Ch. 10 Vector Integral Calculus.

Integral Theorems
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Introduction

¥ Work Done Equals the Gain in Kinetic Energy (20| X|)
Ar, = AX i+ AY, j

F(x.,Y) U Ask/ o
If As, is small,F(X,,Y,) is constant force, and AS, = Ar,

B
Ay, )
Approximate work done by F over the subarc is
(IF (% Vi) I cos ) || Ax [l= F(Xc, Yi) - Ar,
= R (X, Y)AX + Fy (X YAy,

By summing the elements of work and passing to limit,

W :jc F (%, y)dx+F,(x,y)dy or W :_[CF-dr

The work done by a force F along a curve Cis due
entirely to the tangential component of F




10.1 Line Integrals

M Concept of a line integral (A& &)

. A simple and natural generalization of a definite integral known from
calculus

= Line Integral (A&X &) or Curve Integral (38X &): We integrate a given
function (Integrand, I| X Z2t<) along a curve C in space (or in the plane).

= Path of Integration
C:r(®)=[x(®),y),z(t) ] =x(®)i +y(0) +z()k (a<t<b )

= General Assumption
: Every path of integration of a line integral is assumed to be piecewise

smooth. o
0 y—
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Oriented Curve




10.1 Line Integrals

M Definition and Evaluation of Line Integrals
= A line integral of F(r) over a curve C (= work integral)

_[F(r)-dr=3:F(r(t))-r’(t)dt r’=%

C

[F(r) j Fdx+ F,dy + F,dz) = [ (Fx'+ Fy '+ F,z")dt
C

S‘D'—;U

= The interval a<t<b on t-axis: the positive direction, the increasing t
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10.1 Line Integrals S

M Example 1 Evaluation of a Line Integral in the Plane

» Find the value of the line integral when F(r) =[-y, —xy ] =-yi—Xyj
along C. C: r(t)=[cost,sint]=costi+sintj, where 0<t <mn/2.

= X(t)=cost, y(t) =sint,

Sol) F(r(t)) = —y(®)i — x()y(t)j=—sinti—costsint]j
= By differentiation

Y
— jF(r) dr—rlz[ sint,—costsint]|e[—sint,cost]dt By—
C

r'(t)=[-sint,cost]=—sinti+costj
=r/2(sin2t—cosztsint)dt

0 Al

. 1 _ int =d L -
Sin t:_(l_COSZt) set cost=u, —sint=du Example 1

_I ~(1—cos2t)dt - j (—du):%—O—%zOASZl
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10.1 Line Integrals

M Simple general properties of the line integral B

(5a) [kFOdr= k_[FDdr (k constant)

C C

(5b)  [(F+G)idr=[Fdr+ [GLdr

C

(5¢) 'FDdr:fFDerrJ'FDdr
C, C,

C

Formula (5¢)

M Theorem 1 Direction-Preserving Parametric
Transformations (‘4eFS FX|ot= Of7|H Hah
= Any representations of C that give the same positive direction on C
also yield the same value of the line integral

ex) r(t)=[2t%,t], 1<t<3 =t =t’,r(t*)=[2t5t*], 1<t*<9
= _[F(r*)odr*z J-F(I’)odr
C C




10.1 Line Integrals

M Work Done Equals the Gain in Kinetic Energy

Ar, = AX 1+ Ay, |
F(x,,y:) U Ask/ If AS, is small,F(X,, Y, ) is constant force, and AS, = AT,

Approximate work done by F over the subarc is

(IF (X, Vi) [cos 0) [| Ar, [I= F(X, Yi) - A,
= R (X, YA+ Fy (X YAy,
By summing the elements of work and passing to limit,

W :jc F.(x, y)dx+F,(x,y)dy or W :jCF.dr

dr:drds:u(s)ﬁ i = uds
dt ds dt dt
W:jF(r)odr:jF(r(t))-r’dt:J'F(r)-uds u:ﬁ,r’:ﬁ
2 2 . ds dt

The work done by a force F along a curve Cis due entirely to the
tangential component of F
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10.1 Line Integrals

M Ex.4 Work Done Equals the Gain in Kinetic Energy

Let F be a force and t be time, then dr/dt = v, velocity.
By Newton’s second law,

W ='|‘F[dr=TF(r(t))Dv(t)dt
F=mr"(t)=mv'(t)
= W :TFD’dt:va' (t)ov(t)dt

t—b

(u-v)'=u-v+u-v'

%
By
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10.1 Line Integrals

M Example

Find the work done by
(a) F=xi +yj and

(b) F=%i+% j along the curve C traced
by r(t)=cos ti+sint j from t=0 to t—n'

Solution) y
(a) F=xi+Yyj

Q : solve it

s

W:.CFodr:L(xi+yj)odr

= | (costi +sin tj)  (—sin ti + cos tj)dt

= | (~costsint+sintcost)dt =0

3. 1.
(b)) F==i+=
5() 1 21

W :IF(r)-drsz(r(t))-r'dt

Cc Cc

Ahe

f

1

i 3. 1.
.CFOdl’zj‘C(ZI+§jj0dl’

K (E | + %j] e (—sin ti + cos tj)dt

J0

4

r —Esint+£cost dt
o\ 4 2

1.}” 3
cost+—sint = ——
2 . 2

&g]
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10.1 Line Integrals S

M Other Forms of Line Integrals:
= When F=Fjior F,j or Fk

_[Fldx, _[dey, J'Fsdz
C C C

=  When without taking a dot product, we can obtain a line integral whose

value is a vector rather than a scalar
b

iF( dt—jF dt—j[ L(r(t), R(r(t), Fy(r(t))]at

a

M Ex.5 Integrate F(r) =[xy, yz, z] along the helix. 2
r(t)=|[cost,sint,3t]| = costi+sintj+3tk

27

2r
IF(r(t))dh[—lcoszt, 3sint -3t cost, Etz}
0 2 5

- [o, — 61, 67z2]




10.1 Line Integrals

M Theorem 2 Path Dependence (A& HEA)

= The line integral generally depends not only on F and on the
endpoints A and B of the path, but also on the path itself which the
integral is taken.

M EX. Integrate F=[0, xy, 0] on the straight segment C, : r (t)=][t, t, 0]
and the parabola C, : r,(t)=[t, t?, 0] with 0 <t < 1, respectively.

Sol)

Proof of Theorem 2

B
% E'J\ NL/tIlil/. |



10.2 Path Independence of Line Integrals

M Theorem 1 Path Independence (A& SgA, 48 S

= Aline integral with continuous F, F, F; in a domain D in space is
path independent in D if and only if F = [F, F, F;] is the gradient of
some function f in D (F is gradient field),

)

of of of e
F=grad f (ﬁ:&, F=% F3=§j = J/;(Fldx+F2dy+F3dz)=f(B)—f(A)
v’ Proof L(Fldx+ F,dy + Fsdz):_[C g—;dx+%dy+2—idzj
=Ib of dx  of dy of dzjdt
alox dt oy dt oz dt
df t=
=[St = 10,y 0,201
IC(FldX+ Fdy+ F3dZ)= f(B)- f(A) = f(x(b), y(b), (b))~ f(x(a), y(a). 2(a))
A line integral is independent of path. =f(B)-f(A)




10.2 Path Independence of Line Integrals

M Ex.1 Path Independence
Show that the integral j(2xdx+ 2ydy +4zdz) is path independent in
any domain in space and find its value in the integration from A : (0, 0,
0)toB: (2,2, 2).

Sol)  F=|2x,2y,4z|=grad f
p— g:zx:Fl’ @:2y2F21 ﬂ:4Z:F3
OX oy 0z

= f=x*+y*+27°
Hence the integral is independent of path according to Theorem 1.

[ (2xdx+2ydy +4zdz) = f (B)— f (A)=f(2,2,2)- f(0,0,0)=4+4+8=16

C

%
]
b i
2
-k
W




10.2 Path Independence of Line Integrals

M Theorem 2 Path Independence

= The integral is path independent in a domain D if and only if its
value around every closed path in D is zero.

Proof 1) path independence — integral is zero

C

F(r)odr = j F(r)odr

C,

C.:A—>B, C,:B>A

[y =["F(e)rar o [°F(n)rdr[°F(r,)dr =0
> AF(rl)Ddr+':F(r2)Ddr=O c,
. B
o> |F(r)ddr=0
C
The integral around closed path is zero. “A




10.2 Path Independence of Line Integrals

M Theorem 2 Path Independence

= The integral is path independent in a domain D if and only if its
value around every closed path in D is zero.

Proof 2) path independence «— integral is zero
for given any points A and B and any two curves C, and C, from A to B

jc F(r)dr = jch(rl)[urﬁ LZ F(r,)dr, =0 C
C,:A—>B, C,:B>A B
B A

| F(e)dr, + | F(r,)dr, =0

Move 2" term to the right.

[ F@rdn, =-["F(r,)dr, = [ F(r,)dr,

In conclusion, a line integral is path independent .

M s
3 Lj\ NUl:m/. 2 |



10.2 Path Independence of Line Integrals

M Work. Conservative and Nonconservative (Dissipative, 2>+t
SH=) Physical Systems
= Theorem 2: work is path independent in D if and only if its value is
zero for displacement around every closed path in D.

= Theorem 1: this happens if and only if F is the gradient of a
potential in D.

= F and the vector field defined by F are called conservative in D
because mechanical energy is conserved

= no work is done in the displacement from a point A and back to A.

= For instance, the gravitational force is conservative;

v if we throw a ball vertically up, it will return to our hand with the
same kinetic energy it had when it left our hand.

v If this does not hold, nonconservative or dissipative physical system.

e E )-f" Seoul 1 6
Nationa, |
> E'j\ Univ. |



10.2 Path Independence of Line Integrals

M Theorem 3* Path Independence

= The integral is path independent in a domain D in space if and only
if the differential form has continuous coefficient functions F,,F,,F
and is exact in D.

w

= Fedr = F,dx + F,dy + F;dz is exact if and only if there is f in D such
that F = grad f.




10.2 Path Independence of Line Integrals

4 )

= Simple connected (Th= HZAE)

A domain D is called simply connected if every closed curve in D
can be continuously shrunk to any point in D without leaving D.

- s

it can shrink to a point in D it can’t shrink to a pointin D
continuously continuously

[t}

14
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10.2 Path Independence of Line Integrals

M Theorem 3 Criterion for Exactness (2&M&) and Path

Independence (A& SEA)
» Let F, F,F, in the line integral, [F(r)edr=[(Fdx+F,dy+Fdz)
C C
be continuous and have continuous first partial derivatives in a

domain D in space.

a. If the differential form Fedr = F,dx + F,dy + F,;dz is exact in D

- and thus line integral is path independent (from Theorem 3%),-
. . oF, oF, oF oF, oF, oF
then in D, curl F =0 ; in components o' ok X oy

I ] k

curl F — o o0 0 _ 8F3_8F2’8F1_8F3’6F2_8F1
oXx oy oz oy 07 o0z oOX oX oy
I:1 I:2 FS

Proof a) From Theorem 3* F = grad 7= curl F = curl (grad / =0

. 19
3 E'j\ NUtniV. 9 |



10.2 Path Independence of Line Integrals

M Theorem 3 Criterion for Exactness and Path
Independence

b. If curl F=0holds in D and D is simply connected,
then Fedr = F,dx + F,dy + F;dz is exactin D

and thus line integral is path independent.

Proof b)

To prove this, we need “Stokes’s theorem” that will be presented later.




[Review] 1.4 Exact ODEs, Integrating Factors

< Exact Differential Equation (%”F_1 0| & Y8 4):

:6x.

M(X, y) N(x y)

= |f ODE is an exact differential equation, then
M(x,y)dx+N(x,y)dy=0 = du=0 = u(xy)=c

oM _oN .. ‘M_Q(G_‘Jj_ 0'u _0fou)_oN
oy x| dy oy\lox) oaxay oxlay ) ox

%+ Solve the exact differential equation.

+s» Condition for exactness:

M(x,y)zg—i — u(x,y):jM(x,y)dx+k(y) - %uzN(x,y) = % & k(y)
N(x,y):%u :u(x,y):IN(x,y)dy+l(x) = Z—;J(:M(x,y) = 3_)'(&|(X)




10.2 Path Independence of Line Integrals

M Ex.3 Exactness and Independence of Path.
Determination of a Potential

Show that the differential form under the integral sign of
| = j[2xyzzdx+(xzz2 +2cosyz)dy +(2x*yz + y cos yz)dz]

C
is exact, so that we have independence of path in any domain, and

find the value of /from A: (0,0, 1) to B: (1, n/4, 2).
solution)
Exactness: (Fg)y =2x°z+cosyz-yzsinyz=(F,) ,
(R), =4xyz=(F;),,
(F,), =2xz° :(Fl)y

oF, oOF, oF oF, oF, OoF
oy oz o1 ox Ox oy




10.2 Path Independence of Line Integrals

M Ex.3 Exactness and Independence of Path.
Determination of a Potential

Show that the differential form under the integral sign of
| = j[2xy22dx+(xzz2 +2cosyz)dy +(2x*yz + y cos yz)dz]

: of of of
Tofindf F=gradf [ﬁ:_ﬂ F== EZ_J

OX oy 0z
f_dey j x 2 +17C0S Yz dy=x2y22+sinyz+g(x,z)

f,=2xyz’+9,=F =2xyz> = ¢,=0 = g=nh(z)

f =2x°’yz+ycosyz+h'=F,=2x’yz+ycosyz = h'=0 =  h=const

(If we assume A = 0)

. f=x?yz2+sinyz, f(B)-f (A)=1-%-4+sin%—0=7z+l

e
(e
b Sy
2
N
W



10.2 Path Independence of Line Integrals

MExample

Show that the vector field
F=(y>+5)i+(2xy-8)j is a gradient field.
Find a potential function for F
Solut|on) ......................................................................................
F=(y>+5)i+(2xy—8)j
=P(x,y)I+Q(X,y)]

~Vector field F is a gradient field.

P:%:y2+5
OX

o¢
=27 _2oxy-8
Q Y Xy

¢:j(y2 +5)dx = y*x+5x+g(y)

%’f =2xy+9'(y)

~.9'(y)=-8,9(y)=-8y+C
¢ =Yy’X+5x—-8y+C

op. 0p

V¢:&i+ai:(y +5)i + (2xy—8)j

I
e
b M




10.2 Path Independence of Line Integrals

1 Ex.4 On the Assumption of Simple Connectedness
y F__ X
XZ _|_y2 ! 2 X2 _|_y2 !

Let F=- F; =0 (not defined in the origin).

F ok K _HK F_HF i satisfied in
0z 07 OX OX

any domain of the xy-plane not containing the origin in the domain D:

Differentiation show that

Solution)

_ oF, _oF, oF _0F,
1) F; and F, do not depend on z, and F; =0 = N oo o

By differentiation:

OF, X +y"—x-2x y'-x*  x'+y’-y-2y y'-x* OF

I O A SIS AV
[ /’\ ﬁI'|
2) D is not simply connected "\\-/ /-" ;

= the inte




10.2 Path Independence of Line Integrals

1 Ex.4 On the Assumption of Simple Connectedness
let F=——2 , F=—"—, F,=0

3) For example, on the circle x? +y2 =1,
X = rcos 6, y=rsin 8, r=1 =dx = -sin 8 d6, dy = cos 6 df
| = | (Rdx+F,dy)=| —ydx+ xdy ﬁ

C
X2+y2 &_2/3 x
sin” d@+cos’0de - do “Fdo

|, 1 ¢ 1 !T:M

#0 (integral is not zero)

“Since D is not simply connected, we cannot apply
Theorem 3 and | is not independent of path in D.”

TR Seoul 26
Nationa, |
3 E’J\ Univ. |



10.3 Calculus Review: Double Integrals

M Double integral (0| 53X &)

: Volume of the region between the surface defined by the function
and the plane

M Definition of the double integral
= Subdivide the region R by drawing parallels to the x- and y-axes.
= Number the rectangles that are entirely within R from 1 to n.

" In each such rectangle we choose a point (x,, Y, ) in the kth

| —

rectangle, whose area is 4A, | L

—

-l

'S —
W

v

Subdivision of aregion R

jo E 5, Seoul
Nation.
> E'j\ Univ.




10.3 Calculus Review: Double Integrals

= The length of the maximum diagonal of the rectangles approaches
zero as n approaches infinity.

= We form the sum J, =Zn: f (XY )4A
k=1

= Assuming that f (x, y) is continuous in R and R is bounded by finitely

many smooth curves,

= one can show that this sequence Jnl, J - converges and its

n,?

limit is independent of the choice of subdivisions and corresponding

points (X, Y ) Y]

<
”

= This limit is called the double integral of | z

f (x,y)over the region R.

H f (x,y)dxdy or _U f(x,y)dA

X

O

Subdivision of a region R

W el o8
E'j\ NUtniv. 8 |




10.3 Calculus Review: Double Integrals

M Properties of double integrals

kfdxdy = k” fdxdy (k constant)

R R

( f +g)dxdy = ﬂ fdxdy+” gdxdy °°
R R B

fdxdy = ” f dxdy + H f dxdy (See Figure)

R R, R,

M Mean Value Theorem

» Ris simply connected, then there exists at least one point

(X0 Yo ) in R such that we have

H f(x, y)dxdy=f(x,,Y,)A

where A is the area of R.

e
(e
b Sy
2
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10.3 Calculus Review: Double Integrals

M Evaluation of Double Integrals by Two Successive

Integrations y
b _h(x) ] i
H f(x, y)dxdy:j j f (x,y)dy [dx
R a| g(x) i | |
: - glx) |

Evaluation of a double integral

¥

f(x, y)dx}dy d

a(y

jj f (x,y)dxdy:ﬂ

R

)
p(y)

X

Evaluation of a double integral

b EJ;&"‘" Sec_:ul 30
LA s 30




10.3 Calculus Review: Double Integrals

M Applications of Double Integrals: Area

when f (x,y)=1on R, then lim ZAA simply give the area A of the region

IPll->0 &=

n

[] £ y)dA= lim > £ (x, yi)AA, - (1)

IPI[->0 4= V4
A= [ dA
: surface z =1
1 /97
| i |
| |
/ AT T T~ | y
(LT TAT T T,
777V 777 7
X R
(% Yie:0)

55/
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10.3 Calculus Review: Double Integrals

M Applications of Double Integrals: Volume

If f(x,y)>0 on R, then the product f(X.,Y,)AA give the volume of
rectangular prism. The summation of volume D f(X,, Y, )AA, is

k=1
approximation to the volume V, of the solid above the region R and

below the surface z = f (X, Y) Al

giéyk)
The limit of this sum as|| P |- 0 A i

surface z= f(x,y)

V :”f(x, y)dA v




10.3 Calculus Review: Double Integrals

M Applications of Double Integrals

= Let f (X, y) be the density (= mass per unit area) of a distribution of
mass in xy-plane

= Total mass M in R: M = H f (x,y)dxdy
R

= Center of gravity of the mass in R:
_ 1 _ 1
x:ﬁ_gxf(x,y)dxdy, yzﬁ_gyf(x,y)dxdy

= Moments of inertia of the mass in R about the x- and y-axes
|, =Hy2f (x,y)dxdy, 1, =Hx2f (x,y)dxdy
R R
= Polar moment of inertia about the origin of mass in R:

lo=1,+1, :H(x2+y2) f (x,y)dxdy

(50
]
b i
2
w
W




10.3 Calculus Review: Double Integrals

M Change of Variables in Double Integrals. Jacobian

M :H f (x,y)dxdy

\ How to apply????

1 x Polar coordinate (S ZtE4))

(3, 60

Change of variables !!

/2 1 zl?2 1

M = [ dxdy = Hrdrd@:jEw:
R 0 0

0

IS




10.3 Calculus Review: Double Integrals

M Change of Variables in Double Integrals. Jacobian
= A change of variables in double integrals from x, y to u ,v

o(x,y)
IR_[ f(x, y)dxdy:g: f(x(u,v),y(u,v)) (o) dudv
oX OX
| ;oY) _lou av|_oxay _axdy
= Jacobian: 8(u,v) dy | eudev ovau
ou ov
= Polar coordinates: x = rcos 6, y=rsin ¢
x o
I o(x,y) _|or 86| _[cos® -rsing|
o(r,0) |0y oy| |sin@ rcosd
or 06

H f (x,y)dxdy :H f (rcosd,rsing)rdrdo
o

%
]
b Sy
2
w
(1]




10.3 Calculus Review: Double Integrals

M Ex. 1 Evaluate the double integral over the square R

o ox
2 1 v2)dxd :5(X,y):8u oV

I (- y7) ey ENER:
ou ov

Q : solve it
1 1 y|
o(xy) |2 2| 1 A
vJ = = = —— ‘ N\ e
o(uv) |1 1 2 t i/xjﬁf \‘\;}
2 2 /!\//‘ ) \.__\
(X, 1 ‘
” f(x, y)dxdy:” f(x(u,v),y(uv)) a(()lj \)3 dudv 2 g
R R* ’ ON JS
2 9 " 4
— - ”(Xz n yz)dxdy _ J‘J‘l(uz +v2)ldudv _ § Region R in Example 1
: 0 2 2 3

el E );;'. Seoul 36
Nationa, |
: E'j\ Univ. |




10.3 Calculus Review: Double Integrals

M Ex.2 Double Integrals in Polar Coordinates.

= Letf(x,y)=1Dbe the mass density in the region, Find the total mass, the

center of gravity, and the moments of inertia I, I, .

Sol) o(x,y) |cos@ -rsind .
J = 2(r.0) “lsing  reose =T, IR_[ f(x, y)dxdyzg f (rcosd,rsind)rdrdo
7l2 1 7z/21 P
M:dedy:jjrdrdé’:j—dez— y
R 0 0 0 2 4
ml2 1 l?2
Y:E j' j'rcosé’rdrdezi j Ecosé?d¢9:i:0.4244 L\
T 5% w3 3 S
1
37

K:ﬁgxf (x,y)dxdy, Vzﬁ.gyf (x,y)dxdy

B E )';" Seoul
‘E' Nationa, 37 |
== Univ. ‘

55N




10.3 Calculus Review: Double Integrals

M Ex.2 Double Integrals in Polar Coordinates.
= Letf(x,y)=1Dbe the mass density in the region, Find the total mass, the

center of gravity, and the moments of inertia I, I, .

Sol)
I :j jyzdxdyi:ﬂj‘zjl'rzsinzQrdrdezﬁflsinzedé’
' i 7T 00 0 4

Y

1 1( T
= j—(1—cosze)de=—(——oj=—:0.1963
) 8 8

2 16 \
7T
|, == |

16 1

X

| :H y*f (x,y)dxdy, I, :_szf (x,y)dxdy

i

55N

)';"‘ Seou
Nation.
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10.4 Green’'s Theorem in the Plane

M Theorem 1 Green’s Theorem in the Plane

= Let R be a closed bounded region in the xy-plane whose boundary C
consists of finitely many smooth curves.

= Let F,(x,y) and F,(x,y) be functions that are continuous and have
continuous partial derivatives R and everywhere in some
domain containing R. Then ¥ OX

”(@F GF]d dy = [ (R + Fyy)

C

Here we integrate along the entire boundary C of R in such a sense
that R is on the left as we advance in the direction of integration.

= Vectorial form [cmp }ZQ_@F@F_(?X %ix_@i '

F:[Fl’Fz]:Fli‘H:zJ @

= jj(curIF)okdxdyszodr
R C

nmY|lo -
'I'I,Q,)\Q)x

Region R whose boundary C
consists of two parts | |

Q] Mational 39
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10.4 Green’s Theorem in the Plane H[—‘—] Eﬂ (Fex+Fydy)

M Ex. 1 Verification of Green’s Theorem in the Plane
F, =y2-7y, F, = 2xy+2x and C the circle x2 + y2 = 1.

”(aF 5Fjd xdy _ﬂ[ 2y +2)- 2y—7)]dxdy:9ﬂdxdy=97z

(Circulaerisk R has area m.)

2) We must orient C counterclockwise = r(t) = [cost, sint], r'(t)
cost]

= [-sint,

F =y’-7y=sin®t—7sint, F,=2xy+2x=2costsint+2cost

2w

= [[I(FxX +Fy )t = j[(sinzt—7sint)(—sint)+2(costsint+cost)(cost)]dt
C

0
— j(—sin3t+7sin2t+2cosztsint+2coszt)dt

=0+77-0+27 =91

%
]
b Sy
2
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10.4 Green’'s Theorem in the Plane

M Proof of Green’s Theorem
[——— dxdyz[ﬂ(Fldx+ F,dy)

oF, | ok
i Fxs Fydy = H[ F ay]dA

Proof) R:g,(X)<y<g,(X), a<x<b

() OF, g,
—H ldA——. ooy "

=~ [ TR (% 9,(x)) ~ F.(x, 9, ()X

= [ (% g,(0)dx— [ Fy(x, 9, (x))dx
- [ R0 0,00)dx+ [ (x, g, () ox
= U:L, F,(x, y)dx

QO |______




10.4 Green’'s Theorem in the Plane

M Proof of Green’s Theorem

oF, | oF
[ﬁcFldx+F2dy::_g£8 ay]dA

Proof) R:ih(y)<x<h,(y), c<y=<d

2()8F
_-[ -‘-hl(y); 5x

5

) [F (h, (), ) - F,(h.(y), y)ldy
[T Fh () )y = [ Fo(h (1), )y

*F,(h,(y), )y + [ Fy(h(y). y)dy

Il
[ — e

R, (% y)dy

ok, |

OX

oF,
dxdy = F dx +
o o

F,dy




10.4 Green’s Theorem in the Plane ”(GF (ﬂ =[] (Fdx+ Fudy)

Region with Holes

H[@F 8Fj _H((BF aFdeH(@F 8Fj

— ﬂ Fdx+ F,dy + [& Fdx + F,dy

— IL F.dx+ F,dy (C=C,UC,)




o, aFj g] (F.dx+ F,dy)
C

10.4 Green’'s Theorem in the Plane ”(

M Some Applications of Green’s Theorem
= EX. 2 Area of a Plane Region as a Line Integral Over the Boundary

R2| Ol (=A)

F=0 F,=x :gd—xdyﬂpxdy Azlm(xdy_ydx)
2C

Fl

-y, F,=0 = ”dxdyz—mydx
R C

= EX. 3 Area of a Plane Region in Polar Coordinates

Polar coordinates x=rcosd,y=rsin@
= dx =cos @ dr—rsingd dg, dy =sin 8 dr + rcos 6 do

EU] xdy — ydx

I\J

I\)H

C
= [ rcoso) S|n6?dr+rcos@d@)—(rsin0)(cosedr—rsin0d¢9)] :%[ﬁrzdé’
C C

%
s
b i
2
'S
B



oF, OF

10.4 Green’s Theorem in the Plane H(—‘—] Eﬂ (Fex+Fydy)

M Ex. 4 Transformation of a Double Integral of the Laplacian of a Function
(V2w) into a Line Integral of Its Normal Derivative ( oW )
on
w(x,y) is continuous and has continuous first and second
partial derivatives in a domain of the xy-plane containing

a region R of the type indicated in Green’s theorem. |
We set F = ow F:@ |

oy P ox

1. 8F2_8F1:82W aZW—VZW — ”(i_ﬁjd dy = J.J.V wdxdy

—+ =
ox oy ox° oy’

dx dy ), ow dx ow dy
2 [C':j FdX+de [Cﬁ(Fld_S—i_ Fzgjds_[cﬁ(_ad_s—i_&d_sjds r'.n l:dx dy:| |:_d_y,%:|:
ds ds ds ds

here. ow dy  ow dx :{m aw}[dy ’_dx}

’ ~ (gradw)en =22 D, f (x,y) = Vf (X, y)-U
ox ds oy ds | ox’ oy 0 u TG Y) = VG Y

oW
[p_ds Hvzwdxdy = [éﬂ%ds




) . c__ow __ow
10.4 Green’s Theorem in the Plane Ty T
M Ex. 4 Transformation of a Double Integral of the Laplacian of a Function
(V2w) into a Line Integral of Its Normal Derivative ( oW )
on
0° W 6 w oW
Vwdxdy = ( j [ jdxdy
[y = [ 22 Sy - £ §
F, Fy F R
of(low) o ow ow ow oF, ok
==ll=l-=|-= =M]||-—ax+— — == (Fdx+ F,dy)
gax ) oyl oy dxdy [Cﬁ 8yOX+ . dyj _U( ] E‘;ﬂ X+ y
:Dj(—@% @d—y)ds:[ﬁ{% aw}[d_y —%} =[]j(gradw)on ds
=\ Oy ds oOx ds | Ox oy |Lds ds a
=[ﬁ;ﬂ ds
c o "A= 9 HO|X|Q| F, F,= IFHS A 87|
e Qs = UBt Z{0|X|, | A0| HEB=Lf oftH
[] v2waxdy =[f]—ds MHEAE X Qo0 5, B AlS Qurso
R ¢ on 2 0] scalar woOi| CHSHA] G EIDIC




Example Flow of a Compressible Fluid.

HI2t=A SMl(Incompressible fluid)alal 71 0HH,

M Continuity Equation

ou

@V@W

op
Ve(pV)=0
— (oV)

(divergence)

(p =const)
M Velocity Potential

_ IR op. 0¢. 09
V =grad¢ V—UI+VJ+Wk—aXI+8yJ—|—azk

ox oy oz

| |
I I,
Py oy’ "o

TV 0 (au oV aw:j

=V’¢=0

) VeV=0 (ax 5 %

.

I
e
b M




Example Flow of a Compressible Fluid.

M Physical Meaning

. oW
" Ljvzwdxdy_@%ds

= |ncompressible fluid when continuity equation is satisfied,

V=0
j j VZgdxdy =0 Rﬂ\)/
R P \»

O4—h

C2| normal &&ko
/ 29| FAHQ H&

%ds =0
on

00 k1 40 oX

n [0
Ofm
o

==
rfo ¢ €
4o &~
upn
Q
[0 r

[

(@)
2
1o

%
]
b Sy
2
'S
(-]




Example Flow of a Compressible Fluid.

M Physical Meaning

= |ncompressible fluid but continuity equation is NOT satisfied,
ex) a source to add flux x direction, no flux in y direction ¢ _0°¢ _

6y2
& Eu0| ¥2}e c
0
U(Xo’y):a_¢(xo’y) a_u:az_¢ u(xl’y):%(xl’y) 4_' R A
X OX 6X2 OX n:(—l, 0) n?l 0)
—> ——> R —> S R
— —> — A& Sl Bhel At
1= —souree — #HLHe 9Ol o
Cox * a5 =[-8 +28) ay
4 OXly, — OXly,
« 09 og[* = [~u(x, Y)+u(x, y)dy
VZgdxdy = dxdy = | —=| dy = {ju(x,,y)-u(x,,y)d
jRI paxdy = [|["—3 yjaxxoyj(xly) (X, Y)dy
=L 0| HglEko| ME & BANNME| A S FEX}
= Hde= FHel &

i
[0
7]
2u
=Y
©



10.5 Surfaces for Surface Integrals

M Representation of Surfaces: z=f (x,y)or g(x,y,2) =0
= Curve C: r=r(t), wherea<t<b
= Surface S: r(u,v) = [x(u,v) , y(u,v) , z(u,v)] = x(u,v) i +y(u,v) j + z(u,v) k
where (u,v) varies in some region R of the uv-plane

Curve C @

in space z Surface S

riwuv) in space
x ¥
X y
LA
t R
a b \—/ "
(t-axis) (zw-plane)
Parametric representation of a curve Parametric representation of a surface

Y e, 50



10.5 Surfaces for Surface Integrals

M Ex. 1 Parametric Representation of a Cylinder

= The circular cylinder x> +y?> =a?, -1 <z <1, has radius a, height 2,
and the z-axis as axis
= Parametric representation:
r(uyv)=[acosu,asinu,vl]=acosuli+asinuj+vk
= The parameters u, v vary in the rectangle R: 0<u<2x,-1<v<1in
the uv-plane

= The components of rare x=acosu,y=a N

sinu,z=v P ‘\(Mn

. . l

= The curves u = const are vertical straight :
lines. 5 i (v=0)

= The curves v = const are parallel circles.

J
.
N

\
\\\_____ﬁ// (v=-1)

‘cvlinder surfaceE u, v AFZ'E F7/2 ‘
2 HB18)0f 2X}8 X 20| &0}

Parametric representation of a cylinder

¢ E )-f" Seoul 51 |
Nationa, |
J\ Univ. |

IE7%



10.5 Surfaces for Surface Integrals

M Ex. 2 Parametric Representation of a Sphere
A sphere x? + y? + 7?2 = a? can be represented in the form
r(uyv)=acosvcosui+acosvsinuj+asinvk
where the parameters u, v vary in the rectangle

T T
R:0<u<2r, _ESVSE Wy AZIS AZH

Another parametric representation is
r(uv)=acosusinvi+asinusinvj+acosvk AN
where |

R:0<u<2z, 0<v<zx j  Cmme -

Parametric representation of a sphere

5, Seoul
Nationa,
niv.

| R

IE7%




10.5 Surfaces for Surface Integrals

M Tangent Plane and Surface Normal
= Tangent Plane: A Plane which is formed by the tangent vectors of

all the curves on a surface S through a point P of $

= Normal Vector: A vector perpendicular to the tangent plane
= S:r=r(u v)and C: F(t)=r(u(t).v(t)) /\

v’ Tangent vector: F'(t)= 3: = ? (;h: + 2:; (;\t/ = ? ~
u u

r
\/a— : tangent vector along u direction at P of
u
a curve r(u) when v = const like r'(t)

or
‘/E : tangent vector along v direction at P of S
a curve r(v) when v = const like r'(t) Tangent plane and normal vector

L e 53
: E'j\ NUtniv. 53 |



10.5 Surfaces for Surface Integrals

M Tangent Plane and Surface Normal

= Tangent Plane: A Plane which is formed by the tangent vectors of

all the curves on a surface S through a point P of $

= Normal Vector: A vector perpendicular to the tangent plane

= Normal vector:
N=r xr,#0

= Unit normal vector:

n:iN: = r,xr,
N Inx

Tangent plane and normal vector




10.5 Surfaces for Surface Integrals

M Tangent Plane (2H®) and Surface Normal (=& M)
= Sisrepresented by g(x,y,z)=0

= §is a smooth surface if its surface normal depends continuously on
the point of S

= §is piecewise smooth if it consists of finitely many smooth portions.

n= g(x,y,2)=0

grad g

Tangent plane

grad g

Normal vector for surface g(X, Yy, z) =0

B e 85
: E'j\ NUtniv. 55 |



10.5 Surfaces for Surface Integrals

M Theorem 1 Tangent Plane and Surface Normal
» |f a surface S is given by r(u,v)=[x(u,v), y(u,v) , z(u,v)] with continuous
r, and r, satisfying N = r, x r, at every point of S,
= then S has at every point P a unique tangent plane passing through
P and spanned by r, and r,,

= and a unique normal whose direction depends continuously on the
points of S. A normal vector is given by N =r,x r, and the
corresponding unit normal vector by

nj
|
1 1 |
:—N: )
TIIN e @
T

M Ex. 4 Unit Normal Vector of a Sphere s
The sphere g(x,y,z) = x2 + y2 + 22— a2 = 0 has the unit normal vector

n(x,y,z)= 1 grad g :[5,1,—}:—i+1j+5k
lgrad g




10.6 Surface Integrals JF(r)-dr =[F(r(1)-r(t)d

M Surface Integral
S :r(uVv)=[x(u,v), y(uyv), z(uv)] = xuw)i +y(u,v)j + z(u,v)k

= Normal vector: N=r xr,#0

1 1

= Unit normal vector;: nN=—N-=
Nl Jrxr]

r, xr,

- Surface integral over S: | F-ndA=[[F(r(u,v))-N(u,v)dudv

S R

IN|=|r, xr,|: the area of the parallelogram with sides r, andr,
CEREL)
dA = |N|dudv

~.ndA =n|N|dudv = Ndudv

I
[l
b iy
2
(3]
N



10.6 Surface Integrals

ndA =n|N|dudv = Ndudv ?

or
r(u,v+Av)—-r(u,v) = —Av
( )—ru,v) Y

%"7
ru.v) \‘% r(u+Au,v)—r(u,v):gAu
V
u
or or or or
(u,v+Av (U+Au,V+Av) AA = EAU XaAV‘ = ax— AUAV
R
dA=|r, xr,|dudv, N=r,xr,
(u,v) (U+Au,v)

.. dA =|N|dudv

5
(B
]



10.6 Surface Integrals

M Surface Integral (HH &) |J F-ndA= [[F(r(u,v))-N(u,v)dudv
Fen : the normal component of F ¢ ‘
When F = pv (density x velocity vector of the flow)
= flux across S = mass of fluid crossing S per unit time

* |[n components
Here, a, f, y are the angles between n and the coordinate axes.

F=[F,F,F], N=[N,N, N,], n=[cosa,cosp,cosy]
_”FondA:ﬂ(FlcosawLcmos,B+|:3cos7/)dA °°S“=|:|'|'i|:n~i=n1

S : cosp=—"d _n.j=n,
= [[(FN, + F,N, + F;N, ) dudv S
: Inlik| ’
cos a dA = dydz, cos B dA = dzdx, cos y dA = dxdy m
R
~ ([ (Fdydz + F,dzdx + F,dxdy) @
- {uv-plane)




10.6 Surface Integrals

M Ex. 1 Flux Through a Surface HF NdA = HF ))-N(u,v)dudv

= Compute the flux of water through
the parabolic cylinder: S:y=x?,0<x<2,0<z<3
velocity vector: v = F =[3z?, 6, 6xz] (m/sec)
F = pv, the density p = 1gm/cm?3 = 1ton/m3

Sol) Representation S: r = [u, u? v] (0<u<2,0<v<3)
By differentiation and by the definition of the cross product
N=r,xr,=[1 2u, 0]x[0, O, 1]=[2u, -1 O] .
F(S)eN=6uv’-6 %3
By integration 1
3

j FondA_.
S

0
3

|
2 I \\%
u=0dv /2/\\\\\5}1\1,
_ m/
Sec

O'—.l\)

6Uv” —6 dudv 3u2v2 —6u
( I )

= (12v2—12)dv (4v -

0

I

By

b S
S
D
o



10.6 Surface Integrals ISIF'”dA:LIF(V(“’V))N(U,V)dudV

M Ex. 1 Flux Through a Surface

= Compute the flux of water through
the parabolic cylinder: S:y=x?,0<x<2,0<z<3
velocity vector: v = F =[3z?, 6, 6xz] (m/sec)
F = pv, the density p = 1gm/cm?3 = 1ton/m3

____________________________________________________________________________________________ R
Sol) Representation S: r = [u, u? v] (0<u<2,0<v<3) J[3
. i\\\
FendA= (dedz+Fdzdx+Fy(4y) |
JJ J;I ' i ; 4/}9\‘ '
|

/z/f<1\\\jj7%\7>

X -

N =|N|n =|N|[cose,cos B,cosy|=[2u, -1, 0], cosa >0, cos B <0, cosy =0

-2<a<0 = cos a>0, m2<p<rmr= cos <0, y=a2= cosy=0

“F enNdA= }}3zzdyd2 —j.jiGdZdX = j4(322)dydz _j6'3 iy — 72
0 00 0 g

S 0

4
|_'—¥~((
i



10.6 Surface Integrals

M Ex. 2 Surface Integral

X=uy=v,® z=1-x-y=1-u-v
R ru,v)=[uvli-u-v]

O<u<l-v,0=5v<]

N=rxr,=[1 0, —1]x[0, 1, 1] =[1, 1, 1]

F(S)IN =[u®,0,3v*]]1, 1, 1]=u®+3v*




10.6 Surface Integrals

M Orientation (42F) of Surfaces

= The value of the integral depends on the choice of the unit normal
vector n.

= An oriented surface S (ZeF= 718 58, &5 H): a surface S on
which we have chosen one of the two possible unit hormal vectors
in a continuous fashion

= |f we change the orientation of §, this means that we replace n
with -n.

M Theorem 1 Change of Orientation in a Surface Integral

The replacement of n by -n corresponds to the multiplication of the
integral by -1




10.6 Surface Integrals

M Orientation of Piecewise Smooth Surfaces
= Sisorientable (&2 7tZ& = RJ+£) if the positive normal direction can be
continued in a unique and continuous way to the entire surface.

= For a smooth orientable surface S with boundary curve C we may associate
each of the two possible orientations of S with an orientation of C.

= A piecewise smooth surface is orientable (22 7+Z £ U+=) if we can
orient each smooth piece of S so that along each curve C* which is a
common boundary of two pieces S, and S,.

= The positive direction of C* relative to S, is opposite to the direction of C*

relative to S,. SR ‘
In \i \>/ bz
1 A n ,,/ I \
: e
. /'/_-" ™ "‘ 2 _7 //"
/ X - \ /
: I Va \ 1% y /
S S : \ C\\E«\
D e P g
. c | & i

. < s

(A) Smooth surface (B) Piecewise smooth surface

Orientation of a surface




10.6 Surface Integrals

M Nonorientable (84S 7I& + 81&) Surfaces

= A sufficiently small piece of a smooth surface is always orientable.
This may not hold for entire surfaces. Ex. Mobius strip

Mobius strip




10.6 Surface Integrals ISIF'”O'A:[!F(V(“ v))-N(u,v)dudv

M Surface Integrals Without Regard to Orientation

= Another type of surface integral disregarding the orientation
“G r)dA = ”G (u,v))|N(u,v)|dudv

Here dA=|N|dudv=|r,xr,|dudv is the element of area of S.

= Mean value theorem for surface integrals

If R is simply connected and G(r) is continuous in a domain containing R,

then there is a point in R such that

HG(r)dA:G(r(uo,vo))A (A: Areaof S)

= Areaof A: A(S)=([[dA=[[|r,xr,[dudv
S R

%
]
b Sy
2
(2]
»




10.6 Surface Integrals

M Ex. 4 Area of a Sphere (712 Z & 0])

For a sphere r(u, v) =[a cos v cos u, a cos v sin u, a sin v],

Sol) 0<u<2n,-n/2<v<n/2, we obtain by direct calculation
2 2 2 2 . 2 .
r,xr, =| a’cos’vcosu, a’cos’vsinu, a’cosvsinv |

Using cos?u + sinu = 1, cos?v + sin?v =1

%

r, xr,|=a*(cos* vcos? u +cos* vsin® u+cos® vsin? v)? = a*Icos V]
4 / . AV
B | [Iji \:’.‘: — ._ A
% 2 % {Lff—r‘,»-__ S '_--_.‘_“:nf:_'_____;_
S A(S)=a’ _[ J lcosvidudv = 27a’ _[ cosvdv = 4rza’ .
7/ 0 A e
B s 67




10.6 Surface Integrals

(r,0,2)

z . Spherical — Cylindrical

\éé‘/p E(P)9,¢) r:psin¢ 0=0 Z=,OCOS¢

= y Spherical — Cartesian

0 1 X=rsingcosd y=rsingsin@ z=rcosgy
X
Spherical coordinates Cartesian — Spherical

Z
_ -1
r=x?+y?+2° o=tan'(¥) ¢=c0s ((——)
X \/X +VY +Z

5
(B
]



10.6 Surface Integrals HG A= HG (u, V)N (u,v)] dudy

1 Representations z=f(x,y)
= |f asurface Sis givenbyz=1(x,y)

IN|=|r, x| :‘[1,0, f,]x

=1+ f?+f*?
\/ u v

= Surface integral: ”G r)dA = ”G (%, v, f (%, y))\/l{ﬁfj (21;) dxdy

OX

Here, R*: projection of S into the xy-plane

. ot Y [ of N
" Area: A(S)=f[\/1+( axj [ 8yj dxdy —/%
R Pl S T

VR gt oo
E'j\ NUtniv. 69 |



10.7 Triple Integrals. Divergence Theorem of Gauss

M Triple integral for an integral of a function f (x, v, 2)
= We subdivide T by planes parallel to the coordinate planes.

= We consider those boxes of the subdivision that lie entirely inside T, and
number them from 1 to n.

= In each such box we choose an arbitrary point, say, (X, Y, z,) in box k.

= The maximum length of all edges of those n boxes approaches zero as n
approaches infinity.

» The volume of box k we denote by AV,. We now form the sum

v




10.7 Triple Integrals. Divergence Theorem of Gauss

¥ Theorem 1 Divergence Theorem of Gauss (2f&H0|E)

Let T be a closed bounded region in space whose boundary is a
piecewise smooth orientable surface S. Let F(x.y.z) be a vector
function that is continuous and has continuous first partial derivatives
in some domain containing T. Then

L”dideV=gFondA

In components of F=[F,, F,, F;] and of the outer unit normal vector
n=[cosa, cosp, cosy]of S, formula becomes

-m[aF oF, ok ]d xdydz = H (F.cosa+F,cos f+F cos;/)dA:_U(Fldde F,dzdx + F,dxdy)

T S




10.7 Triple Integrals. Divergence Theorem of Gauss

Proof)

IJI(GF oF,

a@?)dxdydz = | °(F1 cosa +F, cos S+ F, cos y)dA

= ([ (F.dydz+ F,dzdx + F,dxdy)

S

This equation is true if and only if the integrals of each component

on both sides are equal

@ | R xdydz = [[F.cosr dA= [[ Fdydz
T ax S S

) ).

- OF,

¢ OF, .
4 —=dxdydz =
( ) [ N N ay [ N

—3dxdydz =
0Z y

F, cos fdA = ” F,dxdz
S

: F,cosydA= j j F,dxdy
S

(50
]
b i




10.7 Triple Integrals. Divergence Theorem of Gauss

Proof continued)
© ]| s xdydz = [[ F;cos ydA
T 82 S

We first prove (5) for a special region T that is bounded by a piecewise smooth
orientable surface S and has the property that any straight line parallel to

any one of the coordinate axes and intersecting T has at most one segment

(or a single point)

It implies that T can be represented in the form

® g(x,y)<z<h(x,y)

S, h(x,y) ] " ”LT/SI
S, (%) <\ 4.
T

b
4@

7%
Lxg
b Sy
fu

~l
[

Sy
3§88



10.7 Triple Integrals. Divergence Theorem of Gauss

S,:h(x,y)

Proof continued) S gbny) <%—-7/ﬁ
(5) ” J' %dxdydz: j' j F, cos y dA /t f\sl\
T oz S x in\i\\
<>

| 1 | %dxdydz _ R[ jgh:yv; % dz}dxdy

= [[ Falx, v h(x, y)ldxdy— [[ F,[x, v, g (x, y)ldxdy

R
We can decide the sign of the integral because cosy <0onS,, and

cosy >0on S,

[] P, cos yA= [[ Fxdy =+ [] Fubx, . h(x, y)ldxdy [ F,[x, v, g x, y)ldxay

Therefore, we prove (5). In the same manner, (3), (4) can be proven.

m%dxdydz: [ Fucos 0n

E] ),x‘ Seoul
‘E National 14 |
== Uni ‘

55N



10.7 Triple Integrals. Divergence Theorem of Gauss

M Ex. 1 Evaluation of a Surface Integral by the Divergence Theorem
Evaluate ! = [[(x’dydz+x’ydzdx+x’zdxdy) where § is the closed surface
consisting of the cylinder x? + y? = a? (0 < z<b) and the circular disks z

=0and z=b (x* + y* < a?).

Sol) F =X, F,=x%y, F,=xz = divF=3x"+x*+x*=5x"

Polar coordinates (dxdydz = rdrdfdz)

A |
Ar /’?
@M AA=(rAf)-Ar
r \\Lq AV = AAAZ=rArAOAz T~
X <y/ Surface S in Example 1

jor jﬂ 5, Seoul
Nationa,
E'j\ Univ.




10.7 Triple Integrals. Divergence Theorem of Gauss

M Ex. 1 Evaluation of a Surface Integral by the Divergence Theorem
Evaluate ! = [[(x’dydz+x’ydzdx+x’zdxdy) where § is the closed surface
consisting of Sthe cylinder x? + y> = a? (0 <z <b) and the circular disks z
=0and z=b (x2+y2<a?).

Sol) F =X, F,=x%y, F,=xz = divF=3x"+x*+x*=5x"

Polar coordinates (dxdydz = rdrdfdz)

a Zi
I—_U_[Sx dxdydz = i j j (5r* cos® @)rdrd Odz //_P
z=00=0r=0 |
5f jicos Hd@dz—S_[ :%a“b /__E___\
2=0 0=0 f /J\\ b
_—a a3~




10.7 Triple Integrals. Divergence Theorem of Gauss

M Coordinate Invariance of the Divergence (24| ZIE A 2'H)
= Mean value theorem for triple integrals

For any continuous function f (X, y, z) in a bounded and simply connected

region T there is a point Q:(X, Y, Zp) in T such that

-”J- POy, 2)adV = £ (%, Y520V (T) (V(T) = volume of T)

set f=divF |:> divF(X,,Y,, 0)— J-”dIVFdV—(— J‘FondA

T

= Choose a point P:(x;, y; z;) in T and let T shrink down onto P such that
maximum distance d(T) of the points of T from P goes to zero.

= Then Q:(Xy Yo Z,) must approach P.

leF(P) —>O\/—) F.ndA
T

%
]
b Sy
2
~
N




10.7 Triple Integrals. Divergence Theorem of Gauss

M Theorem 2 Invariance of the Divergence

= The divergence of a vector function F with continuous first partial
derivatives in a region T is independent of the particular choice of
Cartesian coordinates. For any P in T it is given by

divF(P) = lim —j FendA

Vi(T) s

= Definition of the divergence




10.8 Further Applications of the Divergence Theorem

M Ex. 1 Fluid Flow. Physical Interpretation of the Divergence
= An intuitive interpretation of the divergence of a vector

= The flow of an incompressible fluid of constant density p = 1 which is steady
(does not vary with time).

= Such a flow is determined by the field of its velocity vector v(P) at any point P.

= Let S be the boundary surface of a region T in space, and n be the outer unit
normal vector of S.

v' The total mass of fluid that flows across S from T to the outside per unit time
j Vv e ndA

S

1
v The average flow out of T: \T-UV e NdA
S

7%
Lxg
b Sy
fu
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10.8 Further Applications of the Divergence Theorem

M Ex. 1 Fluid Flow. Physical Interpretation of the Divergence
= The flow is steady and the fluid is incompressible

= the amount of fluid flowing outward must be continuously supplied.

1 . . : L
\7”V°ndA¢ 0 = there must be sources in T, that is, points where fluid is

S
produced or disappears.

= Let T shrink down to a fixed point P in T, we obtain the source intensity at P

divv(P) —J' v endA

VI(T) s

= The divergence of the velocity vector v of a steady incompressible
flow is the source intensity (& 2 &) of the flow at the corresponding
point.

= |f nosourcesinT IVOHdA =0

e

(e

b Sy
fu
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o
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[Reference] Source & Sink

V-F=0 :incompressible flow

V-F #0 :compressible flow

Generate a body shape by
using Source and Sink

Source Sink
: Net outward flow : Net inward flow
(div F(P) >0) (div F(P)<0) "
e yo| HatE
0¢ ou o 8
U(Xo, Y) === (X, Y) u_o¢ y _99
8X ax aXZ (Xl’ y) 6X (Xl' y)
—> - —>
y ) ::‘_’:Source —
l — — —
X Xl

Xo




[Reference] Source & Sink

. . Generate a body-like shape
by using Source and Sink

Source Sink
: Net outward flow : Net inward flow
(div F(P) >0) (div F(P) <0)

Half Body: Uniform Flow + Source

Uniform Flow

/ ----- ® Dividing Streamline

® Stagnation Foint (X H)

jo E )-';" Seoul

L j Nationa, 82

~._ Univ.




[Reference] Source & Sink

Generate a body-like shape
by using Source and Sink

Source Sink
: Net outward flow : Net inward flow
(div F(P) >0) (div F(P) <0)

Rankine Ovoid: Uniform Flow + Source + Sink

Uniform Flow

_- o Dividing Streamline

o Stagnation Boint

L E )',&-" Seoul

L j Nationa. 83

~._ Univ.




10.8 Further Applications of the Divergence Theorem

M Potential Theory. Harmonic Functions (=2} )
» Laplace’s equation: 2 2 2
P q e L i i
ox~ oy° oz

= Potential theory: The theory of solutions of Laplace’s equation

= Harmonic function

: A solution of Laplace’s equation with continuous second-order
partial derivatives

M Theorem 1 A Basic Property of Harmonic Functions

Let f (X,y,z) be a harmonic function in some domain D is space. Let S be
any piecewise smooth closed orientable surface in D whose entire
region it encloses belongs to D. Then the integral of the normal
derivative of f taken over S is zero.




10.8 Further Applications of the Divergence Theorem

M Ex. 4 Green’s Theorems

Let f and g be scalar functions such that F = f grad g satisfies the
assumptions of the divergence theorem in some region T. Then

divF =div(fgradg)=div| | f 2, 9 %
OX oy 0z

2 2
of og L g N ﬂ5_9+f5_€21 + ﬂa_g _g = f V2g+grad f egrad g
OX X OX ayoy oy czor ot

Divergence theory

.mdiVFdV :”@A > F-n=n-F=no(f gradg)z(nogradg)f
T S

» Green’s first formula:
negradg :6—9 (directional derivative) = m(f V?g +grad f egrad g)dV = ” f a—gdA
on

» ForF=ggradf = _UJ. g V’f +gradge gradf dV = ”g—dA
of
= Green’s second formula: m (f Vig—gv*f v = ”( ——g%jdA

E] )",‘ Seoul
‘E Nationa, 85 |
== Uni ‘

55N



10.9 Stokes’s Theorem

M Theorem 1 Stokes’s Theorem
= S: a piecewise smooth oriented surface in space
the boundary of S be a piecewise smooth simple closed curve C.

* F(x,y,z): a continuous vector function that has continuous first partial
derivatives in a domain in space containing S.

H(curIF)-ndAszodr:[JjFor’(s)ds

v'Here n: a unit normal vector of S
v r’ = dr/ds is the unit tangent vector
v’ s: the arc length of C




10.9 Stokes’s Theorem

M Theorem 1 Stokes’s Theorem
* |n components, formula becomes

= Here
F=[F,F,,F], N=[N,,N,,N,], ndA=Ndudv, r'ds =[dx,dy, dz]

= Ris the region with boundary curve C in the uv-plane
corresponding to S represented by r(u,v).

oF, oF, oF, oF, oF, oF, B
”K———j . (E‘&j N2+(§—E N, dudv_@(Fldx+ F,dy + F,dz)




10.9 Stokes’s Theorem

M Green’s Theorem: Double Integrals < Line Integrals

jj(f—ﬁ)d dy = [_ﬂ F,dx+ F,dy)

M Gauss’s Theorem (Divergence Theorem): Triple Integrals
<~ Surface Integrals

deideV:ijF.ndA

M Stokes’s Theorem: Surface Integrals < Line Integrals
(Generalization of Green’s Theorem in the Plane)

H(curIF)-ndAz[ﬁFodr:[ﬁFor’(s)ds

. Seoul 88
Nationa, |
> E'j\ Univ. |



10.9 Stokes’s Theorem

M Ex. 1 Verification of Stokes’s Theorem

Let us first get used to it by verifying it for F = [y, z, x] and S the
paraboloid z=f(x,y)=1- (X2+Vy?),z2>0

Case 1. The curve C is the circle r(s) = [cos s, sin s, 0]
Its unit tangent vector: r’(s) = [-sin s, c0s S, 0]
The function F on C: F(r(s)) = [sin s, 0, cos s]

@Fodr = TF(r(s))or'(s)ds = 2_f[(sin s)(—sins+0+0) jds=—7

_Lj(curlF)ondAz[pFor'(s)ds

Surface S

e
(e
b Sy
2
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10.9 Stokes’s Theorem

M Ex. 1 Verification of Stokes’s Theorem

Let us first get used to it by verifying it for F = [y, z, x] and S the
paraboloid z=f(x,y)=1- (X2+Vy?),z2>0

Case 2. The surface integral

Fo=y,F,=2,F;=x=curl F=curl[F, F, F;]=curlly, z, x] =[-1, -1, —1]

A normal vector of S: N =grad(z—f (X, y)) = [2X%, 2y, 1] b
(curl FyeN=—-2x-2y—1 /N
IF) e ndA = IF) eNdxdy = [[(=2x -2y —1)dxd
[J (curtF) o nda = [] (curt ) Nebxy = [] (-2x -2y 1)y e
~ f I(—Zr(cose+sin0) 1)rdrd6 = I( 2 cos@+sm6’)—§jd9 0+0—%(27z)

%
gl
b i
2
[{<]
o



10.9 Stokes’s Theorem

M Proof
” il N, +| = oR| |0k, N, + 19K N, dudv:m(Fldx+F2dy+F3dz)
Ji\oy |oz 0z ax oX || oy z

= |f the integrals of each component on both sides are equal

oF, | oF
jRj Ny ale dudv:[(gFldx

Lj( 6;2 N +%N3 dudv:[éﬁdex

”[ 3N, ——3N ]dudv: [ Fodx

C

t Sec_:ul
[ vationa 91



10.9 Stokes’s Theorem

M Proof

”( LN, —ﬁN jdudv=DjFldx : _____LV"

2= f(xy) C——Q
Uu=Xx,v= y : :
r(uv) =r(x,y) =[x, y, f(x, y)] | |

N =r,xr=rxr=[-1,-1,1] / IG_;—j_: o

ok, ok,
B g(g(‘ f) _E]d)(dy Green Theorem
oF, OF,

[[L*Fldx:g—%dxdy & H(———]ddy [_ﬂFdx+de)

oF (x,y, f(X,y)) _ R (X, y,2) OF (XY, z)of
oy oy oz oy

~[fL, Fx = jj——dd _H( Ti-1)- —jdxdy y

meanwhile, by chain rule, —

Il
—h

e
(e
b Sy
2
[{e]
N



10.9 Stokes’s Theorem

M Ex 2 Green’s Theorem in the Plane (z = 0) as a Special Case of
Stokes’s Theorem

» F=[F,, F,]: continuously differentiable in a domain in the xy-plane
containing a simply connected bounded closed region S whose
boundary C is a piecewise smooth simple closed curve.

(curlF)en=(curlF)ek = ok, ok

ox oy
”(curl F)endA= [ﬁFo r'(s)ds = D_j(Fldx+ F,dy + F,dz)

S

[ (curlF)endA= H(f—%}m [1(Fx+ F,dy)

S C

= The same as Green Theorem Green Theorem

H(aaix—%:jd dy = [[[(Fuox+ Fydy)

C

%
]
b i
2
[{e]
W




10.9 Stokes’'s Theorem _[Sj(curIF)ondA:[CﬁF-r’(s)ds:U:](Fldx+F2dy+ F,dz)

C

Solution) 1) Surface Integral

IZIExample 1 i F = xyi + yzj + xzK
Verifying Stokes's Theorem ik
, curl F = 0 0 @ =—yi—zj—xk
Let S be the part of the cylinder ox oy o1
Xy Yz Xz

—_1_v?2 —
z=1-x? for 0 <x<1,-2<y<2. 9%y, 2)=z+X° —1=0

Verify Stokes's theorem if

N =Vg=2xi+k
F=xyi+yzj+xzk gy, _
” (curlFen)dA = j(curIF)-Ndxdy
R s R
S:z=1-x%,0<x<1, Y A :
iz | 2<y<2 _(ip2 5 dvd
Cy ___J;____+-___):____—+ C, " ; 1 ) 2
i i > ’ | ~Jo |:_Xy B Xy:|_2dX
g - = [ (~4x)dx = -2
(a) (b) °0

e

(e

b Sy
fu
0
4

Sy
3§88



10.9 Stokes’'s Theorem _[Sj(curIF)ondA:[CﬁF-r’(s)ds:[Cﬁ(FldXJerdy+ F,dz)

Solution) 2) Line Integral

MExample 1

: : ’ =|+|+]+
Verifying Stokes’s Theorem I L c, Jcs Je,
. . C,:x=12z=0,dx=0,dz=0
Let S be the part of the cylinder  [1y-0+y-0dy+1.0.0=0

z=1-x2 for 0<x<1, —2<y<2. ,
Verify Stokes' theorem if F=xyi+yzj+xzk.  C,:y=2, 2=1-X", dy=0, dz=-2xdx
L 2xdx + 2(1— x*)0+ X(L— x?)(—2xdXx)

i :I()(Zx—2x2+2x4)dx=—E
5 1 15

, | ' C,:x=0,z=1dx=0,dz=0
St 7 .‘3.7<.<7. ) i
l 2<y<2 J'(:30+ydy+0:f2 ydy =0

Cy i i G , ' C4:y:—2’ Z:1—X2,dy:O, dZ:—ZXdX

__/_l__..__+._..._.._)_____7/_
7 i

- _[C —2xdx—2(1—x*)0+ x(1—x*)(-=2x)dx

(a) (b) :E(—ZX—ZX2 +2x4)dx:—%

.'.ifxydx+ yz+xzdz=0—%+0—g——2

G,
—

Y

15

jor E 5, Seoul
E' Nationa, 95 |
== Uni ‘
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B
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10.9 Stokes’'s Theorem _U(curlF)ondA:[CﬁF-r’(s)ds:U:](Fldx+F2dy+ F,dz)

C

~ Solution
MExample 2 fon)
. , F=zi+Xx]+ yk
Using Stokes’s Theorem _
I
Evaluate §c zdx + xdy + ydz, - curlF= 0 0 0 —i+j+k
where C is the trace of the cylinder OX oy oz
x?+y?=1 in the plane y+z=2. Z X Yy
Orient C counterclockyvise as viewed g(x,y,2)=y+2-2=0
from above. See the Figure below :
N=Vg=j+k

JL Fedr =[] (curlF en)dA

R@C , = || (curl F) eNdxdy
e R

e L = [[[G+i+K)e(i+k)]dA
x2+y2= 1/\7/‘_1—!5’/ Ny 1+,=2 E{.
/ o =||2dA=2x

(2ad]
%
b Sy

i,

(5=
fu
({e]
o

Q



10.9 Stokes’s Theorem JJ (curlF)endA = LCﬁF or'(s)ds=[f| Fedr

S

Ex. 4) Physical Interpretation of Curl
Mean value theorem for surface integrals

& n(P,) UjFor’(s)ds=ﬂ(curlF)ondA:(curIF)on(P*)ArO
CrO SrO
C:rO
g S P* is a suitable point of S,
ro
r (curIF)-n(P*):i[ﬁFor’ds
C, is Small circle of , G , , ,
In case of a fluid motion with velocity vector

radius r centered at P,
F=v,

[ﬁvo r'ds : circulation of the flow around Co
C

ro

. 1
If we now let r, approach zero. (curlv)en(P)=|im— m Ver'ds

fo—>0 o Cro

The component of the curl in the positive normal direction
= specific circulation (circulation per unit area) of the flow in the surface

at the corresponding point

"o MM WIo 29| 3l YE2 O fHO o HoMe fMel SES =2 (Tl |




Summary

M Green’s Theorem

[J| =% oF, aF y =[]|(Fdx+ F,dy) [[ v*pdxdy =f]
2 ox 4 c
%}ﬁi%}% Si 'F_f-?l—l rl?%
x W LE7Hs SR o] Q
Xla ¢ a¢ 9 — TI' o
Vigdxdy = ||| —=dxdy = | —=| dy={{u(x,y)—u(x,, y)dy
J.RJ. -”xO X2 J Xy, J m%ds - 99 99 a4y
< on OX|,, ~ OX|,
ST o MBlZO| M O AAOIMO| AT SER} :
- MMEE SN ¥ —j u(x,, y)+u(x, y)dy

dudv

”F-ndA:”F(r(u,v))-N(u,v)

S R

= Surface Integral

= Divergence Theorem of Gauss mdiv FdV = ” F endA mV2¢dV = ” 2—fdA

m{aF oF, ,

jdxdydz jj (F.cosa +F, cos B+ F,cosy)dA = H F.dydz + F,dzdx + F,dxdy )

) 0
Green’s first formula J‘J'J‘(f Vg +grad f egrad g )dV = jsj f a—?}dA

of

Green’s second formula m (f V’g—gv?f v = ”( ——g— A

7
L=



Summary

Green’s Theorem ”{ y =[fI( Fx+ F,dy)

= [[(curlF)ekdxdy =[f|F edr
R C

Stokes’s Theorem ”(curl F)endA= ﬂ(curl F) eNdxdy :[ﬂF odr = [ﬁF or'(s)ds
R C C

S

oF, oF, oF, oF, oF, oF, ~
”KE_EJN“{E_& N, + - N, dudv—[(j;](Fldx+F2dy+F3dz)

R

Surface S




Summary

M Green’s Theorem: Double Integrals < Line Integrals

ﬂ(ﬁ_ﬁjd oy ~[](Fc )

M Gauss’s Theorem (Divergence Theorem): Triple Integrals
<~ Surface Integrals

deideV:ijF.ndA

M Stokes’s Theorem: Surface Integrals < Line Integrals
(Generalization of Green’s Theorem in the Plane)

H(curIF)-ndAz[ﬁFodr:[ﬁFor’(s)ds

. Seoul
(i Voriona 100



