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Ch. 15 Power Series, Taylor Series
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15.1 Sequences (수열), Series (급수), Convergence Tests (수렴판정)

 Sequences: Obtained by assigning to each positive integer n a number zn

 Term: zn

 Real sequence (실수열): Sequence whose terms are real

 Convergence

 Convergent sequence (수렴수열): Sequence that has a limit c

 For every ε > 0, we can find N such that  

→ all terms zn with n > N lie in the open disk of radius ε and center c.

 Divergent sequence (발산수열): Sequence that does not converge.

   1 2 1 2,   ,      or   ,   ,       or briefly   nz z z z z

lim     or simply    n n
n

z c z c


 

Convergent complex sequence

| |   for all nz c n N  

zN
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15.1 Sequences, Series, Convergence Tests

 Convergence

 Convergent sequence: Sequence that has a limit c

 Ex. 1 Convergent and Divergent Sequences

Sequence                                     is convergent with limit 0.

Sequence                               is divergent.

Sequence {zn} with zn = (1 + i )n is divergent.

lim     or simply    n n
n

z c z c


 

1 1
,   ,   ,   ,   

2 3 4

ni i
i

n

   
     
  

    ,   1,   ,   1,  ni i i  
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 Ex. 2 Sequences of the Real and the Imaginary Parts

Sequence {zn} with converges to c = 1+2i.

has the limit 1 = Re c and             has the limit 2 = Im c.

15.1 Sequences, Series, Convergence Tests

 Theorem 1 Sequences of the Real and the Imaginary Parts

 A sequence z1, z2, z3, … of complex numbers zn = xn + iyn converges to c = a + ib

 if and only if the sequence of the real parts x1, x2, … converges to a

 and the sequence of the imaginary parts y1, y2, … converges to b.

2

1 4
1 2n n nz x iy i

n n
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1
1nx

n
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2ny

n
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15.1 Sequences, Series, Convergence Tests

 Series (급수):

 Nth partial sum: 

 Term of the series:

 Convergent series (수렴급수): Series whose sequence of partial sums converges

 Sum or Value: s

 Divergent series (발산급수): Series that is not convergent

 Remainder: 

1 2

1

m

m

z z z




  

1 2

1

lim     Then we write   =n m
n

m

s s s z z z





   

1 2n ns z z z   

1 2,   ,   z z

1 2 3n n n nR z z z     

 Theorem 2 Real and the Imaginary Parts

A series         with zm = xm + iym converges and has the sum s = u + iv

if and only if x1 + x2 + … converges and has the sum u and y1 + y2 + …

converges and has the sum v.

1

m

m

z
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15.1 Sequences, Series, Convergence Tests

Tests for Convergence and Divergence of Series

Proof) If a series z1 + z2 +… converges, with the sum s, 

 zm → 0 is necessary for convergence of series but not sufficient.

 Ex) The harmonic series                        , which satisfies this condition but 

diverges.

 The practical difficulty in proving convergence is that, in most cases, the sum 

of a series is unknown.

 Cauchy overcame this by showing that a series converges if and only if its 

partial sums eventually get close to each other.

 Theorem 3 Divergence

If a series z1 + z2 +… converges, then               . 

Hence if this does not hold, the series diverges.

lim 0m
m

z




1 1 1
1

2 3 4
   

1 1lim 0m m m m m m
m

z s s z s s s s 
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15.1 Sequences, Series, Convergence Tests

 Ex) The harmonic series                        diverges

Proof)

 Ex) The harmonic series                         converges 

1 1 1 1 1 1 1 1
1

2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1
1 1

2 2 4 4 6 6 8 8

S          

          

1 1 1
1

2 3 4
   

1 1 1 1 1 1 1 1 1
1

2 3 4 5 6 7 8 9 16
S           

diverge!

1 1 1
1

2 3 4
   

1 1 1
1

2 3 4
   

converge!

1 1 1
1

2 3 4
   

1 1 1 1 1 1 1
1

2 4 4 8 8 8 8

   
          

   

1 1 1
1

2 2 2
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15.1 Sequences, Series, Convergence Tests

 Theorem 4 Cauchy’s Convergence Principle for Series

A series z1 + z2 + … is convergent if and only if for every given ε > 0 (no 

matter how small) we can find an N (which depends on ε in general) such 

that

1 2         for every  and 1,  2,  n n n pz z z n N p       

Absolute Convergence (절대 수렴)

 Absolute convergent: Series of the absolute value of the terms                                                                                    

is convergent.

 Conditionally convergent (조건 수렴): z1+z2+… converges but |z1|+|z2|+… diverges.

1 2

1

m

m

z z z




  

Ex. 3 The series                          converges but                   diverges, then 

the series z1 + z2 + … is called conditionally convergent.

1 1 1
1

2 3 4
    1 2z z 
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15.1 Sequences, Series, Convergence Tests

 Theorem 5 Comparison Test (비교판정법)

If a series z1 + z2 + … is given and we can find a convergent series b1 + b2 + 

… with nonnegative real terms such that |z1| < b1, |z2| < b2,…,

then the given series converges, even absolutely.

Proof) by Cauchy’s principle,

 From this and |z1| < b1, |z2| < b2, …,

 |z1| + |z2| + … converges, so that z1 + z2 + … is absolutely convergent. 

1 2         for every  and 1,  2,  n n n pb b b n N p       

1 1| | | |  n n p n n pz z b b        
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15.1 Sequences, Series, Convergence Tests

 Theorem 6 Geometric Series (기하급수)

The geometric series                              . 

converges with the sum        if          and diverges if .

2

0

1m

m

q q q




   
1

1 q
1q  1q 

21 n

ns q q q    

2 1n

nqs q q q    

1(1 ) 1 n

n n ns qs q s q     

1 11 1

1 1 1

n n

n

q q
s

q q q

 
  

  

1

since  1, 0
1

nq
q n

q



   


1

1
ns

q
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15.1 Sequences, Series, Convergence Tests

 Theorem 7 Ratio Test (비판정법)

If a series z1 + z2 + … with                            has the property that for 

every n greater than some N,

(where q < 1 is fixed), this series converges absolutely.

If for every n > N , the series diverges.

 0 1,  2,  nz n 

 1 1        n

n

z
q n N

z

   

 1 1      n

n

z
n N

z

  

Proof) i)

ii)  

1
1 1 21  divergesn

n n

n

z
z z z z

z


     

2

1 2 1 3 2 1forn n N N N N Nz z q n N z z q z z q z q           

1

1

p

N p Nz z q 

 

2

1 2 3 1 1

1
(1 )

1
N N N N Nz z z z q q z

q
          


Absolutely convergence follows from Theorem 5 Comparison Test
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15.1 Sequences, Series, Convergence Tests

Proof) (a) 

 Theorem 8 Ratio Test

If a series z1 + z2 + … with                            is such that              , then:

a. If L < 1, the series converges absolutely.

b. If L > 1, the series diverges.

c. If L = 1, the series may converge or diverge, so that the test fails and 

permits no conclusion.

 0 1,  2,  nz n  1lim n

n
n

z
L

z






1 / , let 1 1n n nk z z L b   

1nk b 
1

say 1 1
2

nk q b     1 1   n

n

z
q n N

z

   1lim n

n
n

z
L

z






z1 + z2 + … converges 

Theorem 7 Ratio Test

Theorem 7 Ratio Test

(b)

1

2
say 1 1nk c  1nk c 1lim n

n
n

z
L

z






1 / , let 1 1n n nk z z L c   

 1 1      n

n

z
n N

z

  

⇒ the series converges 

⇒ the series diverge
z1 + z2 +…   diverges Theorem 7 Ratio Test

for n N

for n N
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15.1 Sequences, Series, Convergence Tests

Proof) (c) harmonic series 
1 1 1

1
2 3 4

   

1 1, , 1, 1
1

n n

n n

z zn
as n L

z n z

    


1 1 1
1

4 9 16
   

2

1 1

2
, , 1, 1

( 1)

n n

n n

z zn
as n L

z n z

    


2 21

1 1 1 1
1 1 2

4 9

n

n

dx
s

n x n
        

diverge!

converge!

another series

 Theorem 8 Ratio Test

If a series z1 + z2 + … with                            is such that              , then:

a. If L < 1, the series converges absolutely.

b. If L > 1, the series diverges.

c. If L = 1, the series may converge or diverge, so that the test fails and 

permits no conclusion.

 0 1,  2,  nz n  1lim n

n
n

z
L

z
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15.1 Sequences, Series, Convergence Tests

 Ex. 4 Ratio Test

Is the following series convergent or divergent?

Sol) The series is convergent, since 

 
   

2

0

100 75 1
1 100 75 100 75

! 2!

n

n

i
i i

n
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n
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n

n

iz
L
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 Theorem 8 Ratio Test

If a series z1 + z2 + … with                            is such that              , then:

a. If L < 1, the series converges absolutely.

b. If L > 1, the series diverges.

c. If L = 1, the series may converge or diverge, so that the test fails and 

permits no conclusion.

 0 1,  2,  nz n  1lim n

n
n

z
L

z
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15.1 Sequences, Series, Convergence Tests

 Theorem 9 Root Test (근판정법)

If a series z1 + z2 + … is such that for every n greater than some N

(where q < 1 is fixed), this series converges absolutely.

If for infinitely many n , the series diverges.

 1            n
nz q   n N  

1n
nz 

Proof) (a)  1   for all n

nz q   n N  

2

1 2 3

1
(1 )

1
z z z q q

q
      



Absolutely convergence follows from Theorem 5 Comparison Test

1n
nz (b)  1nz  z1 + z2 + … diverges.

1n
nz q    

This diverges from Theorem 3 Divergence.
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15.1 Sequences, Series, Convergence Tests

Caution! 

 Theorem 10 Root Test

If a series z1 + z2 + … is such that               , then:

a. The series converges absolutely if L < 1. 

b. The series diverges if L > 1.

c. If L = 1, the test fails; that is, no conclusion is possible.

lim n
n

n
z L




harmonic series
1 1 1

1
2 3 4

   

but diverge!1/ 1  nn
nz n    because q < 1 is not fixed.

lim lim 1/ 1  nn
n

n n
z n  

 
 

Ex) harmonic series 
1 1 1

1
2 3 4

   

the test fails.
lim 1/n

n
n
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15.2 Power Series

 Power Series (거듭제곱급수)

 Power series in powers of         

Coefficients: Complex (or real) constants a0, a1, …

Center: Complex (or real) constant z0

 A power series in powers of z: 

 Convergence Behavior of Power Series

 Ex. 1 Convergence in a Disk. Geometric Series

The geometric series                                    

converges absolutely if 

diverges if 

2

0 1 2

0

n

n

n

a z a a z a z




   

     
2

0 0 0 1 0 2 0

0

 : 
n

n

n

z z a z z a a z z a z z




       

2

0

1n

n

z z z




   

1z 

1z 
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15.2 Power Series

 Convergence of Power Series

 Power series play an important role in complex analysis.

 The sums are analytic functions (Theorem 5, Sec. 15.3) ⇒ The sum should be 

convergent.

 Every analytic function f (z) can be represented by power series at z0

(Theorem 1, Sec. 15.4) ⇒ The sum should converge to f (z0).

 Ex) Maclaurin series of ez

2 3

0

1
! 2! 3!

n
z

n

z z z
e z

n





     

 For specific z = z0, the left side and the right side have the same value. 

⇒ The right sum should converge for the specific value.

⇒ This doesn’t mean convergence of ez as z →∞.
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15.2 Power Series

 Ex. 2 Convergence for Every z

The power series (which is the Maclaurin series of ez)

is absolutely convergent for every z

By the ratio test, for any fixed z, 

 Ex. 3 Convergence Only at the Center (Useless Series)

The following series converges only at z = 0, but diverges for every z ≠ 0

2 3

0

1
! 2! 3!

n

n

z z z
z

n





    

 

1

1 !

!

0      as      
1

n

n

z
n

z
n

z
n

n




  



2 3

0

! 1 2 6n

n

n z z z z




    

  11 !
( 1)       as      ( fixed and 0)

!

n

n

n z
n z n z

n z
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15.2 Power Series

 Theorem 1 Convergence of a Power Series

a. Every power series converges at the center z0.

b. If a power series converges at a point             , it converges 

absolutely for every z closer to z0 than z1,that is, |z − z0| < |z1 − z0|.

c. If a power series diverges at a z = z2, it diverges for every z

farther away from z0 than z2.

1 0z z z 

     
2

0 0 1 0 2 0

0

n

n

n

a z z a a z z a z z
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15.2 Power Series

 Radius of Convergence (수렴 반지름) of a Power

 Circle of convergence (수렴원): The smallest circle with center z0 that includes 

all the points at which a given power series converges.

 Radius of convergence (수렴반경): Radius of the circle of convergence.

|z - z0| = R is the circle of convergence and its radius R the radius of convergence.

Convergence everywhere within that circle, that is, for all z for which |z - z0| = R

Diverges for all z for which |z - z0| > R.

 Notations R = ∞ and R = 0.

R = ∞: the series converges for all z.

R = 0: the series converges only at the center.

 Real power series: In which powers, coefficients, and center are real.

 Convergence interval (수렴구간): Interval |x-x0| < R of length 2R on the real line.

Circle of convergence



Seoul 
National
Univ.

22

15.2 Power Series

i) Let L* ≠ 0, thus L* > 0

The series converges if L* = L*|z − z0| < 1, |z − z0| < 1/L* and diverge if |z − z0| > 1/L*. 

⇒ 1/L* is radius of convergence. 

ii) If L* = 0, then L = 0 for every z. ⇒ convergence for all z by the ratio test.

iii) If                 , then                     ⇒ diverge for any z ≠ z0 and all sufficiently 

large n.

 Theorem 2 Radius of Convergence R

Suppose that the sequence                          , converges with limit 

L*. If L* = 0, then R = ∞; that is, the power series converges for all z. If 

L*  0 (hence L* > 0), then

If                     , then R = 0 (convergence only at the center z0)

 
1

1
lim             

*

n

n
n

a
R

L a


  Cauchy - Hadamard formula

1 / ,   1,  2,  n na a n 

1 /n na a 

Proof) The ratio of the terms in the ratio test is
1

1 0 1
0

0

( )
=

( )

n

n n

n

n n

a z z a
z z

a z z a



 



0= *L L z z1

0 0lim *n

n
n

a
L z z L z z

a




   

1 /n na a  1
0 1n

n

a
z z

a
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15.2 Power Series

Ex. 5 Radius of Convergence

Radius of convergence of the power series

The series converges in the open disk              of radius     and center 3i.
1

3
4

z i 

 

 
 2

0

2 !
3

!

n

n

n
z i

n







 

 

 

  

 

 

  
 

 

  

2

2

2 ! 2 2

!

22 2 !

1 !

1 !2 ! 1 1
lim lim lim

2 2 ! 2 2 2 1 4!

n

n

nn n n

n

nn n
R

n n nn
  



          
     

   

1

4

Sol)

 Theorem 2 Radius of Convergence R

Suppose that the sequence                          , converges with limit 

L*. If L* = 0, then R = ∞; that is, the power series converges for all z. If 

L*  0 (hence L* > 0), then

If                     , then R = 0 (convergence only at the center z0)

 
1

1
lim             

*

n

n
n

a
R

L a


  Cauchy - Hadamard formula

1 / ,   1,  2,  n na a n 

1 /n na a 
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15.2 Power Series

Ex. 6 Extension of Theorem 2

Find the radius of convergence of the power series.

The sequence of the ratios                                                   does not converge.

Thus, we can’t use Theorem 2 for this example.

,      :  the greatest limit point of the sequence 

, that is, the series converge for          . 

 Radius of Convergence R

1

1
lim  

*

n

n
n

a
R

L a


 

2 3 5

0

1 1 1 1 1
1 ( 1) 3 2 2

2 2 4 8 16

n n

n
n

z z z z z




     
              

     


Sol) 1 1 1

1 6 4 4
/ , 2(2 ), 1/ 8(2 )n na a   

1
, lim  n

n
n

R L a
L 

 

1
 = 1/ 2  =

2

n nn
na

 = 2 1/ 2 1 asn nn
na n  

1
, lim  n

n
n

R L a
L 

  For odd n, 

For even n, 
1

R
l

 l

1z 1R 
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15.2 Power Series

Ex) Find the center and the radius of convergence

2
0

(2 )!
( 2 )

4 ( !)

n

n
n

n
z i

n







Sol)

 

 

 

  

 

 

  
 

 

  

2

21

2 ! 2 21

4 !

22 2 !

4 1 !

4 1 !2 ! 4 1
lim lim lim 1

2 2 ! 2 2 2 14 !

n

n

n
n

n

n nn n n

n

nn n
R

n n nn




  



          
     

   

 Radius of Convergence R

1

1
lim  

*

n

n
n

a
R

L a


 
1

, lim  n
n

n
R L a
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15.3 Functions Given by Power Series

 Terminology and Notation

Given power series          has a nonzero radius of convergence R (thus R > 0)

→ Its sum is a function of z, say f (z)

→ f (z) is represented by the power series.

 Uniqueness of a Power Series Representation

A function f (z) cannot be represented by two different power series with the 

same center.

0

n

n

n

a z






   2

0 1 2

0

                       n

n

n

f z a z a a z a z z R




     



Seoul 
National
Univ.

27

15.3 Functions Given by Power Series

 Theorem 1 Continuity of the Sum of a Power Series

If a function f (z) can be represented by a power series with radius of 

convergence R > 0, then f (z) is continuous at z = 0.

1

0 0

1n n

n n

n n

a r a r S
r

 


 

  

1 1

0

1 1 1

( ) ( / )
nn n

n n n

n n n

f z a a z z a z z a r z S S S S  
  

 

  

         

   2

0 1 2 0

0

 converges for | |     0n

n

n

f z a z a a z a z z r R f a




        Proof)

We must show that   0
0

lim
z

f z a




when / S 

For a given 

There is a δ > 0 such that          implies                   

0 

  0f z a  z 

for  0<|z| r 

Q: If not continuous?

We can always find a δ > 0 such that which implies                    .     0f z a  | | /z S  
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15.3 Functions Given by Power Series

a0

a0+ε

a0−ε

δ−δ

a0

a0+ε

a0−ε

δ−δ

a0

a0+ε

a0−ε

ε/S−ε/S

We can find                   which satisfies     0f z a  /z S  

δ−δ δ−δ

ε/S-ε/S

We can find  a new              which satisfies                    .     0f z a / S 

Case I

Case II

/ S 

/ S 

If                      for   0f z a   z 

then  for any                    ,

is always satisfied.              0f z a  

z    

but  for any                    ,                     

is not always satisfied.  0f z a  

z     

For a given 0 
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15.3 Functions Given by Power Series

 Theorem 2 Identity Theorem for Power Series. Uniqueness

Let the power series a0 + a1z + a2z
2 + … and b0 + b1z + b2z

2 + … both be 

convergence for |z| < R, where R is positive, and let them both have the 

same sum for all these z.

→ Then the series are identical, that is, a0 = b0, a1 = b1, a2 = b2, …                              

Hence if a function f (z) can be represented by a power series with any 

center z0, this representation is unique.

Proof) We proceed by induction (귀납법). By assumption,

a0 + a1z + a2z
2 + … = b0 + b1z + b2z

2 + …

The sums of these two power series are continuous at z = 0 → a0 = b0.

Now assume that an = bn.  For n = 0, 1, …, m. Divide the result by zm+1

Letting z → 0, we concluded form this that am+1 = bm+1.

am+1 + am+2z + am+3z
2 + … = bm+1 + bm+2z + bm+3z

2 + …
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15.3 Functions Given by Power Series

 Operations on Power Series

 Termwise addition or subtraction

Termwise addition or subtraction of two power series with radii of convergence R1 and R2. 

→ A power series with radius of convergence at least equal to the smaller of R1 and R2.

 Termwise multiplication

Termwise multiplication of two power series

and

Cauchy product of the two series: 

 Termwise differentiation and integration

by termwise differentiation, that is, 

      2

0 1 1 0 0 0 0 1 1 0 0 2 1 1 2 0

0

n

n n n

n

a b a b a b z a b a b a b z a b a b a b z






         

  0 1

0

n

n

n

f z a z a a z




      0 1

0

n

n

n

g z b z b b z




   

1 2

1 2 3

1

2 3n

n

n

na z a a z a z
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15.3 Functions Given by Power Series

 Theorem 3 Termwise Differentiation of a Power Series

The derived series (미분급수) of a power series has the same radius of 

convergence as the original series.

1 1 1

lim lim lim lim
( 1) ( 1)

n n n

n n n n
n n n

n a a an

n a n a a   
  

 
 

Proof) 

1

0 1

n n

n n

n n

a z na z
 



 

 
 

 
 

1

1
lim

*

n

n
n

a
R

L a


 

Ex. 1 Application of Theorem 3

Radius of convergence of the power series

Sol)

2 3 4 5

2 2

( 1)
3 6 10 .

2 2!

n n

n n

n n n
z z z z z z

 

 

  
      

 
 

  2 3
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1n

n

f z z z z




       2

2

( 1) n

n

f z n n z






   

1

lim 1n

n
n

a
R

a


 
( 1)

lim 1
( 1)n

n n
R

n n


 



 
2

2 2

( 1)

22 2

n n

n n

nz n n
f z z z

 

 

 
    

 
 

( 1)
lim 1

( 1)n

n n
R

n n
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15.3 Functions Given by Power Series

 Theorem 4 Termwise Integration of Power Series

The power series 

obtained by integrating the series a0 + a1z + a2z
2 + … term by term has the 

same radius of convergence as the original series.

1 2 31 2
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15.3 Functions Given by Power Series

 Power Series Represent Analytic Functions

“거듭제곱급수는 해석함수다”

 Theorem 5 Analytic Functions. Their Derivatives

 A power series with a nonzero radius of convergence R represents an 

analytic function at every point interior to its circle of convergence.

 The derivatives of this function are obtained by differentiating the 

original series term by term.

 All the series thus obtained have the same radius of convergence as 

the original series.

 Hence, by the first statement, each of them (도함수) represents an 

analytic function.
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15.3 Functions Given by Power Series

 Ex) Find the radius of convergence in two ways: (a) directly by the Cauchy–

Hadamard formula in Sec. 15.2, and (b) from a series of simpler terms by using 

Theorem 3 or Theorem 4.
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15.3 Functions Given by Power Series

 Ex) Find the radius of convergence in two ways: (a) directly by the Cauchy–

Hadamard formula in Sec. 15.2, and (b) from a series of simpler terms by using 

Theorem 3 or Theorem 4.
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Integrate k times term by term

∴ Radius of convergence = 1
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15.4 Taylor and Maclaurin Series

Taylor series

Taylor series of a complex function f (z): 

Integrate counterclockwise around a simple closed path C that contains z0 in its 

interior.

f (z) is analytic in a domain containing C and every point inside C.

 Maclaurin series: Taylor series with center z0 = 0

 Taylor’s formula

Remainder: 
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 Theorem 1 Derivatives of an Analytic Function

If f (z) is analytic in a domain D, then it has derivatives of all orders in 

D, which are then also analytic functions in D. The values of these 

derivatives at a point z0 in D are given by the formulas

and in general

here C is any simply closed path in D that enclose z0 and whose full 

interior belongs to D; and we integrate counterclockwise around C.
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[Reference] 14.4 Derivatives of Analytic Functions
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15.4 Taylor and Maclaurin Series

 Theorem 1 Taylor’s Theorem

 Let f (z) be analytic in a domain D, and let z = z0 be any point in D.

 Then there exists precisely one Taylor series with center z0 that 

represents f (z).

 This representation is valid in the largest open disk with center z0 in 

which f (z) is analytic. The remainders Rn(z) of the power series can be 

represented in the form

 The coefficients satisfy the inequality

 where M is the maximum of |f (z)| on a circle | z − z0 | = r in D whose 

interior is also in D. 
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15.4 Taylor and Maclaurin Series

 Proof)  
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Cauchy’s Integral Formula
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15.4 Taylor and Maclaurin Series

 Proof-continued
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n
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15.4 Taylor and Maclaurin Series

 Accuracy of Approximation.

We can achieve any preassigned accuracy in approximating f(z) by a partial sum 

by choosing n large enough.

 Singularity, Radius of Convergence.

 Singular point: Point at which the function is not analytic

 On the circle of convergence there is at least one singular point (z = c)

 The radius of convergence R is usually equal to the distance from the center 

(z0) to the nearest singular point.

z c

0z

singular point

 Theorem 2 Relation to the Last Section

A power series with a nonzero radius of convergence is the Taylor series of its sum.
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15.4 Taylor and Maclaurin Series ( )

0 1

0

Derivatives of Analytic Functions
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A Maclaurin series is a Taylor series with center z0 = 0.

 Maclaurin series
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Hence the Maclaurin expansion of 1/(1-z) is the 

geometric series
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f (z) is singular at z = 1; this point lies on the circle of convergence.

 Important Special Taylor (Maclaurin) Series 

 Ex. 1 Geometric Series
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15.4 Taylor and Maclaurin Series ( )

0 1

0

Derivatives of Analytic Functions
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A Maclaurin series is a Taylor series with center z0 = 0.

 Maclaurin series

 Important Special Taylor (Maclaurin) Series 

 Ex. 2 Exponential Function
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15.4 Taylor and Maclaurin Series ( )

0 1

0

Derivatives of Analytic Functions
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Furthermore, by setting z = iy and separating the series into the real and 
imaginary parts,
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 Maclaurin series

A Maclaurin series is a Taylor series with center z0 = 0.
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15.4 Taylor and Maclaurin Series ( )

0 1

0

Derivatives of Analytic Functions
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Find the Maclaurin series of cos z and sin z.

 Maclaurin series

 Important Special Taylor (Maclaurin) Series 

 Ex. 3 Trigonometric and Hyperbolic Functions
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A Maclaurin series is a Taylor series with center z0 = 0.
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15.4 Taylor and Maclaurin Series ( )

0 1

0

Derivatives of Analytic Functions
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Find the Maclaurin series of cosh z and sinh z.
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 Maclaurin series

A Maclaurin series is a Taylor series with center z0 = 0.
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15.4 Taylor and Maclaurin Series ( )

0 1

0

Derivatives of Analytic Functions
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*Ration test, Radius of Convergence ) Kreyszig E. Advanced Engineering Mathematics, 9th edition, Wiley, 2006, p669

 Maclaurin series

 Important Special Taylor (Maclaurin) Series 

 Ex. 4 Logarithm

A Maclaurin series is a Taylor series with center z0 = 0.
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15.4 Taylor and Maclaurin Series ( )

0 1

0

Derivatives of Analytic Functions
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A Maclaurin series is a Taylor series with center z0 = 0.
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15.4 Taylor and Maclaurin Series ( )

0 1

0

Derivatives of Analytic Functions
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 Maclaurin series
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A Maclaurin series is a Taylor series with center z0 = 0.
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15.4 Taylor and Maclaurin Series

 Practical Methods

 Ex. 5 Substitution

Find the Maclaurin series of 

 Ex. 6 Integration

Find the Maclaurin series of f (z) = arctan z

 Integrate term by term
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15.4 Taylor and Maclaurin Series

 Ex. 7 Development by Using the Geometric Series

Develop           in powers of z−z0, where
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15.4 Taylor and Maclaurin Series

Binomial Series (이항급수)

 Ex. 8 Binomial Series, Reduction by Partial Fractions

Find the Taylor series of the following with center z0 = 1 
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15.5 Uniform Convergence: SKIP

 Definition Uniform Convergence

A series with sum s(z) is called uniformly convergent in a region G if for 

every ε > 0 we can find an N = N(ε), not depending on z, such that 

Uniformity of convergence is thus a property that always refers to an 

infinite set in the z-plane, that is, a set consisting of infinitely many 

points

 Theorem 1 Uniform Convergence of Power Series

A power series

with a nonzero radius of convergence R is uniformly convergent in every 

circular disk                  of radius r < R.
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15.5 Uniform Convergence

 Properties of Uniformly Convergent Series

 Importance

1. If a series of continuous terms is uniformly convergent, its sum is also continuous.

2. Under the same assumption, termwise integration is permissible.

 Question

1. How can a converging series of continuous terms manage to have a discontinuous 

sum?

2. How can something go wrong in termwise integration?

3. What is the relation between absolute convergence and uniform convergence?

 Theorem 2 Continuity of the Sum

Let the series

be uniformly convergent in a region G. Let F(z) be its sum. Then if each 

term fm(z) is continuous at a point z1 in G, the function F(z) is continuous 

at z1
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15.5 Uniform Convergence

 Ex. 2 Series of Continuous Terms with a Discontinuous Sum

Consider the series

nth partial sum: 

All the terms are continuous and the series converges even absolutely 

Sum is discontinuous at x = 0.

The convergence cannot be uniform in an interval containing x = 0.
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15.5 Uniform Convergence

 Termwise Integration

 Ex. 3 Series for which Termwise Integration is Not Permissible

Let                           and consider the series 

in the interval             . 

(i) nth partial sum: 

The series has the sum 

(ii) By integrating term by term and using 
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15.5 Uniform Convergence

 Theorem 3 Termwise Integration

Let 

be a uniformly convergent series of continuous functions in a region G. Let C be 

any path in G.

Then the series

is convergent and has the sum
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f z dz f z dz f z dz




    

 
C

F z dz

 Theorem 4 Termwise Differentiation

Let the series be convergent in a region G and let F(z) be its 

sum. Suppose that the series converges uniformly in G

and its terms are continuous in G. Then

     0 1 2f z f z f z  

     0 1 2' ' 'f z f z f z  

       0 1 2                for all  in F z f z f z f z z G      
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15.5 Uniform Convergence

 Test for Uniform Convergence

 Theorem 5 Weierstrass M-Test for Uniform Convergence

Consider a series of the form                            in a region G of the z-

plane. Suppose that one can find a convergent series of constant terms

M0+M1+M2+…

such that                 for all z in G and every m = 0, 1, …. Then the series 

is uniformly convergent in G.

     0 1

0

m

m

f z f z f z




  

 m mf z M



Seoul 
National
Univ.

59

15.5 Uniform Convergence

Ex. 4 Weierstrass M-Test

Does the following series converge uniformly in the disk

Sol)

By the Weierstrass M-test and the convergence of           ⇒ Uniform convergence2
1

1

m m







1z 2
1

1

cosh

m

m

z

m m z










2 2 2

11 2

cosh

mm zz

m m z m m
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15.5 Uniform Convergence

No Relation Between Absolute and Uniform Convergence

 Ex. 5 No Relation Between Absolute and Uniform Convergence

The series                                        converges absolutely but not uniformly.

The series                                     converge uniformly on the whole real line but not 

absolutely.

A series of alternating terms whose absolute values form a monotone decreasing sequence 

with limit zero.

By Leibniz test of calculus the remainder Rn does no exceed its first term in absolute value.

Given e > 0, for all x we have 

N(e) does not depend on x uniform convergence

For any fixed x we have 

where k is a suitable constant, and         diverges          The convergence is not absolute.

   

2 2 2
2

2 32 2 21 1 1

x x x
x

x x x
   

  

 
1

2 2 2 2
1

1 1 1 1

1 2 3

m

m x m x x x







    

   


 
1

2 2

1 1
m

k

x m x m m
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1 1 1
          if 

1
nR x n N ε

x n n ε
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