Ch. 15 Power Series, Taylor Series

서울대학교 조선해양공학과 서유택 2017.12

> Seoul National Univ.

※ 본 강의 자료는 이규열, 장범선, 노명일 교수님께서 만드신 자료를 바탕으로 일부 편집한 것입니다.

\blacksquare Sequences: Obtained by assigning to each positive integer n a number z_n

- Term: $z_n \quad z_1, \quad z_2, \quad \cdots \quad \text{or} \quad \{z_1, \quad z_2, \quad \cdots \} \quad \text{or briefly} \quad \{z_n\}$
- Real sequence (실수열): Sequence whose terms are real

⊘ Convergence

■ Convergent sequence (수렴수열): Sequence that has a limit c

 $\lim_{n \to \infty} z_n = c \quad \text{or simply} \quad z_n \to c$

• For every $\varepsilon > 0$, we can find *N* such that

 $|z_n - c| < \varepsilon$ for all n > N

- \rightarrow all terms z_n with n > N lie in the open disk of radius ε and center c.
- Divergent sequence (발산수열): Sequence that does not converge.

⊘ Convergence

Convergent sequence: Sequence that has a limit c

 $\lim_{n \to \infty} z_n = c \quad \text{or simply} \quad z_n \to c$

☑ Ex. 1 Convergent and Divergent Sequences

Sequence $\left\{\frac{i^n}{n}\right\} = \left\{i, -\frac{1}{2}, -\frac{i}{3}, \frac{1}{4}, \cdots\right\}$ is convergent with limit 0.

Sequence $\{i^n\} = \{i, -1, -i, 1, \dots\}$ is divergent.

Sequence $\{z_n\}$ with $z_n = (1 + i)^n$ is divergent.

☑ Theorem 1 Sequences of the Real and the Imaginary Parts

- A sequence $z_1, z_2, z_3, ...$ of complex numbers $z_n = x_n + iy_n$ converges to c = a + ib
- if and only if the sequence of the real parts *x*₁, *x*₂, ... converges to *a*
- and the sequence of the imaginary parts y₁, y₂, ... converges to b.

☑ Ex. 2 Sequences of the Real and the Imaginary Parts

Sequence
$$\{z_n\}$$
 with $z_n = x_n + iy_n = 1 - \frac{1}{n^2} + i\left(2 + \frac{4}{n}\right)$ converges to $c = 1 + 2i$.
 $x_n = 1 - \frac{1}{n^2}$ has the limit $1 = \operatorname{Re} c$ and $y_n = 2 + \frac{4}{n}$ has the limit $2 = \operatorname{Im} c$.

☑ Series (급수):
$$\sum_{m=1}^{\infty} z_m = z_1 + z_2 + \cdots$$

- *Nth* partial sum: $s_n = z_1 + z_2 + \dots + z_n$
- Term of the series: z_1, z_2, \cdots
- Convergent series (수렴급수): Series whose sequence of partial sums converges

$$\lim_{n \to \infty} s_n = s \quad \text{Then we write} \quad s = \sum_{m=1}^{\infty} z_m = z_1 + z_2 + \cdots$$

- Sum or Value: *s*
- Divergent series (발산급수): Series that is not convergent
- Remainder: $R_n = z_{n+1} + z_{n+2} + z_{n+3} + \cdots$

I Theorem 2 Real and the Imaginary Parts A series $\sum_{m=1}^{\infty} Z_m$ with $z_m = x_m + iy_m$ converges and has the sum s = u + ivif and only if $x_1 + x_2 + ...$ converges and has the sum u and $y_1 + y_2 + ...$ converges and has the sum v.

☑ Tests for Convergence and Divergence of Series

☑ Theorem 3 Divergence

If a series $z_1 + z_2 + ...$ converges, then $\lim_{m \to \infty} z_m = 0$. Hence if this does not hold, the series diverges.

Proof) If a series $z_1 + z_2 + \dots$ converges, with the sum s,

$$z_m = s_m - s_{m-1} \implies \lim_{m \to \infty} z_m = s_m - s_{m-1} = s - s = 0$$

- $z_m \rightarrow 0$ is necessary for convergence of series but not sufficient.
- **Ex)** The harmonic series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$, which satisfies this condition but diverges.
- The practical difficulty in proving convergence is that, in most cases, the sum of a series is unknown.
- Cauchy overcame this by showing that a series converges if and only if its partial sums eventually get close to each other.

7

☑ Theorem 4 Cauchy's Convergence Principle for Series

A series $z_1 + z_2 + ...$ is convergent if and only if for every given $\varepsilon > 0$ (no matter how small) we can find an N (which depends on ε in general) such that

 $\left|z_{n+1}+z_{n+2}+\cdots+z_{n+p}\right| < \varepsilon$ for every n > N and $p = 1, 2, \cdots$

☑ Absolute Convergence (절대 수렴)

- Absolute convergent: Series of the absolute value of the terms $\sum_{m=1}^{\infty} |z_m| = |z_1| + |z_2| + \cdots$ is convergent.
- Conditionally convergent (조건 수렴): $z_1+z_2+...$ converges but $|z_1|+|z_2|+...$ diverges.

Ex. 3 The series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$ converges but $|z_1| + |z_2| + \cdots$ diverges, then

the series $z_1 + z_2 + \dots$ is called conditionally convergent.

☑ Theorem 5 Comparison Test (비교 판정법)

If a series $z_1 + z_2 + \dots$ is given and we can find a convergent series $b_1 + b_2 + \dots$

... with nonnegative real terms such that $|z_1| < b_1, |z_2| < b_2, ...,$

then the given series converges, even absolutely.

Proof) by Cauchy's principle,

$$b_{n+1} + b_{n+2} + \dots + b_{n+p} < \varepsilon$$
 for every $n > N$ and $p = 1, 2, \dots$

 $|z_{n+1}| \dots + |z_{n+p}| \le b_{n+1} + \dots + b_{n+p} < \varepsilon$

• $|z_1| + |z_2| + \dots$ converges, so that $z_1 + z_2 + \dots$ is absolutely convergent.

✓ Theorem 6 Geometric Series (기하 급수) The geometric series $\sum_{m=0}^{\infty} q^m = 1 + q + q^2 + \cdots$. converges with the sum $\frac{1}{1-q}$ if |q| < 1 and diverges if $|q| \ge 1$.

Proof)
$$s_n = 1 + q + q^2 + \dots + q^n$$

 $qs_n = q + q^2 + \dots + q^{n+1}$
 $s_n - qs_n = (1 - q)s_n = 1 - q^{n+1}$
 $s_n = \frac{1 - q^{n+1}}{1 - q} = \frac{1}{1 - q} - \frac{q^{n+1}}{1 - q}$ since $|q| < 1, n \to \infty \Rightarrow \frac{q^{n+1}}{1 - q} \to 0$
 $\therefore s_n \to \frac{1}{1 - q}$

10

☑ Theorem 7 Ratio Test (비 판정법)

Т

1

If a series $z_1 + z_2 + ...$ with $z_n \neq 0$ (n = 1, 2, ...) has the property that for every *n* greater than some *N*,

$$\left|\frac{z_{n+1}}{z_n}\right| \le q < 1 \qquad (n > N)$$

(where q < 1 is fixed), this series converges absolutely.

If for every
$$n > N$$
 $\left| \frac{z_{n+1}}{z_n} \right| \ge 1$ $(n > N)$, the series diverges.

Proof) i)
$$\left| \frac{z_{n+1}}{z_n} \right| \ge 1 \implies |z_{n+1}| \ge |z_n| \implies z_1 + z_2 + \cdots$$
 diverges
ii) $|z_{n+1}| \le |z_n|q$ for $n > N \implies |z_{N+2}| \le |z_{N+1}|q \implies |z_{N+3}| \le |z_{N+2}|q \le |z_{N+1}|q^2$
 $|z_{N+p}| \le |z_{N+1}|q^{p-1}$
 $|z_{N+1}| + |z_{N+2}| + |z_{N+3}| \cdots \le |z_{N+1}|(1+q+q^2+\cdots) \le |z_{N+1}|\frac{1}{1-q}$
Absolutely convergence follows from Theorem 5 Comparison Test

☑ Theorem 8 Ratio Test

If a series $z_1 + z_2 + \dots$ with $z_n \neq 0$ $(n = 1, 2, \dots)$ is such that $\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = L$, then:

- a. If L < 1, the series converges absolutely.
- b. If L > 1, the series diverges.

c. If L = 1, the series may converge or diverge, so that the test fails and permits no conclusion.

Proof) (a)
$$k_n = |z_{n+1} / z_n|$$
, let $L = 1 - b < 1$

$$\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = L \implies k_n \to 1 - b \implies \text{say } k_n \le q = 1 - \frac{1}{2}b < 1$$
for $n > N$

$$for n > N \implies \text{the series converges}$$
Theorem 7 Ratio Test $\implies z_1 + z_2 + \dots$ converges
$$\left| \frac{z_{n+1}}{z_n} \right| \le q < 1 \quad (n > N)$$

$$\Rightarrow \text{ the series converges}$$
(b) $k_n = |z_{n+1} / z_n|$, let $L = 1 + c > 1$

$$\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = L \implies k_n \to 1 + c \implies \text{say } k_n \ge 1 + \frac{1}{2}c > 1 \quad \text{for } n > N$$

$$\Rightarrow \text{ the series diverge}$$
Theorem 7 Ratio Test $\implies z_1 + z_2 + \dots$ diverges
$$\Rightarrow \text{ the series diverge}$$

☑ Theorem 8 Ratio Test

If a series $z_1 + z_2 + \dots$ with $z_n \neq 0$ $(n = 1, 2, \dots)$ is such that $\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = L$, then:

- a. If L < 1, the series converges absolutely.
- b. If L > 1, the series diverges.
- c. If L = 1, the series may converge or diverge, so that the test fails and permits no conclusion.

Proof) (c) harmonic series
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

 $\left| \frac{z_{n+1}}{z_n} \right| = \frac{n}{n+1}, as n \to \infty, \left| \frac{z_{n+1}}{z_n} \right| \to 1, L = 1$ diverge!
another series $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots$ $\left| \frac{z_{n+1}}{z_n} \right| = \frac{n^2}{(n+1)^2}, as n \to \infty, \left| \frac{z_{n+1}}{z_n} \right| \to 1, L = 1$
 $s_n = 1 + \frac{1}{4} + \frac{1}{9} + \cdots + \frac{1}{n^2} \le 1 + \int_1^n \frac{dx}{x^2} = 2 - \frac{1}{n}$
converge!

13

☑ Theorem 8 Ratio Test

If a series $z_1 + z_2 + \dots$ with $z_n \neq 0$ $(n = 1, 2, \dots)$ is such that $\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = L$, then:

- a. If L < 1, the series converges absolutely.
- b. If L > 1, the series diverges.
- c. If L = 1, the series may converge or diverge, so that the test fails and permits no conclusion.

☑ Ex. 4 Ratio Test

Is the following series convergent or divergent?

$$\sum_{n=0}^{\infty} \frac{\left(100+75i\right)^n}{n!} = 1 + \left(100+75i\right) + \frac{1}{2!} \left(100+75i\right)^2 + \cdots$$

Sol) The series is convergent, since

$$\left|\frac{z_{n+1}}{z_n}\right| = \left|\frac{\frac{(100+75i)^{n+1}}{(n+1)!}}{\frac{(100+75i)^n}{n!}}\right| = \frac{|100+75i|}{n+1} = \frac{125}{n+1} \to 0 = L$$

Image: Theorem 9 Root Test (근 판정법)If a series $z_1 + z_2 + \dots$ is such that for every n greater than some N $\sqrt[n]{|z_n||} \le q < 1$ (n > N)(where q < 1 is fixed), this series converges absolutely.If for infinitely many n $\sqrt[n]{|z_n||} \ge 1$, the series diverges.

Proof) (a)
$$\sqrt[n]{|z_n|} \le q < 1$$
 \Longrightarrow $|z_n| \le q^n < 1$ for all $n > N$
 $|z_1| + |z_2| + |z_3| \cdots \le (1 + q + q^2 + \cdots) \le \frac{1}{1 - q}$ If a series z ... with nor then the given the series $z = 1$...

☑ Theorem 5 Comparison Test (비교 판정법)

If a series $z_1 + z_2 + \dots$ is given and we can find a convergent series $b_1 + b_2 + \dots$

... with nonnegative real terms such that $|z_1| < b_1, |z_2| < b_2, ...,$

then the given series converges, even absolutely.

Absolutely convergence follows from Theorem 5 Comparison Test

(b)
$$\sqrt[n]{|z_n|} \ge 1 \implies |z_n| \ge 1 \implies z_1 + z_2 + \dots$$
 diverges.

This diverges from Theorem 3 Divergence.

☑ Theorem 3 Divergence

If a series $z_1 + z_2 + ...$ converges, then $\lim_{m \to \infty} z_m = 0$. Hence if this does not hold, the series diverges.

Seoul National

☑ Power Series (거듭제곱급수)

• Power series in powers of $z - z_0$: $\sum_{n=0}^{\infty} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \cdots$

Coefficients: Complex (or real) constants $a_0, a_1, ...$

Center: Complex (or real) constant z_0

• A power series in powers of z: $\sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z + a_2 z^2 + \cdots$

Convergence Behavior of Power Series

☑ Ex. 1 Convergence in a Disk. Geometric Series

The geometric series $\sum_{n=0}^{\infty} z_n = 1 + z + z^2 + \cdots$ converges absolutely if |z| < 1

diverges if $|z| \ge 1$

✓ Theorem 6 Geometric Series (기하급수)
The geometric series
$$\sum_{m=0}^{\infty} q^m = 1 + q + q^2 + \cdots$$
.
converges with the sum $\frac{1}{1-q}$ if $|q| < 1$ and diverges if $|q| \ge 1$.

15.2 Power Series

☑ Convergence of Power Series

- Power series play an important role in complex analysis.
- The sums are analytic functions (Theorem 5, Sec. 15.3) ⇒ The sum should be convergent.
- Every analytic function f(z) can be represented by power series at z_0 (Theorem 1, Sec. 15.4) \Rightarrow The sum should converge to $f(z_0)$.
- Ex) Maclaurin series of e^z

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \dots$$

• For specific $z = z_0$, the left side and the right side have the same value.

 \Rightarrow The right sum should converge for the specific value.

 \Rightarrow This doesn't mean convergence of e^z as $z \rightarrow \infty$.

☑ Ex. 2 Convergence for Every z

The power series (which is the Maclaurin series of e^z) $\sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$

is absolutely convergent for every z

By the ratio test, for any fixed *z*,

$$\left|\frac{\frac{z^{n+1}}{(n+1)!}}{\frac{z^n}{n!}}\right| = \frac{|z|}{n+1} \to 0 \quad \text{as} \quad n \to \infty$$

☑ Ex. 3 Convergence Only at the Center (Useless Series)

The following series converges only at z = 0, but diverges for every $z \neq 0$

$$\sum_{n=0}^{\infty} n! z^n = 1 + z + 2z^2 + 6z^3 + \cdots$$

$$\frac{\left|\binom{(n+1)!z^{n+1}}{n!z^n}\right| = (n+1)|z| \to \infty \quad \text{as} \quad n \to \infty \quad (z \text{ fixed and } \neq 0)$$

15.2 Power Series

- a. Every power series converges at the center z_0 .
- b. If a power series converges at a point $z = z_1 \neq z_0$, it converges absolutely for every z closer to z_0 than z_1 , that is, $|z - z_0| < |z_1 - z_0|$.
- c. If a power series diverges at a $z = z_2$, it diverges for every z farther away from z_0 than z_2 .

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n = a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + \cdots$$

☑ Radius of Convergence (수렴 반지름) of a Power

- Circle of convergence (수렴원): The smallest circle with center z₀ that includes all the points at which a given power series converges.
- Radius of convergence (수렴반경): Radius of the circle of convergence.

 $|z - z_0| = R$ is the circle of convergence and its radius R the radius of convergence.

 \iff Convergence everywhere within that circle, that is, for all z for which $|z - z_0| = R$

Diverges for all z for which $|z - z_0| > R$.

• Notations $R = \infty$ and R = 0.

 $R = \infty$: the series converges for all z.

R = 0: the series converges only at the center.

- Real power series: In which powers, coefficients, and center are real.
- Convergence interval (수렴구간): Interval $|x-x_0| < R$ of length 2R on the real line.

15.2 Power Series

☑ Theorem 2 Radius of Convergence R

Suppose that the sequence $|a_{n+1} / a_n|$, $n = 1, 2, \cdots$, converges with limit L^* . If $L^* = 0$, then $R = \infty$; that is, the power series converges for all z. If $L^* \neq 0$ (hence $L^* > 0$), then $R = \frac{1}{L^*} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$ (Cauchy - Hadamard formula) If $|a_{n+1} / a_n| \to \infty$, then R = 0 (convergence only at the center z_0)

Proof) The ratio of the terms in the ratio test is

$$\left|\frac{a_{n+1}(z-z_0)^{n+1}}{a_n(z-z_0)^n}\right| = \left|\frac{a_{n+1}}{a_n}\right| |z-z_0| \qquad L = \lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| |z-z_0| = L^* |z-z_0| \qquad L = L^* |z-z_0|$$

i) Let $L^* \neq 0$, thus $L^* > 0$

The series converges if $L^* = L^*|z - z_0| < 1$, $|z - z_0| < 1/L^*$ and diverge if $|z - z_0| > 1/L^*$. $\Rightarrow 1/L^*$ is radius of convergence.

ii) If $L^* = 0$, then L = 0 for every $z_{\cdot} \Rightarrow$ convergence for all z by the ratio test. iii) If $|a_{n+1}/a_n| \rightarrow \infty$, then $\left|\frac{a_{n+1}}{a_n}\right||_{z-z_0|>1} \Rightarrow$ diverge for any $z \neq z_0$ and all sufficiently large n.

15.2 Power Series

☑ Theorem 2 Radius of Convergence R

Suppose that the sequence $|a_{n+1} / a_n|$, $n = 1, 2, \cdots$, converges with limit L^* . If $L^* = 0$, then $R = \infty$; that is, the power series converges for all z. If $L^* \neq 0$ (hence $L^* > 0$), then $R = \frac{1}{L^*} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$ (Cauchy - Hadamard formula) If $|a_{n+1} / a_n| \to \infty$, then R = 0 (convergence only at the center z_0)

☑ Ex. 5 Radius of Convergence

Radius of convergence of the power series

$$\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z-3i)^n$$

Sol)
$$R = \lim_{n \to \infty} \left[\frac{\frac{(2n)!}{(n!)^2}}{\frac{(2n+2)!}{((n+1)!)^2}} \right] = \lim_{n \to \infty} \left[\frac{(2n)!}{(2n+2)!} \frac{((n+1)!)^2}{(n!)^2} \right] = \lim_{n \to \infty} \frac{(n+1)^2}{(2n+2)(2n+1)} = \frac{1}{4}$$

The series converges in the open disk $|z-3i| < \frac{1}{4}$ of radius $\frac{1}{4}$ and center 3*i*.

☑ Radius of Convergence R

$$R = \frac{1}{L^*} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \qquad \qquad R = \frac{1}{\tilde{L}}, \quad \tilde{L} = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

☑ Ex. 6 Extension of Theorem 2

Find the radius of convergence of the power series.

$$\sum_{n=0}^{\infty} \left[1 + (-1)^n + \frac{1}{2^n} \right] z^n = 3 + \frac{1}{2} z + \left(2 + \frac{1}{4} \right) z^2 + \frac{1}{8} z^3 + \left(2 + \frac{1}{16} \right) z^5 + \cdots$$

Sol) The sequence of the ratios $|a_{n+1}/a_n| = \frac{1}{6}$, $2(2 + \frac{1}{4})$, $1/8(2 + \frac{1}{4})$ does not converge. Thus, we can't use Theorem 2 for this example.

$$R = \frac{1}{\tilde{L}}, \quad \tilde{L} = \lim_{n \to \infty} \sqrt[n]{|a_n|} \quad \text{For odd } n, \quad \sqrt[n]{|a_n|} = \sqrt[n]{1/2^n} = \frac{1}{2}$$

For even $n, \quad \sqrt[n]{|a_n|} = \sqrt[n]{2+1/2^n} \to 1 \quad \text{as } n \to \infty$
$$R = \frac{1}{\tilde{l}}, \quad \tilde{l}: \text{ the greatest limit point of the sequence}$$

R=1 , that is, the series converge for |z|<1.

15.2 Power Series

Redius of Convergence R $R = \frac{1}{L^*} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \qquad \qquad R = \frac{1}{\tilde{L}}, \quad \tilde{L} = \lim_{n \to \infty} \sqrt[n]{|a_n|}$

Z Ex) Find the center and the radius of convergence

$$\sum_{n=0}^{\infty} \frac{(2n)!}{4^n (n!)^2} (z-2i)^n$$

Sol)

$$R = \lim_{n \to \infty} \left[\frac{\frac{(2n)!}{4^{n}(n!)^{2}}}{\frac{(2n+2)!}{4^{n+1}((n+1)!)^{2}}} \right] = \lim_{n \to \infty} \left[\frac{(2n)!}{(2n+2)!} \frac{4^{n+1}((n+1)!)^{2}}{4^{n}(n!)^{2}} \right] = \lim_{n \to \infty} \frac{4(n+1)^{2}}{(2n+2)(2n+1)} = 1$$

☑ Terminology and Notation

Given power series $\sum_{n=0}^{\infty} a_n z^n$ has a nonzero radius of convergence *R* (thus R > 0) \rightarrow Its sum is a function of *z*, say *f*(*z*)

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z + a_2 z^2 + \dots \qquad (|z| < R)$$

 $\rightarrow f(z)$ is represented by the power series.

☑ Uniqueness of a Power Series Representation

A function f(z) cannot be represented by two different power series with the same center.

☑ Theorem 1 Continuity of the Sum of a Power Series

If a function f(z) can be represented by a power series with radius of convergence R > 0, then f(z) is continuous at z = 0.

Proof)
$$f(z) = \sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z + a_2 z^2 + \cdots$$
 converges for $|z| \le r < R \implies f(0) = a_0$
We must show that $\lim_{z \to 0} f(z) = a_0$
 \Longrightarrow For a given $\varepsilon > 0$
Q: If not continuous?

There is a $\delta > 0$ such that $|z| < \delta$ implies $|f(z) - a_0| < \varepsilon$

$$\sum_{n=0}^{\infty} |a_n| r^{n-1} = \frac{1}{r} \sum_{n=0}^{\infty} |a_n| r^n \equiv S$$
 when $\delta < \varepsilon / S$

for $0 < |z| \le r$ We can always find a $\delta > 0$ such that $|z| < \delta < \varepsilon / S$ which implies $|f(z) - a_0| < \varepsilon$.

$$\left|f(z) - a_{0}\right| = \left|\sum_{n=1}^{\infty} a_{n} z^{n}\right| \le \left|z\right| \sum_{n=1}^{\infty} \left|a_{n}\right| \left|z\right|^{n-1} \le \left|z\right| \sum_{n=1}^{\infty} \left|a_{n}\right| r^{n-1} = \left|z\right| S < \delta S < (\varepsilon / S)S = \varepsilon$$

28

☑ Theorem 2 Identity Theorem for Power Series. Uniqueness

Let the power series $a_0 + a_1z + a_2z^2 + ...$ and $b_0 + b_1z + b_2z^2 + ...$ both be convergence for |z| < R, where R is positive, and let them both have the same sum for all these z.

 \rightarrow Then the series are identical, that is, $a_0 = b_0$, $a_1 = b_1$, $a_2 = b_2$, ...

Hence if a function f(z) can be represented by a power series with any center z_0 , this representation is unique.

Proof) We proceed by induction (귀납법). By assumption,

$$a_0 + a_1 z + a_2 z^2 + \ldots = b_0 + b_1 z + b_2 z^2 + \ldots$$

The sums of these two power series are continuous at $z = 0 \rightarrow a_0 = b_0$.

Now assume that $a_n = b_n$. For n = 0, 1, ..., m. Divide the result by z^{m+1}

$$a_{m+1} + a_{m+2}z + a_{m+3}z^2 + \dots = b_{m+1} + b_{m+2}z + b_{m+3}z^2 + \dots$$

Letting $z \rightarrow 0$, we concluded form this that $a_{m+1} = b_{m+1}$.

☑ Operations on Power Series

Termwise addition or subtraction

Termwise addition or subtraction of two power series with radii of convergence R_1 and R_2 .

- \rightarrow A power series with radius of convergence at least equal to the smaller of R_1 and R_2 .
- Termwise multiplication

Termwise multiplication of two power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z + \dots$$
 and $g(z) = \sum_{n=0}^{\infty} b_n z^n = b_0 + b_1 z + \dots$

Cauchy product of the two series:

$$\sum_{n=0}^{\infty} (a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0) z^n = a_0 b_0 + (a_0 b_1 + a_1 b_0) z + (a_0 b_2 + a_1 b_1 + a_2 b_0) z^2 + \dots$$

 Termwise differentiation and integration by termwise differentiation, that is,

$$\sum_{n=1}^{\infty} na_n z^{n-1} = a_1 + 2a_2 z + 3a_3 z^2 + \cdots$$

Theorem 3 Termwise Differentiation of a Power Series $\mathbf{\nabla}$

The derived series (미분급수) of a power series has the same radius of convergence as the original series.

Proof)
$$\lim_{n \to \infty} \frac{n|a_n|}{(n+1)|a_{n+1}|} = \lim_{n \to \infty} \frac{n}{(n+1)} \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

$$\mathbb{M} \text{ Ex. 1 Application of Theorem 3}$$
Radius of convergence of the power series
$$\sum_{n=2}^{\infty} \binom{n}{2} z^n = \sum_{n=2}^{\infty} \frac{n(n-1)}{2!} z^n = z^2 + 3z^3 + 6z^4 + 10z^5 + \cdots.$$

$$\int_{n=2}^{\infty} \frac{n}{2} \left| \frac{a_n}{2!} \right| = 1$$

$$\int_{n=2}^{\infty} \frac{n!}{2!} z^n = 1 + z^2 + z^3 + \cdots$$

$$\int_{n=2}^{\infty} \frac{n!}{n!} |z| = 1$$

$$R = \lim_{n \to \infty} \left| \frac{(n-1)n}{n!} \right| = 1$$

$$\frac{z^2}{2} f''(z) = \frac{n(n-1)}{2} \sum_{n=2}^{\infty} z^n = \sum_{n=2}^{\infty} \binom{n}{2} z^n$$

$$\sum_{n=2}^{\infty} \sum_{n=2}^{\infty} z^n = \sum_{n=2}^{\infty} \binom{n}{2} z^n$$

$$\sum_{n=2}^{\infty} \sum_{n=2}^{\infty} \frac{n(n-1)}{2!} \sum_{n=2}^{\infty} z^n = \sum_{n=2}^{\infty} \binom{n}{2} z^n$$

$$\sum_{n=2}^{\infty} \sum_{n=2}^{\infty} \frac{n(n-1)n}{n!} = 1$$

$$R = \lim_{n \to \infty} \left| \frac{(n-1)n}{n!} \right| = 1$$

 $=\sum_{n=1}^{\infty}na_{n}z^{n-1}$

k!

32

☑ Power Series Represent Analytic Functions "거듭제곱급수는 해석함수다"

☑ Theorem 5 Analytic Functions. Their Derivatives

- A power series with a nonzero radius of convergence *R* represents an analytic function at every point interior to its circle of convergence.
- The derivatives of this function are obtained by differentiating the original series term by term.
- All the series thus obtained have the same radius of convergence as the original series.
- Hence, by the first statement, each of them (도함수) represents an analytic function.

Ex) Find the radius of convergence in two ways: (a) directly by the Cauchy-Hadamard formula in Sec. 15.2, and (b) from a series of simpler terms by using Theorem 3 or Theorem 4.

$$\sum_{n=0}^{\infty} \binom{n+k}{k}^{-1} z^{n+k}$$

$$\frac{R = \frac{1}{L^*} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \quad (\text{Cauchy - Hadamard formula})$$

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} = \frac{n!}{(n-k)!k!}$$
Fool) (a)
$$\sum_{n=0}^{\infty} \binom{n+k}{k}^{-1} z^{n+k} = \sum_{n=0}^{\infty} \left\{ \frac{\binom{n+k}{k}^{-1} z^k}{a_n} \right\} z^n$$

$$\frac{1}{a_n} = \frac{1}{L^*} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{L^*} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

$$\left|\frac{a_n}{a_{n+1}}\right| = \left|\frac{\frac{z^k}{k}}{\frac{k}{n+1}}\right| = \left|\frac{\frac{k}{k}}{\frac{k}{k}}\right| = \left|\frac{\frac{k}{k}}{\frac{k}{k}}\right| = \left|\frac{\frac{k+1+k}{k}}{\frac{k}{k}}\right| = \frac{\frac{k+1+k}{k+1}}{\frac{k+1}{k}} = \frac{\frac{k+1+k}{k+1}}{\frac{k+1}{k+1}} = \frac{\frac{k+1+k}{k+1}}{\frac{k+1}{k+1}} \to 1$$

$$R = \lim_{n \to \infty} \left|\frac{a_n}{a_{n+1}}\right| = 1$$

Nationa

Ex) Find the radius of convergence in two ways: (a) directly by the Cauchy-Hadamard formula in Sec. 15.2, and (b) from a series of simpler terms by using Theorem 3 or Theorem 4.

☑ Taylor series

Taylor series of a complex function f(z):

$$f(z) = \sum_{n=1}^{\infty} a_n (z - z_0)^n \quad \text{where} \quad a_n = \frac{1}{n!} f^{(n)}(z_0) = \frac{1}{2\pi i} \prod_{C} \frac{f(z^*)}{(z^* - z_0)^{n+1}} dz^*$$

Integrate counterclockwise around a simple closed path C that contains $\ensuremath{\mathcal{I}}_0$ in its interior.

f(z) is analytic in a domain containing C and every point inside C.

☑ Maclaurin series: Taylor series with center $z_0 = 0$ ☑ Taylor's formula

$$f(z) = f(z_0) + \frac{z - z_0}{1!} f'(z_0) + \frac{(z - z_0)^2}{2!} f''(z_0) + \dots + \frac{(z - z_0)^n}{n!} f^{(n)}(z_0) + R_n(z)$$

Remainder:

$$R_{n}(z) = \frac{(z-z_{0})^{n+1}}{2\pi i} \prod_{C}^{n+1} \frac{f(z^{*})}{(z^{*}-z_{0})^{n+1}(z^{*}-z)} dz^{*}$$

☑ Theorem 1 Derivatives of an Analytic Function

If f(z) is analytic in a domain D, then it has derivatives of all orders in D, which are then also analytic functions in D. The values of these derivatives at a point z_0 in D are given by the formulas

$$f'(z_0) = \frac{1}{2\pi i} \iint_C \frac{f(z)}{(z - z_0)^2} dz$$
$$f''(z_0) = \frac{2!}{2\pi i} \iint_C \frac{f(z)}{(z - z_0)^3} dz$$

and in general

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \prod_{C} \frac{f(z)}{(z-z_0)^{n+1}} dz, \quad (n=1, 2, \cdots)$$

here C is any simply closed path in D that enclose z_0 and whose full interior belongs to D; and we integrate counterclockwise around C.

☑ Theorem 1 Taylor's Theorem

- Let f(z) be analytic in a domain D, and let $z = z_0$ be any point in D.
- Then there exists precisely one Taylor series with center z₀ that represents f (z).
- This representation is valid in the largest open disk with center z₀ in which f (z) is analytic. The remainders R_n(z) of the power series can be represented in the form

$$R_{n}(z) = \frac{(z-z_{0})^{n+1}}{2\pi i} \prod_{C} \frac{f(z^{*})}{(z^{*}-z_{0})^{n+1}(z^{*}-z)} dz^{*}$$

• The coefficients satisfy the inequality $|a_n| \le \frac{M}{r^n}$

where M is the maximum of |f (z)| on a circle | z - z₀ | = r in D whose interior is also in D.

15.4 Taylor and Maclaurin Series

 $\therefore f(z) = \frac{1}{2\pi i} \iint_{C} \frac{f(z^{*})}{(z^{*}-z)} dz^{*} = \frac{1}{2\pi i} \iint_{C} \frac{f(z^{*})}{(z^{*}-z_{0})} dz^{*} + \frac{z-z_{0}}{2\pi i} \iint_{C} \frac{f(z^{*})}{(z^{*}-z_{0})^{2}} dz^{*} + \dots + \frac{(z-z_{0})^{n}}{2\pi i} \iint_{C} \frac{f(z^{*})}{(z^{*}-z_{0})^{n}} dz^{*} + R_{n}(z)$

☑ Proof-continued

$$f(z) = \frac{1}{2\pi i} \iint_{C} \frac{f(z^{*})}{(z^{*}-z_{0})} dz^{*} + \frac{z-z_{0}}{2\pi i} \iint_{C} \frac{f(z^{*})}{(z^{*}-z_{0})^{2}} dz^{*} + \dots + \frac{(z-z_{0})^{n}}{2\pi i} \iint_{C} \frac{f(z^{*})}{(z^{*}-z_{0})^{n}} dz^{*} + R_{n}(z)$$

$$f(z) = \sum_{n=1}^{\infty} a_{n} (z-z_{0})^{n} \text{ will converge and represent } f(z) \text{ if and only if}$$

 $\lim_{n\to\infty}R_n(z)=0$

f(z) is analytic inside and on $C \rightarrow f(z^*)/(z^*-z)$ is analytic inside and on C.

$$\left|\frac{f(z^*)}{(z^*-z_0)}\right| \leq \tilde{M}$$

$$\left|R_n(z)\right| = \frac{|z-z_0|^{n+1}}{2\pi} \left| \iint_C \frac{f(z^*)}{(z^*-z_0)^{n+1}} dz^* \right| \leq \frac{|z-z_0|^{n+1}}{2\pi} \tilde{M} \frac{1}{r^{n+1}} 2\pi r = \tilde{M} \left|\frac{z-z_0}{r}\right|^{n+1} r y$$

$$|z-z_0| < r \Rightarrow |z-z_0| / r < 1$$

$$\therefore \lim_{n \to \infty} R_n(z) = 0$$

Seou

☑ Accuracy of Approximation.

We can achieve any preassigned accuracy in approximating f(z) by a partial sum by choosing n large enough.

☑ Singularity, Radius of Convergence.

- Singular point: Point at which the function is not analytic
- On the circle of convergence there is at least one singular point (z = c)
- The radius of convergence R is usually equal to the distance from the center (z₀) to the nearest singular point.
 singular point

singular po z = c z_0

 $f(z) = \sum_{n=1}^{\infty} a_n (z - z_0)^n$ where $a_n = \frac{1}{n!} f^{(n)}(z_0)$

☑ Theorem 2 Relation to the Last Section

A power series with a nonzero radius of convergence is the Taylor series of its sum.

Power series

Taylor series

$$\sum_{n=0}^{\infty} a_n \left(z - z_0 \right)^n = a_0 + a_1 \left(z - z_0 \right) + a_2 \left(z - z_0 \right)^2 + \cdots$$

 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \iint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$

 $f(z) = (1-z)^{-1}$ $f'(z) = -1(1-z)^{-2}(-1) = (1-z)^{-2}$ $f''(z) = -2(1-z)^{-3}(-1) = 2!(1-z)^{-3}$ $f^{(n)}(z) = n!(1-z)^{-(n+1)} = \frac{n!}{(1-z)^{n+1}}$

15.4 Taylor and Maclaurin Series

☑ Maclaurin series

A Maclaurin series is a Taylor series with center $z_0 = 0$.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad a_n = \frac{1}{n!} f^{(n)}(0) \text{ or } a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{z^{*n+1}} dz^*$$

Let
$$f(z) = \frac{1}{1-z}$$
 then we have $f^{(n)}(z) = \frac{n!}{(1-z)^{n+1}}$, $f^{(n)}(0) = n!$.

Hence the Maclaurin expansion of 1/(1-z) is the geometric series

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \cdots \qquad \left(\because a_n = \frac{1}{n!} f^{(n)}(0) = \frac{1}{n!} n! = 1 \right)$$

f(z) is singular at z = 1; this point lies on the circle of convergence.

 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \iint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$

15.4 Taylor and Maclaurin Series

☑ Maclaurin series

A Maclaurin series is a Taylor series with center $z_0 = 0$.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad a_n = \frac{1}{n!} f^{(n)}(0) \text{ or } a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{z^{*n+1}} dz^*$$

☑ Important Special Taylor (Maclaurin) Series
 ☑ Ex. 2 Exponential Function

$$f(z) = e^{z}$$

We know that the exponential function e^{z} is analytic for all z, and $(e^{z})' = e^{z}$.

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots \qquad \left(\because a_{n} = \frac{1}{n!} f^{(n)}(z_{0}) = \frac{1}{n!} e^{0} = \frac{1}{n!} \right)$$

 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \iint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$

15.4 Taylor and Maclaurin Series

☑ Maclaurin series

A Maclaurin series is a Taylor series with center $z_0 = 0$.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad a_n = \frac{1}{n!} f^{(n)}(0) \text{ or } a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{z^{*n+1}} dz^*$$

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots$$

Furthermore, by setting z = iy and separating the series into the real and imaginary parts,

$$e^{iy} = \sum_{n=0}^{\infty} \frac{(iy)^n}{n!} = 1 + iy + -\frac{y^2}{2!} - \frac{iy^3}{3!} + \frac{y^4}{4!} - \cdots$$
$$= \sum_{k=0}^{\infty} (-1)^k \frac{y^{2k}}{(2k)!} + i \sum_{k=0}^{\infty} (-1)^k \frac{y^{2k+1}}{(2k+1)!} \qquad \because e^{iy} = \cos y + i \sin y$$
Euler's formula
Maclaurin series of cos y Maclaurin series of sin y

 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \iint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$

15.4 Taylor and Maclaurin Series

☑ Maclaurin series

A Maclaurin series is a Taylor series with center $z_0 = 0$.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad a_n = \frac{1}{n!} f^{(n)}(0) \text{ or } a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{z^{*n+1}} dz^*$$

 ✓ Important Special Taylor (Maclaurin) Series
 ✓ Ex. 3 Trigonometric and Hyperbolic Functions Find the Maclaurin series of cos z and sin z.

$$e^{iz} = \sum_{n=0}^{\infty} \frac{(iz)^n}{n!} = 1 + iz - \frac{z^2}{2!} - i\frac{z^3}{3!} + \frac{z^4}{4!} + i\frac{z^5}{5!} - + \cdots$$
$$e^{-iz} = \sum_{n=0}^{\infty} \frac{(-iz)^n}{n!} = 1 - iz - \frac{z^2}{2!} + i\frac{z^3}{3!} - \frac{z^4}{4!} - i\frac{z^5}{5!} + \cdots$$

$$\cos z = \frac{1}{2} (e^{iz} + e^{-iz}) = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots = \sum_{k=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$

$$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}) = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots = \sum_{k=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \iint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$

15.4 Taylor and Maclaurin Series

☑ Maclaurin series

A Maclaurin series is a Taylor series with center $z_0 = 0$.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad a_n = \frac{1}{n!} f^{(n)}(0) \text{ or } a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{z^{*n+1}} dz^*$$

Find the Maclaurin series of $\cosh z$ and $\sinh z$.

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots$$

$$e^{-z} = \sum_{n=0}^{\infty} \frac{(-z)^n}{n!} = 1 + (-z) + \frac{(-z)^2}{2!} + \frac{(-z)^3}{3!} + \dots = 1 - z + \frac{z^2}{2!} - \frac{z^3}{3!} + \frac{z^4}{4!} - \frac{z^5}{5!} + \dots$$

$$\cosh z = \frac{1}{2} (e^{z} + e^{-z}) = 1 + \frac{z^{2}}{2!} + \frac{z^{4}}{4!} + \dots = \sum_{k=0}^{\infty} \frac{z^{2n}}{(2n)!}$$

$$\sinh z = \frac{1}{2}(e^{z} - e^{-z}) = z + \frac{z^{3}}{3!} + \frac{z^{5}}{5!} + \dots = \sum_{k=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$$

 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \iint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$

15.4 Taylor and Maclaurin Series

☑ Maclaurin series

A Maclaurin series is a Taylor series with center $z_0 = 0$.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad a_n = \frac{1}{n!} f^{(n)}(0) \text{ or } a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{z^{*n+1}} dz^*$$

☑ Important Special Taylor (Maclaurin) Series
 ☑ Ex. 4 Logarithm

Find the Maclaurin series of Ln(1+z)

 $a_n = \frac{1}{n!} f^{(n)}(0) = \frac{1}{n!} (-1)^{n+1} (n-1)! = \frac{(-1)^{n+1}}{n!}$

$$f'(0) = 1$$

$$f''(0) = -1$$

$$f''(0) = -1$$

$$f''(0) = 2!$$

$$f''(z) = -(1+z)^{-2}$$

$$f''(z) = -(1+z)^{-3}$$

$$f^{(4)}(0) = -3!$$

$$f^{(4)}(z) = -3!(1+z)^{-4}$$

$$f^{(4)}(z) = -3!(1+z)^{-4}$$

$$f^{(n)}(z) = (-1)^{n+1}(n-1)!(1+z)^{-n}$$

$$\therefore \operatorname{Ln} (1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} z^n$$
$$R = \lim_{n \to \infty} \left| \frac{(-1)^{n+1}}{\frac{(-1)^{n+2}}{n+1}} \right| = \lim_{n \to \infty} \left| \frac{n+1}{n} \right| = 1 \qquad \therefore |z| < 1$$

 $f^{(n)}(0)$

Seoul National Univ.

 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \iint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$

15.4 Taylor and Maclaurin Series

☑ Maclaurin series

A Maclaurin series is a Taylor series with center $z_0 = 0$.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad a_n = \frac{1}{n!} f^{(n)}(0) \text{ or } a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{z^{*n+1}} dz^*$$

Find the Maclaurin series of
$$Ln \frac{1+z}{1-z}$$

 $Ln (1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + -\cdots$

Replacing z by -z and multiplying both sides by -1, we get

$$-\text{Ln } (1-z) = \text{Ln } \frac{1}{1-z} = -(-z) + \frac{(-z)^2}{2} - \frac{(-z)^3}{3} + \frac{(-z)^4}{4} - \dots = z + \frac{z^2}{2} + \frac{z^3}{3} + \frac{z^4}{4} + \dots$$

By adding both series we obtain

Ln
$$\frac{1+z}{1-z} = 2\left(z + \frac{z^3}{3} + \frac{z^5}{5} + \cdots\right) \quad (|z| < 1)$$

 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$

15.4 Taylor and Maclaurin Series

☑ Maclaurin series

A Maclaurin series is a Taylor series with center $z_0 = 0$.

 $f(z) = \sum_{n=0}^{\infty} a_n z^n, \ a_n = \frac{1}{n!} f^{(n)}(0) \text{ or } a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{z^{*n+1}} dz^*$ **Ex)** $\sin \frac{z^2}{2}$ $\sin z = \sum_{k=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - + \cdots$ $\sin\frac{z^2}{2} = \frac{z^2}{2} - \frac{1}{3!} \left(\frac{z^2}{2}\right)^3 + \frac{1}{5!} \left(\frac{z^2}{2}\right)^5 - \frac{1}{7!} \left(\frac{z^2}{2}\right)^7 + \cdots$ (R = \infty) $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \cdots.$ $\frac{z+2}{1-z^2} \quad \frac{z+2}{1-z^2} = (z+2)\left(\frac{1}{1-z^2}\right) = (z+2)(1+z^2+z^4+z^6+\cdots)$ (R=1) $= 2 + z + 2z^{2} + z^{3} + 2z^{4} + z^{5} + 2z^{6} + z^{7} + \cdots$

Seoul National Univ.

15.4 Taylor and Maclaurin Series

☑ Practical Methods

☑ Ex. 5 Substitution

Find the Maclaurin series of $f(z) = \frac{1}{1+z^2}$

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \cdots.$$

$$f(z) = \frac{1}{1+z^2} = \frac{1}{1-(-z^2)} = \sum_{n=0}^{\infty} (-z^2)^n = \sum_{n=0}^{\infty} (-1)^n z^{2n} = 1-z^2+z^4-z^6+\cdots \qquad (|z|<1)$$

☑ Ex. 6 Integration

Find the Maclaurin series of $f(z) = \arctan z$

$$f'(z) = \frac{1}{1+z^2}$$
 and $f(0) = 0$

Integrate term by term

$$\frac{1}{1+z^2} = \sum_{n=0}^{\infty} (-1)^n z^{2n}$$

$$\Rightarrow \arctan z = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} z^{2n+1} = z - \frac{z^3}{3} + \frac{z^5}{5} - + \dots \qquad (|z| < 1)$$

Nationa

☑ Ex. 7 Development by Using the Geometric Series

Develop
$$\frac{1}{c-z}$$
 in powers of $z-z_0$, where $c-z_0 \neq \frac{1}{c-z} = \frac{1}{c-z_0-(z-z_0)} = \frac{1}{(c-z_0)\left(1-\frac{z-z_0}{c-z_0}\right)}$

$$=\frac{1}{(c-z_0)}\sum_{n=0}^{\infty}\left(\frac{z-z_0}{c-z_0}\right)^n=\frac{1}{(c-z_0)}\left(1+\frac{z-z_0}{c-z_0}+\left(\frac{z-z_0}{c-z_0}\right)^2+\cdots\right)$$

0

This converges for
$$\left|\frac{z-z_0}{c-z_0}\right| < 1$$
, that is $|z-z_0| < |c-z_0|$

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \cdots$$

☑ Binomial Series (이항급수)

$$\frac{1}{(1+z)^m} = (1+z)^{-m} = \sum_{n=0}^{\infty} {\binom{-m}{n}} z^n = 1 - mz + \frac{m(m+1)}{2!} z^2 - \frac{m(m+1)(m+2)}{3!} z^3 + \cdots$$

1

Ex. 8 Binomial Series, Reduction by Partial Fractions

Find the Taylor series of the following with center $z_0 = 1$

$$f(z) = \frac{2z^2 + 9z + 5}{z^3 + z^2 - 8z - 12}$$

Sol)

$$f(z) = \frac{1}{(z+2)^2} + \frac{2}{z-3} = \frac{1}{[3+(z-1)]^2} - \frac{2}{2-(z-1)}$$

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1+z+z^2+\cdots$$

$$= \frac{1}{9} \left(\frac{1}{[1+\frac{1}{3}(z-1)]^2} \right) - \frac{1}{1-\frac{1}{2}(z-1)} = \frac{1}{9} \sum_{n=0}^{\infty} {\binom{-2}{n}} {\binom{2}{n-1}}^n - \sum_{n=0}^{\infty} {\binom{2}{2-1}}^n = \sum_{n=0}^{\infty} {\left[\frac{(-1)^n (n+1)}{3^{n+2}} - \frac{1}{2^n} \right]} (z-1)^n$$

$$= -\frac{8}{9} - \frac{31}{54} (z-1) - \frac{23}{108} (z-1)^2 - \frac{275}{1944} (z-1)^3 - \cdots$$

Nation

☑ Definition Uniform Convergence

A series with sum s(z) is called uniformly convergent in a region G if for every $\varepsilon > 0$ we can find an $N = N(\varepsilon)$, not depending on z, such that

 $|s(z)-s_n(z)| < \varepsilon$ for all $n > N(\varepsilon)$ and all z in G

Uniformity of convergence is thus a property that always refers to an infinite set in the z-plane, that is, a set consisting of infinitely many points

☑ Theorem 1 Uniform Convergence of Power Series

A power series

$$\sum_{m=0}^{\infty} a_m \left(z - z_0 \right)^m$$

with a nonzero radius of convergence *R* is uniformly convergent in every circular disk $|z - z_0| \le r$ of radius r < R.

15.5 Uniform Convergence

☑ Properties of Uniformly Convergent Series

- Importance
- 1. If a series of continuous terms is uniformly convergent, its sum is also continuous.
- 2. Under the same assumption, termwise integration is permissible.
- Question
- 1. How can a converging series of continuous terms manage to have a discontinuous sum?
- 2. How can something go wrong in termwise integration?
- 3. What is the relation between absolute convergence and uniform convergence?

✓ Theorem 2 Continuity of the Sum Let the series $\sum_{m=0}^{\infty} f_m(z) = f_0(z) + f_1(z) + \cdots$ be uniformly convergent in a region *G*. Let *F*(*z*) be its sum. Then if each term $f_m(z)$ is continuous at a point z_1 in *G*, the function *F*(*z*) is continuous at z_1

☑ Ex. 2 Series of Continuous Terms with a Discontinuous Sum

Consider the series
$$x^2 + \frac{x^2}{1+x^2} + \frac{x^2}{(1+x^2)^2} + \frac{x^2}{(1+x^2)^3} + \cdots$$
 (x real)

nth partial sum:

All the terms are continuous and the series converges even absolutely Sum is discontinuous at x = 0.

The convergence cannot be uniform in an interval containing x = 0.

☑ Termwise Integration

☑ Ex. 3 Series for which Termwise Integration is Not Permissible

Let $u_m(x) = mxe^{-mx^2}$ and consider the series $\sum_{m=0}^{\infty} f_m(x) \quad \text{where} \quad f_m(x) = u_m(x) - u_{m-1}(x)$

in the interval $0 \le x \le 1$.

Sol) (i) nth partial sum: $s_n = u_1 - u_0 + u_2 - u_1 + \dots + u_n - u_{n-1} = u_n - u_0 = u_n$

The series has the sum
$$F(x) = \lim_{n \to \infty} s_n(x) = \lim_{n \to \infty} u_n(x) = 0 (0 \le x \le 1)$$

 $\Longrightarrow \int_{0}^{1} F(x) dx = 0$

(ii) By integrating term by term and using $s_n = f_1 + f_2 + \dots + f_n = u_n$

$$\sum_{m=1}^{\infty} \int_{0}^{1} f_{m}(x) dx = \lim_{n \to \infty} \sum_{m=1}^{n} \int_{0}^{1} f_{m}(x) dx = \lim_{n \to \infty} \int_{0}^{1} s_{n}(x) dx = \lim_{n \to \infty} \int_{0}^{1} u_{n}(x) dx = \lim_{n \to \infty} \int_{0}^{1} nx e^{-nx^{2}} dx$$
$$= \lim_{n \to \infty} \frac{1}{2} (1 - e^{-n}) = \frac{1}{2}$$

15.5 Uniform Convergence

✓ Theorem 3 Termwise Integration Let $F(z) = \sum_{m=0}^{\infty} f_m(z) = f_0(z) + f_1(z) + \cdots$ be a uniformly convergent series of continuous functions in a region *G*. Let *C* be any path in *G*. Then the series $\sum_{m=0}^{\infty} \int_C f_m(z) dz = \int_C f_0(z) dz + \int_C f_1(z) dz + \cdots$ is convergent and has the sum $\int_C F(z) dz$

☑ Theorem 4 Termwise Differentiation

Let the series $f_0(z) + f_1(z) + f_2(z) + \cdots$ be convergent in a region G and let F(z) be its sum. Suppose that the series $f_0'(z) + f_1'(z) + f_2'(z) + \cdots$ converges uniformly in Gand its terms are continuous in G. Then

$$F'(z) = f_0'(z) + f_1'(z) + f_2'(z) + \cdots$$
 for all z in G

Nationa

☑ Test for Uniform Convergence

✓ Theorem 5 Weierstrass M-Test for Uniform Convergence Consider a series of the form $\sum_{m=0}^{\infty} f_m(z) = f_0(z) + f_1(z) + \cdots$ in a region G of the zplane. Suppose that one can find a convergent series of constant terms $M_0 + M_1 + M_2 + \cdots$ such that $|f_m(z)| \le M_m$ for all z in G and every $m = 0, 1, \ldots$ Then the series is uniformly convergent in G.

15.5 Uniform Convergence

Ex. 4 Weierstrass M-Test

Does the following series converge uniformly in the disk

$$\sum_{m=1}^{\infty} \frac{z^m + 1}{m^2 + \cosh m |z|} \quad |z| \le 1$$

Sol)

$$\left|\frac{z^{m}+1}{m^{2}+\cosh m|z|}\right| \leq \frac{|z|^{m}+1}{m^{2}} \leq \frac{2}{m^{2}}$$

By the Weierstrass M-test and the convergence of $\sum_{m=1}^{\infty} \frac{1}{m^2} \Rightarrow$ Uniform convergence

15.5 Uniform Convergence

☑ No Relation Between Absolute and Uniform Convergence ☑ Ex. 5 No Relation Between Absolute and Uniform Convergence

The series $\sum_{m=1}^{\infty} \frac{\left(-1\right)^{m-1}}{x^2 + m} = \frac{1}{x^2 + 1} - \frac{1}{x^2 + 2} + \frac{1}{x^2 + 3} - + \cdots$ converges absolutely but not uniformly. The series $x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left(1 + x^2\right)^2} + \frac{x^2}{\left(1 + x^2\right)^3} + \cdots$ converge uniformly on the whole real line but not

absolutely.

A series of alternating terms whose absolute values form a monotone decreasing sequence with limit zero.

By Leibniz test of calculus the remainder R_n does no exceed its first term in absolute value.

Given e > 0, for all x we have $|R_n(x)| \le \frac{1}{x^2 + n + 1} < \frac{1}{n} < \varepsilon$ if $n > N(\varepsilon) \ge \frac{1}{\varepsilon}$

N(e) does not depend on $x \implies$ uniform convergence

For any fixed x we have $\left|\frac{\left(-1\right)^{m-1}}{x^2+m}\right| = \frac{1}{x^2+m} > \frac{k}{m}$

where k is a suitable constant, and $k \sum_{m=1}^{\infty} \frac{1}{m}$ diverges \implies The convergence is not absolute.