential in D.

⇒ F and the vector field defined by F are called conservative in D 

because mechanical energy is conserved

⇒ no work is done in the displacement from a point A and back to A.

 For instance, the gravitational force is conservative;

 if we throw a ball vertically up, it will return to our hand with the 

same kinetic energy it had when it left our hand.

 If this does not hold, nonconservative or dissipative physical system.
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10.2 Path Independence of Line Integrals

 Theorem 3* Path Independence

 The integral is path independent in a domain D in space if and only 

if the differential form has continuous coefficient functions F1,F2,F3

and is exact in D.

 F•dr = F1dx + F2dy + F3dz  is exact if and only if there is f in D such 

that F = grad f.
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10.2 Path Independence of Line Integrals

18/
84

 Simple connected (단순 연결됨)

A domain D is called simply connected if every closed curve in D
can be continuously shrunk to any point in D without leaving D.

it can shrink to a point in D
continuously

it can’t shrink to a point in D
continuously



Seoul 
National

Univ.
19

10.2 Path Independence of Line Integrals

 Theorem 3 Criterion for Exactness (완전성) and Path 

Independence (경로독립성)

 Let F1,F2,F3 in the line integral,                                                         

be continuous and have continuous first partial derivatives in a 

domain D in space. 

a. If the differential form F•dr = F1dx + F2dy + F3dz is exact in D

– and thus line integral is path independent (from Theorem 3*),-

then in D, curl F = 0 ; in components                                             .

   1 2 3

C C

d F dx F dy F dz    F r r
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Proof a) From Theorem 3*, F = grad f  curl F = curl (grad f) = 0
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10.2 Path Independence of Line Integrals

 Theorem 3 Criterion for Exactness and Path 

Independence

b. If curl F = 0 holds in D and D is simply connected, 

then F•dr = F1dx + F2dy + F3dz is exact in D 

and thus line integral is path independent.

Proof b)

To prove this, we need “Stokes’s theorem” that will be presented later.
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[Review] 1.4 Exact ODEs, Integrating Factors

 Exact Differential Equation (완전미분 방정식):

The ODE  M(x, y)dx +N(x, y)dy = 0 whose the differential form M(x, y)dx +N(x, y)dy

is exact (완전미분), that is, this form is the differential                                    of u(x, y)

 If ODE is an exact differential equation, then

 Condition for exactness: 

 Solve the exact differential equation.

     , , 0        0        ,M x y dx N x y dy du u x y c     

u u
du dx dy

x y

 
 
 

2

        
M N M u u u N

y x y y x x y x y x

           
       

             

 ,    
u

M x y
x





         ,      , ,         ,         
u u

N x y u x y N x y dy l x M x y
y x

 
      
 

   &  
dk

k y
dy

   &  
dl

l x
dx

      , ,  u x y M x y dx k y       ,   
u

N x y
y


  



M(x, y) N(x, y)
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10.2 Path Independence of Line Integrals

 Ex.3 Exactness and Independence of Path. 

Determination of a Potential

Show that the differential form under the integral sign of

is exact, so that we have independence of path in any domain, and

find the value of I from A: (0, 0, 1) to B: (1, π/4, 2).

Solution)

Exactness:    

   

   

2

3 2

1 3

2

2 1

2 cos sin ,     

4 ,     

2

y z

z x

x y

F x z yz yz yz F

F xyz F

F xz F

   

 

 

   2 2 2 22 cos 2 cos
C

I xyz dx x z z yz dy x yz y yz dz     
 

3 32 1 2 1    
F FF F F F

,  ,  
y z z x x y
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10.2 Path Independence of Line Integrals

 Ex.3 Exactness and Independence of Path. 

Determination of a Potential

Show that the differential form under the integral sign of

To find f

   2 2 2 2

2 cos sin ,     f F dy x z z yz dy x yz yz g x z      

 2 2

1  2 2         0         x x xf xyz g F xyz g g h z       

2 2

32 cos ' 2 cos          ' 0          constzf x yz y yz h F x yz y yz h h         

   2 2  sin ,   1 4 sin 0 1
4 2

f x yz yz  f B f A
 

          

   2 2 2 22 cos 2 cos
C

I xyz dx x z z yz dy x yz y yz dz     
 

A: (0, 0, 1) to B: (1, π/4, 2)

1 2 3grad     ,   ,   
f f f

f F F F
x y z

   
    

   
F

(If we assume h = 0)
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10.2 Path Independence of Line Integrals

Example

Solution)

Show that the vector field 

F=(y2+5)i+(2xy-8)j is a gradient field. 

Find a potential function for F

(F = grad ).
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∴Vector field F is a gradient field.
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10.2 Path Independence of Line Integrals

 Ex.4 On the Assumption of Simple Connectedness

Let                                                     (not defined in the origin).

Differentiation show that                                          is satisfied in 

any domain of the xy-plane not containing the origin in the domain D: 

Solution)

1) F1 and F2 do not depend on z, and F3 = 0

By differentiation:

2) D is not simply connected 

⇒ the integral on any closed curve in D is not zero.

3 32 1    
F FF F

,  
y z z x

  
  

   

       

2 2 2 2 2 2 2 2

2 1

2 2 2 2
2 2 2 2 2 2 2 2

2 2F Fx y x x y x x y y y y x

x yx y x y x y x y

        
     

    

2 21 3

2 2
x y  

1 2 32 2 2 2
,     ,     0

y x
F F F

x y x y
   

 

3 32 1 2 1
F FF F F F

,  ,  
y z z x x y
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10.2 Path Independence of Line Integrals

 Ex.4 On the Assumption of Simple Connectedness

Let

3) For example, on the circle x2 + y2 = 1,

x = rcos θ, y=rsin θ, r=1⇒ dx = -sin θ dθ, dy = cos θ dθ

“Since D is not simply connected, we cannot apply 

Theorem 3 and I is not independent of path in D.”

1 2 32 2 2 2
,     ,     0

y x
F F F

x y x y
   

 

1 2 2 2
( )

c c

ydx xdy
I F dx F dy

x y

 
  

 

22 2

0

sin cos
2

1 1 1c c

d d d d


     



     

≠0 (integral is not zero)
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Subdivision of a region R

10.3 Calculus Review: Double Integrals

 Double integral (이중적분) 

: Volume of the region between the surface defined by the function 

and the plane

 Definition of the double integral

 Subdivide the region R by drawing parallels to the x- and y-axes.

 Number the rectangles that are entirely within R from 1 to n.

 In each such rectangle we choose a point (xk, yk ) in the kth

rectangle, whose area is ΔAk
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Subdivision of a region R

10.3 Calculus Review: Double Integrals

 The length of the maximum diagonal of the rectangles approaches 

zero as n approaches infinity.

 We form the sum 

 Assuming that f (x , y) is continuous in R and R is bounded by finitely 

many smooth curves, 

 one can show that this sequence                      converges and its 

limit is independent of the choice of subdivisions and corresponding 

points (xk, yk ).

 This limit is called the double integral of

f (x , y) over the region R.

 
1

n

n k k k

k

J f x , y ΔA




1 2
,  ,  n nJ J

   , or ,
R R

f x y dxdy f x y dA 
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10.3 Calculus Review: Double Integrals

 Properties of double integrals

 Mean Value Theorem

 R is simply connected, then there exists at least one point              

(x0, y0 ) in R such that we have 

where A is the area of R.

 

 

 
1 2

                        constant

           See Figure

R R

R R R

R R R

kf dxdy k f dxdy k

f g dxdy f dxdy gdxdy

f dxdy f dxdy f dxdy



  

 

 

  

  

   0 0, ,
R

f x y dxdy f x y A



Seoul 
National

Univ.
30

10.3 Calculus Review: Double Integrals

 Evaluation of Double Integrals by Two Successive 

Integrations

   
 

 

, ,

h xb

R a g x

f x y dxdy f x y dy dx
 

  
  

  

Evaluation of a double integral 

   
 

 

, ,

q yd

R c p y

f x y dxdy f x y dx dy
 

  
  

  

Evaluation of a double integral
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10.3 Calculus Review: Double Integrals

 Applications of Double Integrals: Area

region  theofA    thegivesimply lim then ,on  1),(when 
1

0P ||||
area
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10.3 Calculus Review: Double Integrals

 Applications of Double Integrals: Volume

i

j

x

y

z

R

),( surface yxfz 

),( **

kk yxf

)0,,( **

kk yx

k

If                     on R, then the product                         give the volume of 

rectangular prism. The summation of volume                               is 

approximation to the volume V, of the solid above the region R and 

below the

0),( yxf
kkk Ayxf ),( **

),( surface yxfz 





n
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10.3 Calculus Review: Double Integrals

 Applications of Double Integrals

 Let f (x, y) be the density (= mass per unit area) of a distribution of 

mass in xy-plane 

 Total mass M in R: 

 Center of gravity of the mass in R: 

 Moments of inertia of the mass in R about the x- and y-axes 

 Polar moment of inertia about the origin of mass in R:

 
R

M f x, y dxdy  

   
1 1

,   
R R

x xf x, y dxdy  y yf x, y dxdy
M M

  

   2 2,   x y

R R

I y f x, y dxdy I x f x, y dxdy  

   2 2

0 x y

R

I I I x y f x, y dxdy   
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10.3 Calculus Review: Double Integrals

 Change of Variables in Double Integrals. Jacobian

/2 1 /2

0 0 0

1

2 4
R

M dxdy rdrd d

 


       

 
R

M f x, y dxdy  

How to apply????

Change of variables !!

Polar coordinate (극좌표계)
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10.3 Calculus Review: Double Integrals

 Change of Variables in Double Integrals. Jacobian

 A change of variables in double integrals from x, y to u ,v

 Jacobian: 

 Polar coordinates: x = rcos θ, y=rsin θ

      
 

 *

,
, , , ,

,
R R

x y
f x y dxdy f x u v y u v dudv

u v




 

 

 

,

,

x x

x y x y x yu v
J

y yu v u v v u

u v

 

     
   

     

 

 

 

   
*

cos sin,

sin cos,

, cos , sin
R R

x x

rx y r
J r

y y rr

r

f x y dxdy f r θ r θ rdrd
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10.3 Calculus Review: Double Integrals

 Ex. 1 Evaluate the double integral over the square R

Sol) Transformation x + y = u, x – y = v    
1 1

,   
2 2

x u v y u v
 

    
 

 

 

1 1

, 12 2
 

1 1, 2

2 2

x y
J

u v


   




Region R in Example 1   
2 2

2 2 2 2

0 0

1 1 8

2 2 3
R

x y dxdy u v dudv      

 

 

,

,

x x

x y u v
J

y yu v

u v

 

  
 

 

 

 2 2

R

x y dxdy

Q : solve it

      
 

 *

,
, , , ,

,
R R

x y
f x y dxdy f x u v y u v dudv

u v
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10.3 Calculus Review: Double Integrals

 Ex.2 Double Integrals in Polar Coordinates. 

 Let f (x, y) = 1 be the mass density in the region, Find the total mass, the 

center of gravity, and the moments of inertia Ix, Iy, I0.

Sol)

/2 1 /2

0 0 0

1

2 4
R

M dxdy rdrd d

 


       

 

 
   

*

cos sin,
,      , cos , sin

sin cos,
R R

rx y
J r f x y dxdy f r θ r θ rdrd

rr

 


 


   
  

/2 1 /2

0 0 0

4 4 1 4
cos cos 0.4244

3 3

4

3

x r rdr d d

y

 

   
  



   



  

   
1 1

,   
R R

x xf x, y dxdy  y yf x, y dxdy
M M
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10.3 Calculus Review: Double Integrals

 Ex.2 Double Integrals in Polar Coordinates. 

 Let f (x, y) = 1 be the mass density in the region, Find the total mass, the 

center of gravity, and the moments of inertia Ix, Iy, I0.

Sol)
/2 1 /2

2 2 2 2

0 0 0

4 1
sin sin

4
x

R
I y dxdy r rdr d d

 

   


      
/2

0

1 1
(1 cos 2 ) 0 0.1963

8 8 2 16

16
y

d

I


 

 



 
      

 





0
8

x yI I I


  

   2 2,   x y

R R

I y f x, y dxdy I x f x, y dxdy  
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10.4 Green’s Theorem in the Plane

 Theorem 1 Green’s Theorem in the Plane

 Let R be a closed bounded region in the xy-plane whose boundary C

consists of finitely many smooth curves. 

 Let F1(x,y) and F2(x,y) be functions that are continuous and have 

continuous partial derivatives        and        everywhere in some 

domain containing R. Then

Here we integrate along the entire boundary C of R in such a sense 

that R is on the left as we advance in the direction of integration.

1 2          
F F

y x

 

 

 2 1
1 2

R C

F F
dxdy F dx F dy

x y

  
   

  
 

 Vectorial form 

 1 2 1 2,     F F F F  F i j

Region R whose boundary C

consists of two parts

     curl
R C

dxdy d    F k F r





































































y

F

x

F

x

F

z

F

z

F

y

F

FFF

zyx

123123

321

,,curl

kji

F
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10.4 Green’s Theorem in the Plane

 Ex. 1 Verification of Green’s Theorem in the Plane

F1 = y2 -7y, F2 = 2xy+2x and C the circle x2 + y2 = 1.

1)                                                                   

(Circular disk R has area .)

2) We must orient C counterclockwise ⇒ r(t) = [cost, sint], r′(t) = [-sint, 

cost]

   2 1 2 2 2 7 9 9
R R R

F F
dxdy y y dxdy dxdy

x y


  
            

  

2 2

1 27 sin 7sin 2 2 2cos sin 2cosF y y t t,    F xy x t t t       

       
2

2

1 2

0

sin 7sin sin 2 cos sin cos cos

π

C

   F x' F y' dt t t t t t t t dt       
  

 
2

3 2 2 2

0

sin 7sin 2cos sin 2cos

π

                                  t t t t t dt    

0 7 0 2 9                                  π - π π   

 2 1
1 2

R C

F F
dxdy F dx F dy

x y
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10.4 Green’s Theorem in the Plane

 Proof of Green’s Theorem
 2 1

1 2

R C

F F
dxdy F dx F dy

x y

  
   

  
 

Proof)

R

)(2 xgy 

)(1 xgy 

ba x

y

bxaxgyxgR  ),()(: 21

2

1

( )
1 1

( )

1 2 1 1

1 1 1 2

1 1 1 2

1

[ ( , ( )) ( , ( ))]

( , ( )) ( , ( ))

( , ( )) ( , ( ))

( , )

b g x

a g x
R

b

a

b b

a a

b a

a b

C

F F
dA dydx

y y

F x g x F x g x dx

F x g x dx F x g x dx

F x g x dx F x g x dx

F x y dx

 
  

 

  

 

 



  



 

 



2 1
1 2

C
R

F F
F dx F dy dA

x y
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2 1
1 2

C
R

F F
F dx F dy dA

x y

  
   

  
 

10.4 Green’s Theorem in the Plane

 Proof of Green’s Theorem
 2 1

1 2

R C

F F
dxdy F dx F dy

x y

  
   

  
 

Proof)

R

2 ( )x h y

b

c

x

y

)(1 yhx d

dycyhxyhR  ),()(: 21

2

1

( )
2 2

( )

2 2 2 1

2 2 2 1

2 2 2 1

2

[ ( ( ), ) ( ( ), )]

( ( ), ) ( ( ), )

( ( ), ) ( ( ), )

( , )

d h y

c h y
R

d

c

d d

c c

d c

c d

C

F F
dA dxdy

x x

F h y y F h y y dy

F h y y dy F h y y dy

F h y y dy F h y y dy

F x y dy
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10.4 Green’s Theorem in the Plane

43/
33

Region with Holes

1 2

1 2

2 1 2 1 2 1

1 2 1 2

1 2

R R R

C C

C

F F F F F F
dA dA dA

x y x y x y

F dx F dy F dx F dy

F dx F dy

          
         

          

   

 

  

 



1C
2C

1C

2C

2R

1R

(C=C1∪C2 )

 2 1
1 2

R C

F F
dxdy F dx F dy

x y
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10.4 Green’s Theorem in the Plane

 Some Applications of Green’s Theorem

 Ex. 2 Area of a Plane Region as a Line Integral Over the Boundary

 Ex. 3 Area of a Plane Region in Polar Coordinates

Polar coordinates     x = r cos θ, y = r sin θ

⇒ dx = cos θ dr – r sinθ dθ, dy = sin θ dr + rcos θ dθ

1 2

1 2

0,         

,    0   

R C

R C

F F x dxdy xdy

F y F dxdy ydx

   

     

 

 

 
1

2
C

A xdy ydx 

 

      2

1

2

1 1
cos sin cos sin cos sin

2 2

C

C C

A xdy ydx

r dr r d r dr r d r dθ       

 

      



 

 2 1
1 2

R C

F F
dxdy F dx F dy

x y

  
   

  
 

R의 넓이 (=A)
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10.4 Green’s Theorem in the Plane

 Ex. 4 Transformation of a Double Integral of the Laplacian of a Function

(∇2w) into a Line Integral of Its Normal Derivative (      )

1. 

2. 

w(x,y) is continuous and has continuous first and second 

partial derivatives in a domain of the xy-plane containing 

a region R of the type indicated in Green’s theorem.

We set 
1 2,     

w w
F F

y x

 
  

 

2 2
2 22 1 2 1

2 2
     

R R

F F F Fw w
w dxdy wdxdy

x y x y x y

     
         

      
 

 , , , grad  
w dy w dx w w dy dx w

here w
x ds y ds x y ds ds n

      
              

n

2   
R C

w
wdxdy ds

n


  

 

 1 2 1 2  
C C C

dx dy w dx w dy
F dx F dy F F ds ds

ds ds y ds x ds

   
       

    
  

C

w
ds

n






, , 0
dx dy dy dx

ds ds ds ds

   
       

   
r n

w

n





uu  ),(),( yxfyxfD

 2 1
1 2

R C

F F
dxdy F dx F dy

x y
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10.4 Green’s Theorem in the Plane

 Ex. 4 Transformation of a Double Integral of the Laplacian of a Function

(∇2w) into a Line Integral of Its Normal Derivative (      )

1 2,     
w w

F F
y x

 
  

 

2 2
2

2 2

R R R

w w w w
wdxdy dxdy dxdy

x y x x y y

       
       

        
  

2   
R C

w
wdxdy ds

n


  

 

w

n





R C

w w w w
dxdy dx dy

x x y y y x

         
         

          
 

 , , grad  
C C C

w dx w dy w w dy dx
ds ds w ds

y ds x ds x y ds ds

        
                   
   n

 
C

w
ds

n






 2 1
1 2

R C

F F
dxdy F dx F dy

x y

  
   

  
 

F2 F1
F1 F2

“결국 앞 페이지의 F1, F2 는 과정을 쉽게 하기

위해 도입한 것이지, 위 식이 성립하는데 어떤
전제조건도 되지 않는다. 즉, 본 식은 일반적으
로 어느 scalar w에 대해서 성립한다.”
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Example Flow of a Compressible Fluid.

  0



V



t  const

비압축성유체(Incompressible fluid)라고가정하면,

0 V 






















0

z

w

y

v

x

u

 Velocity Potential

 Continuity Equation

gradV u v w
x y z

    
     

  
V i j k i j k

0 V























0

z

w

y

v

x

u

2 2 2
2

2 2 2
0

x y z

  


  
    

  

(divergence)
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Example Flow of a Compressible Fluid.

 Physical Meaning

 Incompressible fluid when continuity equation is satisfied,  

2 0 

0
C

ds
n






경계 C를 통해 단
위 시간당 들어오
고 나온 유체의
양=0

2   0
R

dxdy  

2   
R C

w
wdxdy ds

n


  

 

C의 normal 방향으
로의 유체의 속도



Seoul 
National

Univ.
49

Example Flow of a Compressible Fluid.

 Physical Meaning

 Incompressible fluid but continuity equation is NOT satisfied,

ex) a source to add flux x direction, no flux in y direction

0 1

0 1( , ) ( , )

x xC

ds dy
n x x

u x y u x y dy

    
  

  

  

 



속도의 변화량의 적분

경계를 통해 단위 시간당
빠져나가는 유체의 양

1
1

0
0

2
2

1 02
( , ) ( , )

x
x

x
xR

dxdy dxdy dy u x y u x y dy
x x

 


 
    

     

0 0( , ) ( , )u x y x y
x





0x

1 1( , ) ( , )u x y x y
x





Source

x

y

1x

2

2
0

y y

  
 

 

2

2

u

x x

 


 

속도u의 변화량

양 경계에서의 단위시간당 속도차
= 생성되는 유체의 양

R

R

C

( 1,0) n (1,0)n
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10.5 Surfaces for Surface Integrals

 Representation of Surfaces: z = f (x, y) or g(x, y, z) = 0

 Curve C: r = r(t), where a ≤ t ≤ b

 Surface S: r(u,v) = [x(u,v) , y(u,v) , z(u,v)] = x(u,v) i + y(u,v) j + z(u,v) k

where (u,v) varies in some region R of the uv-plane

Parametric representation of a curve Parametric representation of a surface
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10.5 Surfaces for Surface Integrals

 Ex. 1 Parametric Representation of a Cylinder

 The circular cylinder x2 + y2 = a2, -1 ≤ z ≤ 1, has radius a, height 2, 

and the z-axis as axis

 Parametric representation: 

r(u,v) = [a cos u, a sin u, v] = a cos u i + a sin uj + vk

 The parameters u, v vary in the rectangle R : 0 ≤ u ≤ 2π, -1 ≤ v ≤ 1 in 

the uv-plane

 The components of r are x = a cos u, y = a 

sin u, z = v

 The curves u = const are vertical straight 

lines.

 The curves v = const are parallel circles.

Parametric representation of a cylinder

“cylinder surface를 u, v 사각형 구간으
로 변환해야 2차원 적분이 쉽다.”
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10.5 Surfaces for Surface Integrals

 Ex. 2 Parametric Representation of a Sphere 

A sphere x2 + y2 + z2 = a2 can be represented in the form

r(u,v) = a cos v cos u i + a cosv sin u j + a sin v k

where the parameters u, v vary in the rectangle

Another parametric representation is  

r(u,v) = a cos u sin v i + a sin u sin v j + a cos v k

where

: 0 2 ,    
2 2

R u v
 

    

Parametric representation of a sphere 

: 0 2 ,    0R u v    

“u, v 사각형 구간”
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Tangent plane and normal vector

10.5 Surfaces for Surface Integrals

 Tangent Plane and Surface Normal

 Tangent Plane: A Plane which is formed by the tangent vectors of 

all the curves on a surface S through a point P of S

 Normal Vector: A vector perpendicular to the tangent plane

 S: r = r(u, v) and C: 

 Tangent vector: 

      t u t ,v tr r

 
d du dv

t u v
dt u dt v dt u v

   
      

   

r r r r r
r

 : tangent vector along u direction at P of 

a curve r(u) when v = const like r′(t)

 : tangent vector along v direction at P of 

a curve r(v) when v = const like r′(t)

u





r

v





r

scalar
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Tangent plane and normal vector

10.5 Surfaces for Surface Integrals

 Tangent Plane and Surface Normal

 Tangent Plane: A Plane which is formed by the tangent vectors of 

all the curves on a surface S through a point P of S

 Normal Vector: A vector perpendicular to the tangent plane

 Normal vector: 

 Unit normal vector:

u v  N r r 0

1 1
u v

u v

  


n N r r
N r r
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10.5 Surfaces for Surface Integrals

 Tangent Plane (접평면) and Surface Normal (곡면 법선)

 S is represented by g(x, y, z) = 0

 S is a smooth surface if its surface normal depends continuously on 

the point of S

 S is piecewise smooth if it consists of finitely many smooth portions.

1
grad

grad
g

g
n

S
C

g

planeTangent

P

r
x

y

z

o

Normal vector for surface g(x, y, z) = 0

g(x, y, z) = 0
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10.5 Surfaces for Surface Integrals

 Theorem 1 Tangent Plane and Surface Normal

 If a surface S is given by r(u,v)=[x(u,v) , y(u,v) , z(u,v)] with continuous 

ru and rv satisfying N = ru x rv at every point of S,

 then S has at every point P a unique tangent plane passing through 

P and spanned by ru and rv,

 and a unique normal whose direction depends continuously on the 

points of S. A normal vector is given by N = ru x rv and the 

corresponding unit normal vector by

 Ex. 4 Unit Normal Vector of a Sphere

The sphere g(x,y,z) = x2 + y2 + z2 – a2 = 0 has the unit normal vector

1 1
u v

u v

  


n N r r
N r r

 
1

, , grad , ,
grad

x y z x y z
x y z g

g a a a a a a

 
     

 
n i j k
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10.6 Surface Integrals

 Surface Integral

S : r(u,v) = [x(u,v), y(u,v), z(u,v)] = x(u,v)i + y(u,v)j + z(u,v)k

 Normal vector: 

 Unit normal vector: 

 Surface integral over S: 

1 1
u v

u v

  


n N r r
N r r

    , ,
S R

dA u v u v dudv   F n F r N

u v  N r r 0

dA dudv dudv  n n N N

:  the area of the parallelogram with sides andu v u v

dA dudv

 



N r r r r

N

      
b

C a

d t t dt   F r r F r r

(평행사변형)
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10.6 Surface Integrals

?dA dudv dudv n n N N

,u v u v

A u v u v
u v u v

dA dudv

   
        

   

   

r r r r

r r N r r

( , ) ( , )u v v u v v
v


    



r
r r

u

R

( , ) ( , )u u v u v u
u


    



r
r r

( , )u v ( , )u u v 

( , )u v v  ( , )u u v v   

A

( , )u vr

v

dA dudv  N
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10.6 Surface Integrals

 Surface Integral (면적분)

Fn : the normal component of F

When F = ρv (density x velocity vector of the flow)

 flux across S = mass of fluid crossing S per unit time

 In components 

Here, α, β, γ are the angles between n and the coordinate axes.

     1 2 3 1 2 3, , ,     , , ,     cos ,cos ,cosF F F N N N     F N n

 

 

1 2 3

1 1 2 2 3 3

cos cos cos

                

S S

R

dA F F F dA

F N F N F N dudv

     

  

 



F n

 1 2 3

S

F dydz F dzdx F dxdy  

cos , cos , cosdA dydz dA dzdx dA dxdy    

    , ,
S R

dA u v u v dudv   F n F r N

1

2

3

cos
| || |

cos
| || |

cos
| || |

n

n

n








   


   


   

n i
n i

n i

n j
n j

n j

n k
n k

n k
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 Ex. 1 Flux Through a Surface
 Compute the flux of water through 

the parabolic cylinder: S : y=x2 , 0 ≤ x ≤ 2, 0 ≤ z ≤3

velocity vector: v = F =[3z2, 6, 6xz] (m/sec) 

F = ρv, the density ρ = 1gm/cm3 = 1ton/m3

Sol) Representation S: r = [u, u2
, v] (0 ≤ u ≤ 2, 0 ≤ v ≤3)

By differentiation and by the definition of the cross product

By integration

10.6 Surface Integrals

     1,   2 ,   0 0,   0,   1 2 ,   1,   0   u v u u     N r r

   

   

3 2 3
2

2 2 2

0
0 0 0

3
3 32 3

0
0

6 6 3 6

m12 12 4 12 72
sec

u
S

v

dA uv dudv u v u dv

v dv v v





    

     
  

   



F n

  2  6 6S uv   F N

    , ,
S R

dA u v u v dudv   F n F r N
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 Ex. 1 Flux Through a Surface
 Compute the flux of water through 

the parabolic cylinder: S : y=x2 , 0 ≤ x ≤ 2, 0 ≤ z ≤3

velocity vector: v = F =[3z2, 6, 6xz] (m/sec) 

F = ρv, the density ρ = 1gm/cm3 = 1ton/m3

Sol) Representation S: r = [u, u2
, v] (0 ≤ u ≤ 2, 0 ≤ v ≤3)

-/2<α<0  cos α>0,       /2<β< cos β< 0,       γ=/2 cos γ=0

10.6 Surface Integrals

 1 2 3

S S

dA F dydz F dzdx F dxdy    F n

3 4 2 3 3 2

2 2

0 0 0 0 0 0

3 6 4(3 ) 6 3 72
S

dA z dydz dzdx z dydz dx            F n

 cos ,cos ,cos [2 , 1, 0], cos 0, cos 0, cos 0u           N N n N

    , ,
S R

dA u v u v dudv   F n F r N
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 Ex. 2 Surface Integral

F =[x2 , 0, 3y2],  x + y + z =1. Evaluate

Sol) Representation S   Representation R (곡면 S의 xy-plane으로의투영)

x = u, y = v,  z = 1 – x –y = 1 – u –v

r(u, v ) = [u, v, 1 – u – v ] 

0 ≤ u ≤ 1 – v , 0 ≤ v ≤1

10.6 Surface Integrals

     1,   0,   1 0,  1,  1  = 1,  1,  1       u v     N r r

1 1

2 2 2 2

0 0

1

3 2

0

( 3 ) ( 3 )

1 1
(1 ) 3 (1 )

3 3

v

S R

dA u v dudv u v dudv

v v v dv



    

 
     

 

   



F n

    , ,
S R

dA u v u v dudv   F n F r N

 2 2 2 2( ) [ ,0,3 ] 1,  1,  1 3       S u v u v  F N

R
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10.6 Surface Integrals

 Orientation (방향) of Surfaces

 The value of the integral depends on the choice of the unit normal 

vector n.

 An oriented surface S (방향을 가진 곡면, 유향곡면): a surface S on 

which we have chosen one of the two possible unit normal vectors 

in a continuous fashion

 If we change the orientation of S, this means that we replace n 

with –n.

 Theorem 1 Change of Orientation in a Surface Integral

The replacement of n by -n corresponds to the multiplication of the 

integral by -1
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(A) Smooth surface (B) Piecewise smooth surface

Orientation of a surface

10.6 Surface Integrals

 Orientation of Piecewise Smooth Surfaces

 S is orientable (방향을 가질 수 있는) if the positive normal direction can be 

continued in a unique and continuous way to the entire surface.

 For a smooth orientable surface S with boundary curve C we may associate 

each of the two possible orientations of S with an orientation of C.

 A piecewise smooth surface is orientable (방향을 가질 수 있는) if we can 

orient each smooth piece of S so that along each curve C* which is a 

common boundary of two pieces S1 and S2.

 The positive direction of C* relative to S1 is opposite to the direction of C*

relative to S2.
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10.6 Surface Integrals

 Nonorientable (방향을 가질 수 없는) Surfaces

 A sufficiently small piece of a smooth surface is always orientable. 

This may not hold for entire surfaces. Ex. Möbius strip

Möbius strip
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10.6 Surface Integrals

 Surface Integrals Without Regard to Orientation

 Another type of surface integral disregarding the orientation

Here                                    is the element of area of S.

 Mean value theorem for surface integrals

If R is simply connected and G(r) is continuous in a domain containing R, 

then there is a point in R such that 

 Area of A: 

      , ,
S R

G dA G u v u v dudv r r N

u vdA dudv dudv  N r r

    0 0, (A: Area of )
S

G dA G u v A S r r

  u v

S R

A S dA dudv    r r

    , ,
S R

dA u v u v dudv   F n F r N
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10.6 Surface Integrals

 Ex. 4 Area of a Sphere (구의 겉넓이)

For a sphere r(u, v) = [a cos v cos u, a cos v sin u, a sin v], 

0 ≤ u ≤ 2π, - π /2 ≤ v ≤ π /2 , we obtain by direct calculation

Using cos2u + sin2u = 1, cos2v + sin2v = 1

2 2 2 2 2cos cos ,    cos sin ,    cos sinu v a v u a v u a v v    r r

 
1

2 4 2 4 2 2 2 22cos cos cos sin cos sin cosu v a v u v u v v a v    r r

 
22 2

2 2 2

0
2 2

cos 2 cos 4A S a vdudv a vdv a

 


 

 
 

     

Sol) 
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10.6 Surface Integrals

sin cosx r   sin siny r   cosz r 

2 2 2r x y z  
1tan ( )

y

x
 

1

2 2 2
cos ( )

z

x y z
 

 

Spherical → Cartesian

Cartesian → Spherical

Spherical → Cylindrical

sinr     cosz  




r

( , , )r z
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10.6 Surface Integrals

 Representations z = f ( x , y )

 If a surface S is given by z = f (x , y)

 Surface integral:

Here, R*: projection of S into the xy-plane

 Area:

      2 21,0, 0,1, , ,1 1u v u v u v u vf f f f f f         N r r

    
22

*

, , , 1
S R

f f
G dA G x y f x y dxdy

x y

   
     

    
 r

 
22

*

1
R

f f
A S dxdy

x y

   
     

    


      , ,
S R

G dA G u v u v dudv r r N
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10.7 Triple Integrals. Divergence Theorem of Gauss

 Triple integral for an integral of a function f (x, y, z)

 We subdivide T by planes parallel to the coordinate planes.

 We consider those boxes of the subdivision that lie entirely inside T, and 

number them from 1 to n.

 In each such box we choose an arbitrary point, say, (xk, yk, zk) in box k.

 The maximum length of all edges of those n boxes approaches zero as n

approaches infinity.

 The volume of box k we denote by ΔVk. We now form the sum

 
1

,
n

n k k k k

k

J f x , y z ΔV




( , , )k k kx y z

T
z

y

x
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10.7 Triple Integrals. Divergence Theorem of Gauss

 Theorem 1 Divergence Theorem of Gauss (발산이론)

Let T be a closed bounded region in space whose boundary is a 

piecewise smooth orientable surface S. Let F(x,y,z) be a vector 

function that is continuous and has continuous first partial derivatives 

in some domain containing T. Then 

In components of F=[F1, F2, F3] and of the outer unit normal vector

of S, formula becomes

div
T S

dV dA  F F n

 cos ,   cos ,  cos  n

   31 2
1 2 3 1 2 3cos cos cos

T S S

FF F
dxdydz F F F dA F dydz F dzdx F dxdy

x y z
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10.7 Triple Integrals. Divergence Theorem of Gauss

)(

)coscoscos()(

321

321
321

dxdyFdzdxFdydzF

dAFFFdxdydz
z

F

y

F

x

F

S

ST




















 

Proof)

This equation is true if and only if the integrals of each component

on both sides are equal






















SST

SST

SST

dxdyFdAFdxdydz
z

F

dxdzFdAFdxdydz
y

F

dydzFdAFdxdydz
x

F

33
3

22
2

11
1

cos

cos

cos





(3)

(4)

(5)
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10.7 Triple Integrals. Divergence Theorem of Gauss

dAFdxdydz
z

F

ST

 



cos3

3
(5)

We first prove (5) for a special region T that is bounded by a piecewise smooth

orientable surface S and has the property that any straight line parallel to 

any one of the coordinate axes and intersecting T has at most one segment 

(or a single point)

It implies that T can be represented in the form

),(),( yxhzyxg (6)

),(:

),(:

2

1

yxgS

yxhS

Proof continued)
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10.7 Triple Integrals. Divergence Theorem of Gauss

Proof continued) ),(:

),(:

2

1

yxgS

yxhS

dAFdxdydz
z

F

ST

 



cos3

3
(5)

 

 





















R R

R

yxh

yxg
T

dxdyyxgyxFdxdyyxhyxF

dxdydz
z

F
dxdydz

z

F

)],(,,[)],(,,[ 33

),(

),(

33

3 3 3 3cos [ , , ( , )] [ , , ( , )]
S S R R

F dA F dxdy F x y h x y dxdy F x y g x y dxdy       

We can decide the sign of the integral because on S2, and

on S10cos 

0cos 

Therefore, we prove (5). In the same manner, (3), (4) can be proven.

dAFdxdydz
z

F

ST

 



cos3

3
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10.7 Triple Integrals. Divergence Theorem of Gauss

 Ex. 1 Evaluation of a Surface Integral by the Divergence Theorem

Evaluate where S is the closed surface 

consisting of the cylinder x2 + y2 = a2 (0 ≤ z ≤ b) and the circular disks z

= 0 and z = b (x2 + y2 ≤ a2).

Polar coordinates (dxdydz = rdrdθdz)

 3 2 2

S

I x dydz x ydzdx x zdxdy  

3 2 2 2 2 2 2

1 2 3,   ,            div 3 5F x F x y F x z x x x x       F

Surface S in Example 1

Sol)

( )A r r   

V A z r r z       

x

z
r

z



r r

A
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10.7 Triple Integrals. Divergence Theorem of Gauss

 Ex. 1 Evaluation of a Surface Integral by the Divergence Theorem

Evaluate where S is the closed surface 

consisting of the cylinder x2 + y2 = a2 (0 ≤ z ≤ b) and the circular disks z

= 0 and z = b (x2 + y2 ≤ a2).

Polar coordinates (dxdydz = rdrdθdz)

 3 2 2

S

I x dydz x ydzdx x zdxdy  

3 2 2 2 2 2 2

1 2 3,   ,            div 3 5F x F x y F x z x x x x       F

 
2

2 2 2

0 0 0

2 4 4
2 4

0 0 0

5 5 cos

5
                            5 cos 5

4 4 4

b a

T z r

b b

z z

I x dxdydz r rdrd dz

a a
d dz dz a b









 

 
 

  

  

 

  

   

  

Surface S in Example 1

Sol)
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10.7 Triple Integrals. Divergence Theorem of Gauss

 Coordinate Invariance of the Divergence (발산의 좌표계 불변)

 Mean value theorem for triple integrals

For any continuous function f (x, y, z) in a bounded and simply connected 

region T there is a point Q:(x0, y0, z0) in T such that 

 Choose a point P:(x1, y1, z1) in T and let T shrink down onto P such that 

maximum distance d(T) of the points of T from P goes to zero.

 Then Q:(x0, y0, z0) must approach P.

     0 0 0

T

f x, y, z dV f x , y , z V T

     

0 0 0

1 1
div ( ) div

T S T

x , y , z dV dA
V T V T

   F F F nset =divf F

     
0

1
div ( ) lim

d T
S T

P dA
V T

 F F n

(V(T) = volume of T )
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10.7 Triple Integrals. Divergence Theorem of Gauss

 Theorem 2 Invariance of the Divergence

 The divergence of a vector function F with continuous first partial 

derivatives in a region T is independent of the particular choice of 

Cartesian coordinates. For any P in T it is given by 

 Definition of the divergence

     
0

1
div ( ) lim

d T
S T

P dA
V T

 F F n
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10.8 Further Applications of the Divergence Theorem

 Ex. 1 Fluid Flow. Physical Interpretation of the Divergence

 An intuitive interpretation of the divergence of a vector

 The flow of an incompressible fluid of constant density ρ = 1 which is steady 

(does not vary with time). 

 Such a flow is determined by the field of its velocity vector v(P) at any point P.

 Let S be the boundary surface of a region T in space, and n be the outer unit 

normal vector of S.

 The total mass of fluid that flows across S from T to the outside per unit time

 The average flow out of T:
1

S

dA
V

 v n

S

dA v n
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10.8 Further Applications of the Divergence Theorem

 Ex. 1 Fluid Flow. Physical Interpretation of the Divergence

 The flow is steady and the fluid is incompressible

 the amount of fluid flowing outward must be continuously supplied.

there must be sources in T, that is, points where fluid is 

produced or disappears.

 Let T shrink down to a fixed point P in T, we obtain the source intensity at P

 The divergence of the velocity vector v of a steady incompressible 

flow is the source intensity (생성강도) of the flow at the corresponding 

point.

 If no sources in T

1
0  

S

dA
V

   v n

 
     

0

1
div lim    

d T
S T

P dA
V T

 v v n

 0
S

dA  v n
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[Reference] Source & Sink 

Source

:  Net outward flow

Sink

: Net inward flow 

0))((div PF 0))((div PF

PP

0 F

0 F

: incompressible flow

: compressible flow

Generate a body shape by 

using Source and Sink

0 0( , ) ( , )u x y x y
x





0x

1 1( , ) ( , )u x y x y
x





Source

x

y

1x

2

2

u

x x

 


 

속도u의 변화량

R
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[Reference] Source & Sink 

Generate a body-like shape 

by using Source and Sink

Uniform Flow

Source

Half Body: Uniform Flow + Source

Stagnation Point (정체점)

Dividing Streamline

Source

:  Net outward flow

Sink

: Net inward flow 

0))((div PF 0))((div PF

PP
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[Reference] Source & Sink 

Generate a body-like shape 

by using Source and Sink

Uniform Flow

Source

Rankine Ovoid: Uniform Flow + Source + Sink

Stagnation Point

Sink

Dividing Streamline

Source

:  Net outward flow

Sink

: Net inward flow 

0))((div PF 0))((div PF

PP
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10.8 Further Applications of the Divergence Theorem

 Potential Theory. Harmonic Functions (조화함수)

 Laplace’s equation: 

 Potential theory: The theory of solutions of Laplace’s equation

 Harmonic function

: A solution of Laplace’s equation with continuous second-order 

partial derivatives

2 2 2
2

2 2 2
0

f f f
f

x y z

  
    

  

 Theorem 1 A Basic Property of Harmonic Functions

Let f (x,y,z) be a harmonic function in some domain D is space. Let S be 

any piecewise smooth closed orientable surface in D whose entire 

region it encloses belongs to D. Then the integral of the normal 

derivative of f taken over S is zero.
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10.8 Further Applications of the Divergence Theorem

 Ex. 4 Green’s Theorems

Let f and g be scalar functions such that F = f grad g satisfies the 

assumptions of the divergence theorem in some region T. Then

 Green’s first formula:

 For F = g grad f

 Green’s second formula: 

 

2 2 2
2

2 2 2

div div grad div ,   ,   

         grad grad

g g g
f g f f f

x y z

f g g f g g f g g
f f f f g f g

x x x y y y z z z

    
    

    

             
              

             

F

      grad gradf g g f        F n n F n n

 2grad  (directional derivative)   grad grad
T S

g g
g f g f g dV f dA

n n

 
      

  n

 2 2 
T S

g f
f g g f dV f g dA

n n

  
     

  
 

div
T S

dV dA  F F n

Divergence theory

 2 grad grad
T S

f
g f g f dV g dA

n
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 Theorem 1 Stokes’s Theorem
 S: a piecewise smooth oriented surface in space 

the boundary of S be a piecewise smooth simple closed curve C.

 F(x,y,z): a continuous vector function that has continuous first partial 

derivatives in a domain in space containing S. 

 Here n: a unit normal vector of S

 r' = dr/ds is the unit tangent vector 

 s: the arc length of C

10.9 Stokes’s Theorem

   curl
S C C

dA d s ds      F n F r F r
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 Theorem 1 Stokes’s Theorem

 In components, formula becomes

 Here 

 R is the region with boundary curve     in the uv-plane 

corresponding to S represented by r(u,v).

10.9 Stokes’s Theorem

 3 32 1 2 1
1 2 3 1 2 3

R C

F FF F F F
N N N dudv F dx F dy F dz

y z z x x y

         
            

          
 

1 2 3 1 2 3[ , , ],  [ , , ],  ,  ' [ , , ]F F F N N N dA dudv ds dx dy dz   F N n N r

C
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10.9 Stokes’s Theorem

 Green’s Theorem: Double Integrals  Line Integrals

 Gauss’s Theorem (Divergence Theorem): Triple Integrals 

 Surface Integrals

 Stokes’s Theorem: Surface Integrals  Line Integrals

(Generalization of Green’s Theorem in the Plane)

 2 1
1 2

R C

F F
dxdy F dx F dy

x y

  
   

  
 

div
T S

dV dA  F F n

   curl
S C C

dA d s ds      F n F r F r
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Surface S

10.9 Stokes’s Theorem

 Ex. 1 Verification of Stokes’s Theorem

Let us first get used to it by verifying it for F = [y, z, x ] and S the 

paraboloid z = f(x,y) = 1 – (x2 + y2), z ≥ 0 

Case 1.  The curve C is the circle r(s) = [cos s, sin s, 0] 

Its unit tangent vector: r´(s) = [−sin s, cos s, 0] 

The function F on C: F(r(s)) = [sin s, 0, cos s]

       
2 2

0 0

  ' sin sin 0 0
C

d s s ds s s ds

 

             F r F r r

   curl
S C

dA s ds   F n F r
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10.9 Stokes’s Theorem

 Ex. 1 Verification of Stokes’s Theorem

Let us first get used to it by verifying it for F = [y, z, x ] and S the 

paraboloid z = f(x,y) = 1 – (x2 + y2), z ≥ 0 

Case 2.  The surface integral

F1 = y, F2 = z, F3 = x ⇒ curl F = curl[F1, F2, F3] = curl[y, z, x] = [−1, −1, −1]

A normal vector of S: N = grad(z − f (x, y)) = [2x, 2y, 1]

(curl F)•N = – 2x – 2y – 1

        curl curl 2 2 1                               
S R R

dA dxdy x y dxdy         F n F N

      
2 1 2

0 0 0

2 1 1
2 cos sin 1 cos sin 0 0 2

3 2 2
r

r rdrd d
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10.9 Stokes’s Theorem

 Proof

 If the integrals of each component on both sides are equal

1 1
2 3 1

R C

F F
N N dudv F dx

z y

  
  

  
 

2 2
1 3 2

R C

F F
N N dudv F dx

z x

  
   
  

 

 3 32 1 2 1
1 2 3 1 2 3

R C

F FF F F F
N N N dudv F dx F dy F dz

y z z x x y

         
            

          
 

3 3
1 2 3

R C

F F
N N dudv F dx

y x
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10.9 Stokes’s Theorem

 Proof
1 1

2 3 1

R C

F F
N N dudv F dx

z y

  
  

  
 

z = f(x,y)

u = x, v = y

r(u,v) = r(x, y) = [x , y , f(x, y)]

N = ru×rv= rx×ry =[− fx , − fy ,1]

1 1

*

( )y

S

F F
f dxdy

z y

  
   

  


1
1

*
*

C
S

F
F dx dxdy

y


 

 

1 1 1( , , ( , )) ( , , ) ( , , )
meanwhile, by chain rule, 

F x y f x y F x y z F x y z f

y y z y

   
   

   

 2 1
1 2

R C

F F
dxdy F dx F dy

x y

  
   

  
 

Green Theorem

1 1 1
1

*
* *

( )y
C

S S

F F F
F dx dxdy f dxdy

y z y

   
      

   
  

yf
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10.9 Stokes’s Theorem

 Ex 2 Green’s Theorem in the Plane (z = 0) as a Special Case of 

Stokes’s Theorem

 F = [F1, F2]: continuously differentiable in a domain in the xy-plane 

containing a simply connected bounded closed region S whose 

boundary C is a piecewise smooth simple closed curve.

    2 1   curl curl
F F

x y

 
     

 
F n F k

     1 2 3curl
S C C

dA s ds F dx F dy F dz       F n F r

   2 1
1 2curl

S S C

F F
dA dA F dx F dy

x y

  
     

  
  F n

 2 1
1 2

R C

F F
dxdy F dx F dy

x y

  
   

  
 

Green Theorem
 The same as Green Theorem
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10.9 Stokes’s Theorem

Example 1
Verifying Stokes’s Theorem

Let S be the part of the cylinder 

z=1−x2 for 0 ≤ x ≤1, −2 ≤ y ≤2.

Verify Stokes’s theorem if 

F=xyi+yzj+xzk

Solution) 1) Surface Integral

kjiF xzyzxy 

kji

kji

F xzy

xzyzxy

zyx













curl

01),,( 2  xzzyxg

2g x   N i k

 

1 2

0 2

1 2
2

20

1

0

(curl ) curl

( 2 )

( 4 ) 2

S R

dA dxdy

xy x dydx

xy xy dx

x dx





  

  

    

   

 

 





F n F N

     1 2 3curl
S C C

dA s ds F dx F dy F dz       F n F r
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10.9 Stokes’s Theorem

Example 1
Verifying Stokes’s Theorem

Let S be the part of the cylinder
z=1−x2 for 0≤x≤1, −2≤y≤2.
Verify Stokes’ theorem if F=xyi+yzj+xzk.

Solution) 2) Line Integral

  
C CCCC 4321

0,0,0,1:1  dzdxzxC

1

1 0 0 1 0 0 0
C

y y dy       

xdxdzdyxzyC 2,0,1,2: 2

2 

15

11
)222(

)2)(1(0)1(22

0

1

42

22

2









dxxxx

xdxxxxxdx
C

0,0,1,0:3  dzdxzxC

000
2

23

 


ydyydy
C

xdxdzdyxzyC 2,0,1,2: 2

4 

15

19
)222(

)2)(1(0)1(22

1

0

42

22

4









dxxxx

dxxxxxxdx
C

2
15

19
0

15

11
0 

C

xzdzyzxydx

     1 2 3curl
S C C

dA s ds F dx F dy F dz       F n F r
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10.9 Stokes’s Theorem

Example 2
Using Stokes’s Theorem

Evaluate
where C is the trace of the cylinder 
x2+y2=1 in the plane y+z=2.
Orient C counterclockwise as viewed 
from above. See the Figure below

 
C

ydzxdyzdx ,

Solution)

kjiF yxz 

kji

kji

F 













yxz

zyx
curl

02),,(  zyzyxg

N g   j k

 

 

(curl )

curl

( )

2 2

C
S

R

R

R

d dA

dxdy

dA

dA 

  

 

      

 

 







F r F n

F N

i j k j k

     1 2 3curl
S C C

dA s ds F dx F dy F dz       F n F r
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10.9 Stokes’s Theorem

Ex. 4) Physical Interpretation of Curl

0P

0rC

0rS

0( )Pn

Cr is Small circle of 

radius r centered at P0

Mean value theorem for surface integrals

   curl
C

S C

dA s ds d      F n F r F r

     
0 0

0curl curl ( *)

r r

r

C S

s ds dA P A     F r F n F n

P* is a suitable point of Sr0.

 
00

1
curl ( *)

rr C

P ds
A

  F n F r

In case of a fluid motion with velocity vector 
F = v,

0rC

ds v r : circulation of the flow around Cr0.

r

If we now let r0 approach zero.  
0 0 0

0

1
curl ( ) lim

r
r r C

P ds
A

  v n v r

The component of the curl in the positive normal direction 

 specific circulation (circulation per unit area) of the flow in the surface 

at the corresponding point

“양의 법선 방향으로의 회전 성분은 그 곡면의 해당 점에서의 유체의 특별한 순환 (단위 넓이당 순환)으로 간주할 수 있다＂



Seoul 
National

Univ.
98

Summary

 Green’s Theorem
 2 1

1 2

R C

F F
dxdy F dx F dy

x y

  
   

  
 

2   
R C

dxdy ds
n





  

 

속도의 변화량의 적분

1
1

0
0

2
2

1 02
( , ) ( , )

x
x

x
xR

dxdy dxdy dy u x y u x y dy
x x

 


 
    

     

양 경계에서의 단위시간당 속도차
= 생성되는 유체의 양

0 1

0 1( , ) ( , )

x xC

ds dy
n x x

u x y u x y dy

    
  

  

  

 



경계를 통해 단위 시간당
빠져나가는 유체의 양

    , ,
S R

dA u v u v dudv   F n F r N
 Surface Integral

div
T S

dV dA  F F n Divergence Theorem of Gauss

   31 2
1 2 3 1 2 3cos cos cos

T S S

FF F
dxdydz F F F dA F dydz F dzdx F dxdy

x y z
  

  
        

   
  

2

T S

dV dA
n





 

 

 2 2 
T S

g f
f g g f dV f g dA

n n

  
     

  
 

Green’s first formula  2 grad grad
T S

g
f g f g dV f dA

n


   

 

Green’s second formula
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 2 1
1 2

R C

F F
dxdy F dx F dy

x y

  
   

  
 Green’s Theorem

     curl
R C

dxdy d    F k F r

     curl curl
S R C C

dA dxdy d s ds         F n F N F r F rStokes’s Theorem

 3 32 1 2 1
1 2 3 1 2 3

R C

F FF F F F
N N N dudv F dx F dy F dz

y z z x x y

         
            

          
 

Surface S

Summary



Seoul 
National

Univ.
100

Summary

 Green’s Theorem: Double Integrals  Line Integrals

 Gauss’s Theorem (Divergence Theorem): Triple Integrals 

 Surface Integrals

 Stokes’s Theorem: Surface Integrals  Line Integrals

(Generalization of Green’s Theorem in the Plane)

 2 1
1 2

R C

F F
dxdy F dx F dy

x y

  
   

  
 

div
T S

dV dA  F F n

   curl
S C C

dA d s ds      F n F r F r


