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14.1 Line Integral in the Complex Plane

M Complex Line Integral (54 MHZ)

. Integrated over a given curve C (in the complex
plane) or a portion of it.
I f(z)dz

= Path of Integration: C:z(t)=x(t)+iy(t) (a<t<b) i
= Positive Sense e #=): The sense of increasing t
Ex) C:z(t)=t+3it (0<t<1) = the line segment y =3x

= Cis Smooth curve
: C has a continuous and nonzero derivative #%,
z(t):%:x(t)ﬂy(t) at each point.

Complex line integral

1(t) = lim Z(t+At)—z(t)
At—0 AZ
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14.1 Line Integral in the Complex Plane

(. zeta
M Definition of the Complex Line Integral & xi @l

: Integrated over a given curve C (in the complex plane) or a portion of it.

tL(=a),t, ..t tED) 7,7, .. 2,,2,(=2)

= (; between z,and z,, and {, between z_, and z,

= S, =) f(s,)Az, where Az, =z, -7, ,
m=1

s Nowo = [At |50 = Az |50 O !]ilposn:jcf(z)dz

Complex line integral




14.1 Line Integral in the Complex Plane

M Basic Properties Directly Implied by the Definition

1. Linearity: I[klfl(Z)Jszfz(Z)]dZ:klf fl(Z)d”szfz(Z)dZ
2. Sense reversal (2&F F/HHE):

1
3. Partitioning of Path: | f(2)z =If(2)d2+j f(z)dz

Partitioning of Path
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14.1 Line Integral in the Complex Plane

(. zeta
M Existence of the Complex Line Integral &1 xi @non

= f(z) is continuous and C is piecewise smooth imply the existence of
the line integral.

f(z)=u(xy)+iv(xy)

;. =¢ +in. and Az =AX_+I1Ay,

S, = f(¢,)Az, where Az, =7, -z, ,
m=1

0> S, =2 (U+iv)(Ax, +iAy,) where u=u(&,,7,), V=V(,.7,)

m=1
S, = D UAX, — > VA, +i| DUy, — D VA, |

Asn—oo, AX & Ay —0

lims, = [ f(2)dz :Ludx—jcvdy+iUCudy —jcvdx]
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14.1 Line Integral in the Complex Plane

M First Evaluation Method: Indefinite Integration (8% &) and
Substitution of Limits (&stete] Q)
= Simple Closed Curve: Closed curve without self-intersections
= D is Simply connected: Every simple closed curve encloses only points of D.

= Ex. A circular disk (&%) is simply connected, whereas an annulus (2td) is
not simply connected.

o Simple closed (Th= EHel) « Simply connected (Thx A7)
A simple closed path is a closed path that A domain D is called simply connected if every
does not intersect or touch itself simple closed curve encloses only points of D.
D, D,
PR S
Simple Simple ( D3)
N -
~ C2
self-intersections .
» Simply connected » Not simply connected

Not simple Not simple . Dll D3 . D2

jo E & Seoul
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14.1 Line Integral in the Complex Plane

M Theorem 1 Indefinite Integration of Analytic Functions
= Let f(z) be analytic in a simply connected domain D.
= There exists an indefinite integral of f (z) in the domain D.
= That is, an analytic function F(z) such that F'(z) =f (z) in D.
= For all paths in Dzjoining two points z, and z, in D we have

[ f(2)dz=F(2)-F(z), F'(2)=1(2)
= A function f (2) that is analytic for all z is called an entire function.

= |f f(2) is entire, we can take for D the complex plane which is certainly
simply connected.

Ex.) M 2gy =9 jﬂicoszdz:? sinz =sin xcosh y +icos xsinh y
0 —
. 1+i . _
'[OH 220z =+ 78 .[_ cos zdz =sin z|” y
1 0_ . =2sin 7 X
= Z(1+i) _ . . D
3 = 2(sin Ocosh 7 +1cos 0sinh 7)
2 2. o i D: simple
= _g T g' = 2isinh 7 =23.0971 connected domain
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14.1 Line Integral in the Complex Plane

M Theorem 2 Integration by the Use of the Path

Let C be a piecewise smooth path, represented by z = z(t),
where a<t<b. Let f (z) be a continuous function on C. Then

if(z)dz=§f[z(t)}z‘(t)dt (zz%j

Proof) ct* F(xy) =R Yi+Fy(x )]

_[C f(z2)dz = J.C udx—_[C vdy+iUC udy+J.C vdx} <;> L F.dr :jc P(x, y)dx+Q(X, y)dy
[ L2zt )

z(t) = x(t) +1y (1), 2(t) = x(t) +1y(t)

= ["(u+iv)(x+iy)dt dx_,ody_
Ja dt " dt

F(2) =ulx(), y(Ol+v[x(t), y(D)]

y, dx=xdt, dy=ydt
= 'C[u>'<—vy+i(uy+v>’<)]dt = L [udx—vdy +i(udy +vdx)]

— .'C udx—fcvdy+iUC udy+_"cvdx} = _[C f (z)dz

" " Seoul 8
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14.1 Line Integral in the Complex Plane

M Theorem 2 Integration by the Use of the Path

Let C be a piecewise smooth path, represented by z = z(t),
where a<t<b. Let f (z) be a continuous function on C. Then

if(z)dz=§f[z(t)}z‘(t)dt (zz%j

M Steps in Applying Theorem 2

A. Represent the path C in the form z(t),a<t<b

dz

B. Calculate the derivative z(t)= o

C. Substitute z(t) for every z in f (z) (hence x(t) for x and y(t) for y)

D. Integrate f|z(t)|z(t) overt from a to b.

" " Seoul 9
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14.1 Line Integral in the Complex Plane

M Ex. 5 A Basic Result: Integral of 1/z Around the Unit Circle
Show that by integrating 1/z counterclockwise around the unit we

obtain [ﬁd—zz =2zi (C the unit circle, counterclockwise ) I f(z)dz :j flz(t) 2(t)dt
So) o y|
A. Represent the unit circle C by Z(t) =Ccost+1sint=e /\}
(0<t<27) |/ X
B. Differentiation gives 2(t)=ie" (chain rule) y
C
- 1, (
C. By substitution, f(z(t))=—==¢ \O}X
a0 S

D. Result

The function is not analytic at 0.

dZ 27[ - ) 271' 2]
f==etie'dt=i[dt=27i Q2 |, f()dz=F(2)-F(z)
Z 0

C 0 0 unit circle must contain z=0,
not simply connected

®» Theorem 1 can’t be used for

this problem.



14.1 Line Integral in the Complex Plane

M Ex. 6 Integral of 1/z™ with Integer Power m

Let f (z) = (z - z;))™ where m is the integer and z, a constant. Integrate
counterclockwise around the circle C of radius p with center at z,.

Sol) b z(t)=z,+ p(cost+isint)=z,+ pe" (0<t<2r)
if(z)dz :£ flz(t)z(t)dt (Z ) pmelmt dz = ipeitdt
| ) f1(z-2,)"dz = ipm”fei(mﬂ)tdt
C 0

27 2
= ipm+1|:J cos(m+1)tdt +i _[ sin(m-+1)tdt
0

f m=-1 § (z— Zo)de = i'.‘z”ld'[ =271  Not simply connected
¢ 0 (f(2) = 1(z- 7))
o m+l
if m=-1and integer = P 1[sin(m +1)t —icos(m +1)t]§” =
m +

I
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14.1 Line Integral in the Complex Plane

M Ex. 6 Integral of 1/z™ with Integer Power m

Let f (z) = (z - z;))™ where m is the integer and z, a constant. Integrate
counterclockwise around the circle C of radius p with center at z,.

Sol) z(t)=12z,+ p(cost+isint)=z,+ pe" (0<t<2r)
if(z)dz:lf[z(t)]z'(t)dt (Z—ZO )m _ pmeimt’ dz = ipeitdt

fl (2—2)"dz - {27zi (m = 1),

0 (m=-1 and integer)

Simple connectedness and analytic function is quite
essential (=X ) in Theorem 1.

Simple connectedness and analytic 4 _ B
function E> LO f(z)dz=F(z)-F(z,)

e o
E'j\ /(\Iln;u |




14.1 Line Integral in the Complex Plane

If analytic and simply connected
b
¥ Dependence on path lf(z)dzzi flz(t) o (t)dt

A complex line integral depends not only on the endpoints of the path but in
general also on the path itself.

M Ex. 7 Integral of a Nonanalytic Function. Dependence on Path

Integrate f (z) = Re z=x from 0 to 1+2i (a) along C* (b) along C
consisting of C1 and Cz\‘ (Not satisfied: u, = v, , u, = —v, ® Nonanalytic)

:z(t)=t+2it (0<t<1)

2(t)=1+2i, f|z(t)]=x(t)=t

;
) .‘
C[Rezdz=£t(1+2i)dt:%(1+2i)=%+i , L pze1e2
(b) C,:z(t)=t (0<t<1) = z(t)=1 f(z(t))=x(t)=t - c*
C,:z(t)=1+it (0<t<2) = z(t)=i, f(z(t))=x(t)=1 "
1 2 y O
jRezdz:[RedejRezdz:jtdt+j1.idt:1+2i —
2 B
C C, C, 0 0
Paths




14.1 Line Integral in the Complex Plane

M Bounds for Integrals (H& 84| Zf). ML-Inequality
Basic formula: jf(z)dz

C

L is the length of C and M a constant such that |f (z)|<M everywhere on C.

<ML (ML - inequality)

M Ex. 8 Estimation of an Integral
Find an upper bound for the absolute value of the integral

I z%dz, C the straight-line segment from 0 to 1+1
C
............................................................................................. 1 - /“
Sol) , , #
L=~2, [f(z)=|’|<2 =) |[7dz|<2V2=28284 A
;s
) //'/
.4 |
1
Paths




14.1 Line Integral in the Complex Plane

M Ex. 9) Integration lf(z)dh!f[z(t)lz(t)dt

j (z+2z71)dz, C the unit circle

Sol) jzdz +Iz‘1dz =0+27i
C C

M Ex. 10) Integration

soly 2(t)=2i+4e™ (-z<t<x) dz=-4e™

I[:zn (2- 21)) [ ( ° "e%}udt

__ I (5_5 e! )dt——lOm —[sint —icost]”, =-10zi

(50
s
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P
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14.2 Cauchy’s Integral Theorem

M Simple Closed Path (Th= B¢l AE): A closed path that
does not intersect or touch itself.
= Ex. A circle is simple, but a curve shaped like an 8 is not simple

self-intersections

iy

Simple Simple Not simple Not simple

Closed paths

- Seou
Nationa
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14.2 Cauchy’s Integral Theorem

M Definition of simple connectedness

A

= Simply Connected Domain D (St & 2 ¥ <): A domain such that
every simple closed path in D encloses only points of D

Ex.) The interior of a circle, ellipse, or any simple closed curve

= Multiply Connected (CHS @ 24): A domain that is not simply
connected.

Ex.) A domain that is not a disk without the center 0<|z|<1

—————

P ~ Y
p S - 7 /"\ e o of “a
4 i S é s N y N y N
’ N ] ¢ of \ ’ \ 4™ % \
! \\ ’I /  paaas A ! PRt \ /! 7 H )
\ - [ 1 4 [ / \ ) [ l/ y: )
I L [ S | ! - i ! i . ! . i
— e -
) \ s ‘l,' i 1 J ! e afN¥ U
\ ) v\ S=" \ ST ! . 7 P !
\\ ’ \ ! - 5 = 7 )\ J 7 7
S ’ 7 7’
s ,"‘ S s—’,f \\, 7’ \\ \~-—/ 7’
\\~~" \..,_____,,.’ \~~ —)/ \\\ ’,r
Simply Simply Doubly Triply
connected connected connected connected

Simply and multiply connected domains




14.2 Cauchy’s Integral Theorem

= Bounded Domain (A @ %): A domain that lies entirely in some
circle about the origin

= D is p-fold Connected (p& ®2&): Its boundary consists of p closed
connected sets (curves, segments, or single points) without
common points

= D has p-1 holes o
= Ex. An annulus is doubly connected (p = 2) £

-

Caubly
connectad

M Theorem 1 Cauchy’s Integral Theorem

If f (z) is analytic in a simply connected domain D, then for every
simple closed path Cin D _ i
i (2)dz=0 P

" /
\ D \\v/;(z///
2 e ———

%
-‘.I-lgi"c-,
e
S22y
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14.2 Cauchy’s Integral Theorem

M Theorem 1 Cauchy’s Integral Theorem

closed path Cin D N

e \
[ﬁf(z)dz=0 4 O y
A v D -’

—————

If f (z) is analytic in a simply connected domain D, then for every simple

Sec. 14.1. Lzl f(z)dz=F(z,))-F(z,), F'(z)=1(2)
if z, =2z, then [ f(z)dz=0

LZ: f(z)dz=0 (--closed path, z,=z,)

- Seoul
3 Nationa
y E'j\ Univ.




Cauchy - Riemann equation

14.2 Cauchy’s Integral Theorem ® v, =y, U=,

M Theorem 1 Cauchy’s Integral Theorem
If f (z) is analytic in a simply connected domain D, then for every simple

closed path Cin D N

// \

[ﬁf(z)dz=0 4 y
A v D -,

’—__'

~ -

Ex. 1 No Singularities (§0|7) (Entire Functions, 2tgh

§ezdz:0, e =e"Y =¢*(cosy+isin y)
c |

u=e"cosy,v=e siny

§coszdz:0, )
¢ u,=e"cosy=v,

§Cz”dz:o (n=01,--) uyz—exsin y=-V,

Integrals are zero for any closed path, since these functions are entire
(analytic for all z).

I
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Cauchy - Riemann equation

14.2 Cauchy’s Integral Theorem ® v, =y, U=,

M Theorem 1 Cauchy’s Integral Theorem
If f (z) is analytic in a simply connected domain D, then for every simple

closed path C in D _
// )
[ﬁf(z)dz =0 7 y
4 \\ D N
Ex. 1 No Singularities (Entire Functions)
§ezdz:(), . C0S Z =cos xcosh y—isin xsinh y
C i
u=cosxcoshy, v=-sin xsinh y
§cos zdz =0, : |
c : u, =—sin xcoshy =v,
dz = —01.-. ~ —
§CZ dz=0 (n=01:--) | u, =cosxsinhy =-v,

Integrals are zero for any closed path, since these functions are entire
(analytic for all z).

I
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Cauchy - Riemann equation

14.2 Cauchy’s Integral Theorem ® v, =y, U=,

M Theorem 1 Cauchy’s Integral Theorem
If f (z) is analytic in a simply connected domain D, then for every simple

closed path Cin D T
// )
[ﬁ f(z)dz=0 < y
C \\ D N
Ex. 2 Singularities outside the contour Cos Z = cos x cosh y —isin xsinh y
1 . :
. secz=—— IS not analytic y
§CSGC zdz =0 COS Z 21t

atz=xx/2, £t37/2,---

dz (v cosz=0), ¥ 1 y

> —
2°+4
but all these points lie outside _9il
C; non lies on C or inside C.

(C: unit circle)

[
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Cauchy - Riemann equation

14.2 Cauchy’s Integral Theorem ® v, =y, U=,

M Theorem 1 Cauchy’s Integral Theorem
If f (z) is analytic in a simply connected domain D, then for every simple

closed path Cin D N

// \

[ﬁf(z)dz=0 < y
C

Ex. 2 Singularities outside the contour

§seczdz:0 1 . | o
C = IS not analytic atz ==2i

P +4 TN
dz ~ outside C. L 4
§c22+4:0 outside ‘E\\ji X

_oil
(C: unit circle)

[
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Cauchy - Riemann equation

14.2 Cauchy’s Integral Theorem ® v, =y, U=,

M Theorem 1 Cauchy’s Integral Theorem
If f (z) is analytic in a simply connected domain D, then for every simple

closed path Cin D N

// )

[ﬁf(z)dz=0 4 y
A v D -’

’———’

~ -

E ) . . _ b .
X. 3 Not analytic function | L f(2)dz = L f[z(t)]2(t)dt
(C:z(t)ze't is the unit circle)

z(t)=e" (0<t<2rx)
2(t)=ie"  f[z(t)]=zZ(t)=e™"

dz _,
§ 2 T i 5 27 it it . (27 -
Cz ; §Czdz= e -ie"dt =Ijo dt =27

0

§C2dz =7

This does not contradict Cauchy’s integral
theorem because it is not analytic.

I
‘.I-lgiﬁ'k(-,
b 7
S22y
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Cauchy - Riemann equation

14.2 Cauchy’s Integral Theorem ® v, =y, U=,

M Theorem 1 Cauchy’s Integral Theorem
If f (z) is analytic in a simply connected domain D, then for every simple

closed path Cin D T
- < )
[ﬁf(z)dz=0 4 y
4 Q D N_~"-
Ex. 3 Not analytic function (C -z(t) =e"is the unit circle)
5 Z(t) = e't_ (0<t<2nr) [ f@z=] frmk@d
§Zdz =7 ) =ie"  f[z(t)]=1/Z%(t) =e
- O [T et —i [T et =i [ (cost —isin t)dt
: L[L 72 Jdo - .fo B .[0
dz =i[sint+icost];"=0
§ — — 7 This result does not follow from Cauchy’s integral theorem,
Cz . because f (z) is not analytic at z = 0. Hence the condition that f

be analytic in D is sufficient (5= Z71) rather than necessary for
Cauchy’s theorem to be true.

: ; — 11 f(z)dz=0
Analytic and simply connected , [I] (2)

58 Seoul

ﬁ‘h oul 25 |
Nationa |
jJ.-\ Iniv. |

IE7%



14.2 Cauchy’s Integral Theorem

M Theorem 1 Cauchy’s Integral Theorem

If f (z) is analytic in a simply connected domain D, then for every simple
closed path Cin D ~N

s \

[ﬁf(z)dz=0 < y
C

M Ex. 5 Simple Connectedness Essential
1
Unit circle C lies in the annulus %<|Z|<§ where - is analytic, but this

domain is not simply connected — Cauchy’ theorem cannot be applied.

= The condition that the domain D be simply connected is essential.

“by Cauchy’s theorem, if f(z) is analytic on a simple closed path C
and everywhere inside C, with no exception, not even a single point,
then [ﬁ f (z)dz =0 holds.”

C




14.2 Cauchy’s Integral Theorem

M Independence of Path
Integral of f (z) is independent of path in a domain D

<Z> for every z,, z, in D, its value depends only on the initial point z, and
the terminal point z,, but not on the choice of the path C in D.

M Theorem 2 Independence of Path

If f(z) is analytic in a simply connected domain D, then the integral of f (2) is
independent of path in D.

C,
ch f(z)dz = jcl fdz+ | . fdz=0

3 B fdz=— . fdz
G C,

fdz=| fdz
o C,




14.2 Cauchy’s Integral Theorem

M Principle of Deformation of Path (AZH3 2| 2lg|)

As long as our deforming path (a continuous deformation of the path
of an integral, keeping the end fixed) always contains only points at
which f (z) is analytic, the integral retains the same value.

\ : \ \

\

l‘ -
e N e %; 0
*?‘ \ \ & \ 1
\ ~ \. !
\ g - ol
~ \
A

e 4

24 |

Continuous deformation of path




14.2 Cauchy’s Integral Theorem

M Theorem 2 Independence of Path

If f(z) is analytic in a simply connected domain D, then the integral of
f () is independent of path in D.

M Ex. 6 Basic Result: Integral of Integer Powers

! _ m if m<O, if m>0,
1(2)=(z-12)" |
m : integer, - (@)= -2y f(z)=(z—-2,)
Z, : constant : v
is not analytic at z,. is analytic for all z.

fl (2 2z - {mi (m=-1),

0 (m=-1 and integer)

The integral is independent of the radius p.

[ﬂz—lzdz =0 (even if Not Analytic at z = 0)

[
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14.2 Cauchy’s Integral Theorem

M Theorem 3 Existence of Indefinite Integral (2&X&)

= |f f(2) is analytic in a simply connected domain D, then there exists
an indefinite integral F(z) of f (z) in D, which is analytic in D,

= and for all paths in D joining any two points z, and z, in D, the

integral of f (z) from z, to z, can be evaluated by formula

=
-‘.[lgi"c(,-,
b 7
S22y
w
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14.2 Cauchy’s Integral Theorem

M Multiply Connected Domains (CIZHZEY)

» Doubly connected domain D

= |f a function f (z) is analytic in any domain D* that
contains D and its boundary curves, we claim that C,

[ﬁf dz_mf C.

+: Counterclockwise

Proof) p L f(z)dz + j f(z)dz - j f(z)dz+[ £(2)dz =0 - Clockwise

C,,C,: twocuts

D, : jc f(2)dz— [ #(z)dz - jc

1down =2 2down

f(z)dz— j(: f(z)dz=0

D,+D, : §le(z)dz—§czf(z)dz:0

Ul f(z)dz=[& f(2)dz




14.2 Cauchy’s Integral Theorem

M Multiply Connected Domains

» Triply connected domain

= |f a function f (z) is analytic in any domain D* that
contains D and its boundary curves, we claim that C,

gjf dz—mf dz+%@f(z)dz C.

Proof) Dl:.[c f(Z)dZ+L~ f(Z)dZ— . f(z)de_L f(Z)dZ+J‘C f(Z)dZZO
D,: . f(z)dz _,'.53 f (z)dz—_[cmwn f(z)dz- < (z)dz—j%own f(z)dz —chl f(z)dz=0
% \>~
D,+D,:| f(z)dz—| f(z)dz—| f(z)dz=0 i ) G
1 2 C, ( ) C, ( ) "‘CZ ( ) /é{/_/\u/«é_//j)
ET‘\\__A//A e
[ljf dz—[ﬁf iz -+ [f] f (2)dz S
2 " Soumadochise ¥

Triply connected domain

& Seoul
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14.3 Cauchy’s Integral Formula

M Theorem 1 Cauchy’s Integral Formula

If f(z) is analytic in a simply connected domain D. Then for any point
Z, in D and any simply closed path C in D that encloses z,

[ﬁ zf (Zz)dz = 27if () (Cauchy's integral formula)
cC“ “o

the integration being taken counterclockwise. Alternatively

f(z,)= Zizi [([] zf—(zzz dz (Cauchy’s integral formula)

Cauchy’s integral formula

=
-‘.[lgi"c(,-,
b 7
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14.3 Cauchy’s Integral Formula

M Proof) f(z)=1f(z,)+[f(2)-f(z)] [ﬁc(z—zo)mdzz{z”i (m=-1),

0 (m=-1 and integer)
Ujf(z)dz=f(zo)m dz +mf(z)_f(20)dz
c L= cL7Z4y| ¢ =1,

=f(z,)-27i <

= The integrand of the second integral is analytic, except at z,.
= By (6) in Sec. 14.2

Eﬁf(z)dz=[ﬁ f(z)dz
= If an £ >0 being given = © @ g

We can find d > 0 such that |f (z)- f(z,)|<¢ for all z in the disk [z—2,|<&

Choosing the radius of p of K smaller than ¢

For z on circle on |z-zy| = 6 f(z_)j
£ &
o) o, >




14.3 Cauchy’s Integral Formula

M Proof) f(z)=

f(z,)+[f(z)-f(z)]

jf(z)dz

<ML (ML-inequality)

(%) dz

C

L is the length of C and M a constant

f dz
mz_zdz_f U;]z

Ujf(z)—f

such that ‘f (z)‘ <M everywhere on C.

= We can replace C by a small circle K of radius p and center z,

g
<|l—=

Yo,
M

‘f(z)— f(z)

Z—12,

Lengthof K =27p by ML —inequality

(1),

Z—12,

< £2ﬂp = 27¢e
o,

C

[ﬁ%dz = 27if (2,

- \\
- Y
// T \
- \
<l \ D 1
I, j‘
#

I o %y 7
[} ’
I ’

i \k 7
\ -
L C _— " C
\ -
~ -
t————

& —0,

(1),

40
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14.3 Cauchy’s Integral Formula

M Theorem 1 Cauchy’s Integral Formula

If f(z) is analytic in a simply connected domain D. Then for any point
Z, in D and any simply closed path C in D that encloses z,

m f(z)dZZZ%If (ZO) f(zo): 1[& f(Z) dz D
c 2% 27 % -1, ~
M Ex. 1 Cauchy’s Integral Formula
eZ
N For any contour C enclosing z, = 2 ifc 5 dz="7?
e \

’é ol § € odz =27 £ (2,) = 27ie™ = 27ie’
) o 2=2 = 46.4268i

For any contour C* for which z, = 2 lies outside

eZ
—dz =0, since e is entire.
Crz-2

=
-‘.I-lgi'%{,-,
b 7
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14.3 Cauchy’s Integral Formula

M Theorem 1 Cauchy’s Integral Formula

If f(z) is analytic in a simply connected domain D. Then for any point
Z, in D and any simply closed path C in D that encloses z,

i By ot () 1(2,) = f(2) g, c
= 7—1, 2% 1-1, “
M Ex. 3 Cauchy’s Integral Formula 5 g
Z —
s i = I dZ =7
L D \‘ For any contour C enclosing z, = 1/2i j:c 57 i
/
'/C'l sol) 6 17°-3
o Z° — 527 — :
'\ /1 § ——dz=§ 2= —dz =24i(32°-3)
\__-" €271 C z—7I 2=
=27(3 (31)° ~3) = -6

<
[
S§%

%
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14.3 Cauchy’s Integral Formula

M Theorem 1 Cauchy’s Integral Formula

If f(z) is analytic in a simply connected domain D. Then for any point
Z, in D and any simply closed path C in D that encloses z,

f(z _ f(z
m ( )dz:me(zo) f(z,)= 1_Dj ( )dz
Z—1 27l < 71 —1
C 0 C
M Ex.) Cauchy’s Integral Formula 3
- Z
Y . . dz
L D \‘ For the unit circle @(22 )
/
/C /
| Il Sol) ;
\\ - E Z 1 dz = rriz” iz g
- ? . (Z _2) 8

I
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b 7
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14.3 Cauchy’s Integral Formula

f(z) :
M Ex. 3 Integration Around Different Contours Uj S dz = 27if (z,)
C 0
g(z) " +1 Z +1 terclockwi d each of th
= = countercliockwise around eacn o e
Integrate z° -1 (Z —I—l)(Z —1) four circles.
Sol) The circles (a) and (b) enclose the point z, = 1 where g(z) is not
y analytic.
d z°+1 |z2°+1| 1 +1
( ) g(Z) = > = . f (Z) =
(c) z°-1 | z+1 |z-1 z+1
(a)
z°+1
. . jcz —dz=27 f(1) =
(b The circles (c) enclose the point z, = -1 where g(z) is not analytic.
Singular points : (-1,0), (1,0) 0(2) = z° +1_ z° +1]1 @ )_ 2% +1
Circles (a), (b), (c) enclose -1 | z-1 z+1

a singular point.

- & +1dz—2mf( 1) =
CZ —




14.3 Cauchy’s Integral Formula

M Multiply Connected Domains

f (z) is analytic on C, and C, and in the ring-shaped domain bounded by
C, and C, and z, is any point in that domain

f(z,)= L [ﬁf(z)dz+ L [ﬁf(z)dz

2m & 1-1, 2m & 1-1,

where the outer integral is taken counterclockwise and the inner
clockwise.

e
(e
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14.4 Derivatives of Analytic Functions

M Theorem 1 Derivatives of an Analytic Function
If f(z) is analytic in a domain D, then it has derivatives of all orders in
D, which are then also analytic functions in D. The values of these
derivatives at a point z, in D are given by the formulas

t'(2,)= . [ﬁ f(Z)de

27y (z-2,) T T
i ;o 5

and in general

(0 ()= P (n=1 2, )

= 2721 . (Z_Zo)n+l

here C is any simply closed path in D that enclose z, and whose full
interior belongs to D; and we integrate counterclockwise around C.

57
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14.4 Derivatives of Analytic Functions

ot (+br)-T(z) ey L (@)
M Proof) f'(z)=lim Az (z) Zﬂi[pz—zo
by Cauchy’s integral formula
f(z,+A7)-f(z,) 1 f( z)
Az - 27iAz {Uj (z +Az 2= [(]:jz Z,
f(z,+Az)-1(z,) f(z)
AZ - ZEW@(Z—ZO+AZ)(Z—ZO)C'Z = Az -0
1 f(z)
f'(z,)=— dz ?
E> ( 0) 27”@(2—20)2 .
The above right side can be proved by the following becomes 0 as Az — 0
f f(z)Az
e e L el L v e
“(2-z,+Az)(z~- < (z- O) (z2-2,+Az)(z—-2,)
we show that by the ML-inequality, (/D /’K:‘
1 1 (= /
R N
[f(z)]<K forallzonC, (z-2)*>d* (z-z,)’ = d? N




14.4 Derivatives of Analytic Functions

M Proof) We will show the following by the ML-inequality.

f(z)Az I
[ﬁ ( ) ~dz—>0 as Az—0
*(2-2,+Az)(z2-1,) { /D g
1 1 TN %

(Z—ZO)ZZd2 (Z_ZO)ZSdZ

d<|z-z,|<|z-2,-Az+AZ| <|z-7,-Az|+]Az] = d-|Az] <|z-2,-A7

1 2
<=
lz-2,-Az] d

let \Az\gid - 14 <—|Az| ~ 14 <d-|Az|<|z-z,-A7] =
2 2 2

Let L be the length of C. If |Az| <d/2

jf(z)dz

C

<ML (ML-inequality)

[Jj f(2)A2 —dz SKL‘AZ‘E%
*(z2-2,+Az)(z2-1,) dd

f(2)| <K

1 f(z
This approaches zero as Az—0 .. f'(Zo) =5 [ﬁ ( ) 7z

e
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14.4 Derivatives of Analytic Functions

M Ex. 1 Evaluation of Line Integrals
[ﬁ cos 2 dz:Zﬂi(cosz)'

C (Z—7Z'|)2 z=ri

= —27xisinzi =2z sinh 7 (counterclockwise)

for any contour enclosing the point zi

M Ex. 2 Evaluation of Line Integrals

mz“ ~32° +6dz :7ri(z4 — 372 +6)”

a (z+i)3

Z=—1I

— 7 [1222 . 6] =-187i (counterclockwise)

Z=—1

for any contour enclosing the point —i.

I
e
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14.4 Derivatives of Analytic Functions

. . 4 (1.5, 1.5i)
M Ex. 3 Evaluation of Line Integrals

U‘] Ln(Z + 3) ¢ 7=-1
¢ (z2-2)( z+1) (-1.5, -1.5i)

C : the boundary of the square with vertices +1.5, £1.5i,counterclockwise
f(2) = Ln(z+3) £(7) = 1 _Ln(z +123)

(z-2) (z+3)(z-2) (z-2)

m Ln(z +3) m Ln(z+3)/(z- 2)d
T (z- 2)(z+1 a z+1)

o 1 _Ln(z+3)
- (z+3)(z-2) (z-2)

- %'(—3— 2Ln2) 27i




14.4 Derivatives of Analytic Functions

M Cauchy’s Inequality. Liouville’s and Morera’s Theorems

» Cauchy’s Inequality: | ., . _n! f(z) n o1
f (ZO)‘_Zﬂ[‘p(z—zo)m z| < 2~ M — 27 f(z)|<M
! M,y f(2)

M Theorem 2 Liouville’s Theorems

If an entire function is bounded in absolute value in the whole complex,
then this function must be a constant.

Proot) 1 £ (z) |< K for all z. ‘f(”)(zo)‘gnil:/l = f'(z0)|s$

Since f (2) is entire, this holds for every r. For large r

f'(z,)=0= f'(z,)=u,+iv, =0 =>u,=v, =0

f (z):u+iv:const for all z
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14.4 Derivatives of Analytic Functions

M Theorem 3 Morera’s Theorems (Converse () of Cauchy’s Integral
Theorem)

If f(z) is continuous in a simply connected domain D and if
[ﬁf z)dz =

for every closed path in D, then f (z) is analytic in D.

Z - ' - -
[ﬂc d =0 C:unit circle with its center =0

Z2

This was proved in Sec. 14.2. Even if the integral is zero,
because it is not continuous at z = z,,, it doesn’t follow
Morera’s theorem. Thus, it is not analytic in D.




