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10.1 Introduction

* Information-theoretic models that lead to self-
organization in a principled manner

 Maximum-mutual information principle (Linsker,
1988):

The synaptic connections of a multilayered neural network develop in
such a way as to maximize the amount of information that is
preserved when signals are transformed at each processing stage of
the network, subject to certain constraints

* Information-theoretic function of perceptual systems
(Attheave, 1954):

A major function of the perceptual machines is to strip away some of
the redundancy of stimulation, to describe or encode information in a
form more economical than that in which it impinges on the
receptors.
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10.2 Entropy (1/2)

Discrete random variable [f the event oceurs with

X={x |k=0,%1,.,xK} probability p, =1,

Probability of the event X = x there is no “surprise”,
and therefore no "information”
p,=P(X=x)

is conveyed by the occurreence

K of the event X = X,
0<p <1 and Epkzl

k=K

since we know what

the message must be.
Amount of information gained

after Observing the event X — Xk PI‘Oper‘tieS of information I(Xk)
1.1(x,)=0 forp =1
2.1(x, )20 for0O<p <1

1
I(xk):log il =—logpk 3.1(x, )>I(x,) forp <p

Py

with probability p,



10.2 Entropy (2/2)

Entropy
H(X)=E[I(x,)]= Epkl(x)— Epklogp(x)

I.e. average amount of 1nformat10n conveyed per message
Entropy is bounded by

0<H(X)<log (2K+1)

1. H(X)=0: no uncertainty

2. H(X)=1: maximum uncertainty

Differential entropy of continous random variables
h(X)=-] p,(x)logp, (x)dx h(X)=-| _p,(x)logp,(x)dx
=—El[logp,(x)] =—El[logp, ()]



10.3 Maximum Entropy Principle (1/2)

 Maximum entropy principle is a constrained
optimization problem
1. Asetof known states
2. Unknown probabilities of the states

3. Constraints on the probability distribution of the states

When an inference is made on the basis of incomplete information, it

should be drawn from the probability distribution that maximizes the
entropy, subject to constraints on the distribution

h(X)=-| _p,(x)logp, (x)dx
1.p,(x)=0

2. _oo p,(x)dx=1

3. _oo p,(x)g.(x)=c fori=1,2,.,m

(c) 2017 Biointelligence Lab, SNU



10.3 Maximum Entropy Principle (2/2)

Method of Lagrange multiplyers for solving

the constrained optimization problem
J(p)= L{—px(X)logpx(XH Aop )+ D2, g.()Ap, (x) |dx
i=1

dJ(p)
=0, we get h(X)=—{" p,(x)logp, (x)dx
dp,(x) .

X 1.p,(x)=0

| dx =
—1—logpx(x)+7LO+2)Ligi(x)=0 : I:px(x) =1
i=1 3. | p,(x)g,(x)=c, fori=1,2,.,m

Setting

p,(x)= exp(—1+ ),Ozm:ligi(x)]
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10.4 Mutual Information (1/3)

Figure 10.1: Relationships embodied in the three
lines of Eq. (10.32), involving the mutual

information I(X; Y).

h(X,Y)

h(X|Y) X Y)

h(Y|X)

(c) 2017 Biointelligence Lab, SNU

h(X) = uncertainty about X before
observing Y

h(X|Y) = uncertainty about X after
observing Y.

I(X:Y) = h(X) - h(X|Y). The
uncertainty about the system
input X that is resolved by
observing the system output Y.

I(X;Y)

=h(X)—-h(X]Y)
=h(Y)-h(Y|X)
=(h(X)+h(Y))-h(X,Y)
Eq. (10.32)



10.4 Mutual Information (2/3)

Joint probability density function of X and Y
Py, (%,¥)=p,, (¥|x)p,(x)

Joint differential entropy of X and Y
h(X,Y)=h(X)+h(Y|X)
h(X,Y)=h(Y)+h(X]|Y)

Mutual information (MI) between X and Y
I(X;Y)=h(X)—-h(X]|Y)

oo (oo pr(X'y)
_ ) ' dxd
| [Pyt Og(px(x)py(y)] b ) =p, (X1, )

Py (X1 YD, (V) o
p,(x)p,(¥)

- JZJ:OPX|Y(X | J’)Py(y)log

Py (X1 )
p,(x)

= | pu(xIy)p,(»)log ]dxdy



10.4 Mutual Information (3/3)

Differential entropy is

a special case of MI Generalization of MI

h(X)=I1(X;X)
I[(X;Y)=h(X)-h(X]|Y)
Prcl)p)e(r;c/y 1.(;\Ionnegat1V1ty j‘” J“” b xy)log Doy (X,y) iy
. > — )
(£:¥)= e Py (X)p, (¥)

Property 2. Symmetry
IY;X)=I(X;Y (- Puy (X1Y)
(Y;X)=1(X;Y) = || X1y, (y)log xdy

Property 3. Invariance Py (X)
I(Y;X)=1(U;V)
with u= £(x), v=g(»)




10.5 Kullback-Leibler Divergence (1/2)

KL Divergence (KLD) between p, (x) and g, (X)
- Py (x)
D .= Lopx (x)log[ X )dx

Iy (x) A distance between two
probability distributions, but
—El 1o Px (x) no symmetricity, thus
5 9y (x) divergence.
. D #D
Property 1. Nonnegativity pllg gllp
D =20
pllg

Property 2. Invariance

pllay, —  pyllgy
11



10.5 Kullback-Leibler Divergence (2/2)

Relationship between KLD and MI

Py y(XY) ixdy
p, (X)p, (y)

1(X:Y)=|" J:px,y(x,y)log(

I(X;Y)=D

Px ylIPxPy

Mutual information between a pair of vectors X and Y is

equal to the KL-divergence between the joint pdf p, , (x,y)
and the product of the marginal pdfs p, (x) and p, (y).



10.6 Copulas

A measure of statistical dependence between X and Y that is not disturbed by their
scaled versions or their variances.
We transform X and Y into two new random variables U and V, respectively, such that

the distributions of both U and V' are uniform over the interval [0,1].

u= PX(X), V= Py(y)
The new pair of random variables (U, V) is uniquely determined, and called a copula.

P (x,0)=C,, (FUVR), €,y () =P(B, ()5, (1))

The copula, involving the pair of random variables (U, V) is a function that models the
statistical dependence between U and V in a distribution-free manner.

Relationship between MI and the copula's entropy
I(X;Y)=1(U;V
(X;Y)=IUV) Section 10.2
I(U;V)=h,(U)+h,(V)-h,(UV) p. 508 Example 1
Since h.(U)=0and h.(V)=0 (U, V are uniformly distributed over [0,1]),
1(U;V)==h,(U,V)=E| logC, ,(u,v)]



10.7 Ml as an Objective Function

Figure 10.2: Four basic scenarios that lend themselves to the application
of information maximization and its three variants.
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10.8 Maximum Mutual Information Principle
(Infomax) (1/3)

Figure 10.3: Signal-flow graph of a noisy neuron.

I(Y;X)=h(Y)-h(Y |X)

/- 7
X h(Y |X)=h(N)
" I(Y;X)=h(Y)—h(N)
Sel of ) Output random
input X W) variable
random > O > OY
variables .
: /I'UITI
. N Noise
\/\/11
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10.8 Maximum Mutual Information Principle

(Infomax) (2/3)

Figure 10.4: Another noisy model of the neuron.

Set of
input
random

variables

Output random

variable

- o¥

I(Y;X)=h(Y)-h(Y |X)
h(Y|X)=h(N"

N'ZiWiNi
i=1

I(Y;X)=h(Y)~h(N"

noise

variables
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10.8 Maximum Mutual Information Principle
(Infomax) (3/3)

Noiseless network

1(Y;X)=h(Y)-h(Y|X)
With the noiselss mapping from X to Y, the conditional differential
entropy h(Y | X) attains the lowest possible value (diverges to -o)
Since conditional entropy h(Y|X) is independent of W, we can write

dI(Y;X) Oh(Y)

W oW

For a noiseless mapping network, maximizing the differential
entropy of the network output Y is equivalent to maximizing the
MI between Y and the network input X, with both maximizations

being performed w.r.t. the weight matrix W of the mapping
network.




10.9 Infomax and Redundancy Reduction

Figure 10.5: Model of a perceptual system. The signal vector s and noise vectors 24 and vdo
are values of the random vectors S, V{7, and Vo, respectively.

C(Y): channel capacity
= max rate of info flow possible

Recoding; y Redundancy measure
A
1 I(Y;S)
V; L C(Y)
Input channel Output channel

Minimize (Min redundancy)
F (Y;S)=C(Y)-AI(Y;S)

Maximize (Infomax)
F(Y;S)=I(Y;S)+AC(Y)

(optic nerve)

X=S+N  Y=AX+N

(c) 2017 Biointelligence Lab, SNU 18



10.10 Spatially Coherent Features

: Y(./

_ \ X, Neural
Region > network
a / a
Region \ X5 Neural

b / netvbvork

—p-Q Y b

Figure 10.6: Processing of two neighboring regions of an image

in accordance with the Imax principle.

max I(Y ;Y )

Maximize
mutual information
H¥.: Ty

a a a
T
Yb _wab
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10.11 Spatially Incoherent Features (1/2)

Figure 10.7: Block diagram of a neural processor, the goal of which is to suppress background clutter using a
pair of polarimetric, noncoherent radar inputs; clutter suppression is attained by minimizing the mutual

information between the outputs of the two modules.

Like-polarized
(horizontal-horizontal)
radar input

\ ‘)/ “,’ F+ Minimize
AN W
Ay I,,\\‘, . mutua}
Dt information
) s
’ '\1\\‘ I(meb)

Cross-polarized
(horizontal-vertical)

. Linear
radar input

weights

Gaussian
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NU

min /(Y ;Y )

C =(tr[W'W]-1)°
F=I(Y ;Y )+AC
oF

oW

YY), 9 _

BW oW
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10.11 Spatially Incoherent Features (2/2)

Figure 10.8: Application of the Imin principle to radar polarimetry. (a) Raw B-scan radar images (azimuth plotted
versus range) for horizontal— horizontal polarization (top) and horizontal-vertical (bottom) polarization. (b) Composite
image computed by minimizing the mutual information between the two polarized radar images of part (a).

(a) (b)

Reflector

Reflector

min /(Y ;Y )

(c) 2017 Biointelligence Lab, SNU 21



10.12 Independent-Components Analysis (1/3)

Figure 10.9: Block diagram of the processor for solving the blind source separation problem.
The vectors s, x, and y are values of the respective random vectors S, X, and Y.

‘::> Mixer:
A
Source

Observation
vector

vector
S
Unknown environment
m
X=AS=)aS$
i=1
Y=WX

vl

& Demixer:
\%Y%

o

V4

Output
vector
y

Solution to BSS by ICA
y =Wx=WAs=DPs
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10.12 Independent-Components Analysis (2/3)

Figure 10.10: Two Gaussian distributed processes.
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(a) Histograms of the two processes: The top histogram refers to Gaussian signal source —15
S, of zero mean and veriarzlce of = 1; the bottom one refers to Gaussian source signal S, of X
zero mean and veriance o5 = 16. (b) Two-dimensional distribution of the linearly mixed signals X, and X,.
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10.12 Independent-Components Analysis (3/3)

Figure 10.11: Gaussian- and uniformly-distributed processes.
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(a) Histograms of the two processes: The top histogram refers to Gaussian source signal —5
S; of zero mean and veriance of ; the bottom one refers to uniformly distributed source
signal S, uniformly distributed over the interval [~2,2]. (b) Two-dimensional distribution of the linearly mixed signals X; and X.
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10.13 Sparse Coding of Natural Images (1/2)

Figure 10.12: The result of applying the sparse-coding algorithm to a natural image.
(The figure is reproduced with the permission of Dr. Bruno Olshausen.)

EIH_—IIE!-

- o
Ty
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10.13 Sparse Coding of Natural Images (2/2)

Figure 10.13: The result of applying the Infomax algorithm for ICA to another natural image.
(The figure is reproduced with the permission of Dr. Anthony Bell.)

FEEREEEEEREERR
-
i
o
fit ’

(c) 2017 Biointelligence Lab, SNU




10.14 Natural Gradient Learning for ICA

Figure 10.14: Signal-flow graph of the blind source separation learning algorithm described in Eqgs. (10.85) and
(10.104): The block labeled z—11 represents a bank of uni-time delays. The graph embodies a multiplicity of feedback

loops.
z*1l<

W (72) Wz + 1)

n(2)

-y Identity matrix

b))
Input vector g9 Output vector
x(75) '::>® :> v(72)

W(n+1)=W(n)+n(n)| I-®(y(n))y’ (n) [W(n)

27



10.19 Rate Distortion Theory and Information
Bottleneck (1/3)

T: compressed version of X
Mutual information btw X and T

o oo py (] X)
I(X;T)=jJoopx(x)qTx(tlx)log[ ;T(t) ]dth

Expected distortion

E[d(x,t)]=| | p,(x)qy, (t|x)d(x,t)dxdt

Rate distortion theory Minimize th tual
inimize the mutua

Find the rate distortion function information between the source

R(D)= m(itfl)I(X;T) X and its representation T,
™ subject to a prescribed distortion
subjet to the distortion constaint constraint. (constrained

E[d(x,t)]<D optimization problem)

28



10.19 Rate Distortion Theory and Information
Bottleneck (2/3)

Figure 10.21: The information curve for multivariate Gaussian variables. The envelope (blue curve) is the optimal compression—prediction
tradeoff, captured by varying the Lagrange multiplier B from zero to infinity. The slope of the curve at each point is given by 1/B.There is always
a critical lower value of B that determines the slope at the origin, below which there are only trivial solutions. The suboptimal (black) curves are
obtained when the dimensionality of T is restricted to fixed lower values. (This figure is reproduced with the permission of Dr. Naftali Tishby.)

1.0 I I I i

I(T;Y)

20 25

29



10.19 Rate Distortion Theory and Information
Bottleneck (3/3)

Figure 10.22: An illustration of the information bottleneck method. The bottleneck T captures the relevant portion of the original random vector
X with respect to the relevant variable Y by minimizing the information I(X;T) while maintaining I(T;Y) as high as possible. The bottleneck T is
determined by the three distributions, , and , which represent the solution of the bottleneck equations (10.170) to (10.172).

i (t10)=1 ;
I(X;Y) X,p)
qT(t)=2qT|X(t|x)px(x)
Qe (V1O =Dy (7. X| 1)

= 4, (¥ 1D)q,, (x| 1)

I(X;T) [(T;Y) = ZqYlT(y|t)qTIX (t] x)[ Et)))
Information bottleneck method:

€Xp (_Dpl Iq)

Find representation T that maximizes  B&vesrule
p(B|A)p(A)

J (@ (1 X)) =1(X;T) - BI(T;Y) PLAIE)=" B
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10.20 Optimal Manifold Representation of Data
(1/7)

Qyix (L |x): conditional pdf of points on the manifold
Stochastic map

B, :x—q, (L]x)
Distance measure

dx,p=lIx—p|*

Expected distortion

Eldx,ml=] | p (X)q, (X Ix-pIP dxdp

Mutual information between the manifold M and the datas set X

I(X;M) = JZIZPX(X)qux(uIX)log[

M
i.e. the number of bits required to encode a data point X into

a point L on the manifold M.



10.20 Optimal Manifold Representation of Data
(2/7)

Tradeoft:
1. Faithful representation of data: minimize distortion
2. Good compression of data: maximize MI

The manifold is optimal if the channel capacity I(X;M) is maximized

while the expected distortion E[d(x,W)] is fixed at some prescribed value.

Constrained optimization problem: minimize F
F(M,P,)= E[d(x,W]+AI(X;M)

Parameterize the manifold and introduce the bottleneck vector T
Y(t):t—>M

Y(t): descriptor of the manifold M

New distance measure

d(x,y(t)=lx-y()II"



10.20 Optimal Manifold Representation of Data

(3/7)

Expected distortion and MI (channel capacity)
E[d0xy(O)]=] [ p (e (t10) X~ y(D)I dxdt

w pen (£ X)
I(X;T)= J.mjwpx(x)qﬂx(ﬂx)log( 'q(t) ]dxdt

T

Functional F to be minimized

F(y(t),qy, (t1x))= E[d(x,y(t)]+AI(X;T)

To find the optimal manifold, we consider two conditions
oF

1. m =0 for - (t]|x) fixed
2. oF =0  forvy(t) fixed
0y (t]X)

(c) 2017 Biointelligence Lab, SNU
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10.20 Optimal Manifold Representation of Data
(4/7)

Applying condition 1, we obtain

OF _OE[d(x,y(t)] _ (= _ )
() YY) = | p (X (%) (~2x+2y(t))dx =0

From this we obtain

y(t )—ﬁ | xp (x)q, (t]x)dx

0 ()= | Py (X)qpy (t]X)dx
To apply the condition 2, we have the additional constraint
f - (t|x)dt=1 for all x

To satisfy this additional constraint, we introduce

the new Lagrangean multiplier B(x).

(c) 2017 Biointelligence Lab, SNU 34



10.20 Optimal Manifold Representation of Data
(5/7)

E[d(x,y(t))]
I(X;T)

The new expanded functional F
FOY (0. an (t1x)= ] [ {p,(X)ap (tIx) I x—y (D)1

Gy (E]X)
q.(t)

+/lpx(x)qTX(t|x)log[ ]+ﬁ(x)qTX(t|x)}dtdx

Applying condition 2, we obtain

Gy (E]X) L B
q,(t) Ap, (%)

1
EIIX—Y(t) I +108[

B(x)

X

Setting =log Z(x,A) and solving for o (t|x),we get

q,.(t)
Z(x,A)

py (E]X) = eXp[—%II x—7(t) Ilzj

Z(x,1)= JZqT(t)exp(—%ux—v(t)wjdt

35



10.20 Optimal Manifold Representation of Data
(6/7)

Discrete approximation with 8(-) the Dirac delta funcrtion

1 & Using the L-point discrete set {t_,t_,..,t }
p.(x)=—) 8(x—x) | et
X N< i to model the manifold represented

by the continuous variable t.
We model the manifold M by the discrete set T = {t},}L Y

j=1
Y(E)=7, a(tIx)=q,(x,), q,(t)=q,

Figure 10.23: lllustrating the alternating process of computing the distance between two convex sets A and B.

Set ——
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10.20 Optimal Manifold Representation of Data
(7/7)

Iterative algorithm for computing the discrete model fo the manifold:
1 N
p.(M=—=2> p (x,n)
N i=1

Y (n)—Lle p.(x,n), «a=12,..m
e p () N e T

Z(x,.,z,n)=zp,.(n)exp(—%||x—v,.(n)uZ]

p (X, n+1)= Z(’; "(z)n) exp[—%ux—vj(n)uzj

Initialization
Y, =X, pj(O):l/L, j=1,2,..,L
Termination condition

m?xlv,.(n)—v,.(n—l)l < E



10.21 Computer Experiments: Pattern Classification

Figure 10.24: Pattern classification of the double-moon configuration of Fig. 1.8, using the optimal manifold
+ LMS algorithm with distance d = —6 and 20 centers.

12

10

X2
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Summary and Discussion (Ch. 10)

Information theory and entropy

— Uncertainty, probability, information, entropy
— The maximum entropy principle (Max Ent)

— Mutual information (M)

— Kullback-Leibler divergence (KL)

Mutual information as the objective function of self-
organization

1.
2.
3.
4.

The Infomax principle

The principle of minimum redundancy
The Imax principle

The Imin principle

Applications to machine learning
— Independent-Components Analysis
— Information Bottleneck
— Manifold Learning



