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15.1 Sequences (%), Series (), Convergence Tests (& EHd)

M Sequences: Obtained by assigning to each positive integer n a number z

= Term:z, 1z, z,, - or {z, z,, ---} orbriefly {z }
» Real sequence (24¢): Sequence whose terms are real

M Convergence
= Convergent sequence (=&=%): Sequence that has a limit ¢

limz =c orsimply z, —c

Nn—oo

X

= For every ¢ >0, we can find N such that

Convergent complex sequence

|z, —c|< ¢ foralln>N

— all terms z, with n > N lie in the open disk of radius ¢ and center c.

» Divergent sequence (Z4t+=2): Sequence that does not converge.




15.1 Sequences, Series, Convergence Tests

M Convergence
= Convergent sequence: Sequence that has a limit ¢

Mlzn:c orsimply z, —c

M Ex. 1 Convergent and Divergent Sequences

Sequence {%}:{l —%, —%, %, } is convergent with limit 0.

Sequence {i"}={i, -1 -i, 1, -} is divergent.

Sequence {z,} with z, = (1 +1)" is divergent.




15.1 Sequences, Series, Convergence Tests

M Theorem 1 Sequences of the Real and the Imaginary Parts

= Asequence z;, 2,, Z,, ... of complex numbers z, = x, + iy, converges toc=a +ib

= if and only if the sequence of the real parts x;, x,, ... converges to a

= and the sequence of the imaginary parts y,, y,, ... converges to b.

M Ex. 2 Sequences of the Real and the Imaginary Parts

: : 1 (., 4 :
Sequence {z} with z,=x,+iy, :1_F+'(2+Hj converges to ¢ = 1+2i.

1 4
Xn :l_F has the limit 1 =Recand VY, :2+ﬁ has the limit 2=Imc.
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15.1 Sequences, Series, Convergence Tests

M Series (B4): D In =L+ 2+
m=1

= Nth partial sum: S, =2, +2,+---+Z,

Term of the series: Z;, Z,,
= Convergent series (=2 32): Series whose sequence of partial sums converges
lims, =s Thenwe write s=) 7, =27,+2,+-

nN—o0

Sum or Value: s

m=1

Divergent series (Z4t=2=): Series that is not convergent

Remainder: R =z ., +2 ,+2Z .+

n+1 n+2 n+3

M Theorem 2 Real and the Imaginary Parts

A series sz with z, = x., + iy, converges and has the sum s=u + iv
m=1

if and only if x, + X, + ... converges and has the sum uand y, +vy,+...

converges and has the sumv.




15.1 Sequences, Series, Convergence Tests

M Tests for Convergence and Divergence of Series

M Theorem 3 Divergence
If a series z; + z,+... converges, then limz_=0.

m-—oo

Hence if this does not hold, the series diverges.

Proof) If a series z, + z,+... converges, with the sum s,
z.=S,—S,;, = limz =s —-s ., =s-s=0
Mm—o0

= 7. — 01is necessary for convergence of series but not sufficient.

: : 1 1 1 : . . : .
M Ex) The harmonic series 1+§+§+Z+--- , Which satisfies this condition but

diverges.

The practical difficulty in proving convergence is that, in most cases, the sum
of a series is unknown.

= Cauchy overcame this by showing that a series converges if and only if its
partial sums eventually get close to each other.
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15.1 Sequences, Series, Convergence Tests

. : 1 1 1 :
M Ex) The harmonic series 1+§+§+Z+--- diverges

Proof)
1 1 1 1 1 1 1 1 1
S=14+—- +—+— +—-F+—F+=-+=- +— — "
3 4 5 6 7 8 9 16 10
1 (1 1) (1 1 1 1)
>1+—+|—+—[+| =F+=+=+— ;
4 8 8 8 8 . 1 1
1+§+§+—+m
1 1 1 . 4
=LHo 4o 4o+ diverge! 2
: : 1 1 1
M Ex) The harmonic series 1—§+§—Z+--- converges
11111111 :
9= === g o= —
2 3 45 6 7 8 9 08
<1_E+E_l+1_l+l_1+1+...:1 | 1_E+E_1+”.
2 2 4 4 6 6 8 8 o 2" 3
converge!

0
0 2000 4000 6000 8000 10000 12000




15.1 Sequences, Series, Convergence Tests

M Theorem 4 Cauchy’s Convergence Principle for Series

A series z, + z,+ ... is convergent if and only if for every given &> 0 (no
matter how small) we can find an N (which depends on ¢ in general) such
that

Z 2 otz

n+2 n+p

<& foreveryn>Nandp=1, 2, --

n+1

M Absolute Convergence (2Ll +=3)
= Absolute convergent: Series of the absolute value of the terms
mZZ|Zm|=|21|+|Zz|+“' is convergent.
= Conditionally convergent (=7 +%): z,+z,+... converges but |z,|+|z,|+... diverges.

1 1 1

MEX. 3 The series 1—§+§—Z+--- converges but |z|+|z,|+--- diverges, then

the series z, + z,+ ... is called conditionally convergent.
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15.1 Sequences, Series, Convergence Tests

M Theorem 5 Comparison Test (Hlnl T )

If a series z,+z,+ ... is given and we can find a convergent series b, + b, +

... with nonnegative real terms such that |z,| < by, |z,| <Db,,...,

then the given series converges, even absolutely.

Proof) by Cauchy’s principle,

B, +0,.,+ Db, <& foreveryn>N andp=1, 2, --

n+1 n+2

» From this and |z,| < Dby, |z,| <b,, ...,

|Zn+1|”'+|zn+plgb +'”+bn+p<‘9

n+1

" |z4| +|z,| + ... converges, so that z, + z,+ ... is absolutely convergent.
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15.1 Sequences, Series, Convergence Tests

¥ Theorem 6 Geometric Series (7|0} 2%
The geometric series 2,4" =1+q+q° +-
m=0

converges with the sum T a if |a|<1 and diverges if |q|>1.

Proof) sn=1+q+q2+---+q”
an :q_|_q2_|_.”_|_qn+1

s —qs, =(1-q)s, =1-g""

n+1 n+1 n+1
Sn:i: 1 4 since |g/<1, n—ow = 0
1-q 1-q 1-g¢ 1-¢
1
LS, > ——
1-¢




15.1 Sequences, Series, Convergence Tests

M Theorem 7 Ratio Test (H| TAY)

If a series z; +z,+ ... with z, #0 (n=1, 2, ---) has the property that for
every n greater than some N,

Zn+1

Z

n

<qg<l1 (n>N)

(where g <1 is fixed), this series converges absolutely.

If for every n > N Z . 1 (n SN ) , the series diverges.
Zn
Proof) i) |[“ni|>1 =|z,.4|2|z,|= z,+ 2, +--- diverges
Zn
'|'|) Zn+1|S|Zn|q for n>N = |ZN+2 S|ZN+1|q — |ZN+3|S|ZN+2|q S|ZN+1|q2
ZN+p S|ZN+1|qp_1
NHJ+¢ZN+2++|ZN+J | N+J(1+_q_kq +- ) |ZN+J

—

Absolutely convergence follows from Theorem 5 Companson Test




15.1 Sequences, Series, Convergence Tests

M Theorem 8 Ratio Test

Zn+1

If a series z; +z,+ ... with z, #0 (n=1, 2, ---)is such that lim :

n—oo

=L, then:

a. If L <1, the series converges absolutely.
b. If L > 1, the series diverges.

c. If L =1, the series may converge or diverge, so that the test fails and
permits no conclusion.

Proof) (a) k, =|z,,,/2,|, let L=1-b<1 Theorem 7 Ratio Test

Zn+1

=Ly k, >1-b ) say k <q= 1——b<1 .

fOf n>N = the series converges
Theorem 7 Ratio Test E> Z, +2,+ ... converges

) k, =]z

lim | Zns1 <g<1l (n>N)

n—oo

Z,

z,|, let L=1+c>1

n+1
Zn+l

Z

n

>1 (n>N)

n+1

Z,

lim

nN—o0

=L C» k, >1+c .y say k, 21+,c>1 forn>N

: : he seri iver
Theorem 7 Ratio Test E> z, +7,+... diverges = the series diverge




15.1 Sequences, Series, Convergence Tests

M Theorem 8 Ratio Test

Zn+1

If a series z; +z,+ ... with z, #0 (n=1, 2, ---)is such that lim :

n—oo

=L, then:

a. If L <1, the series converges absolutely.
b. If L > 1, the series diverges.

c. If L =1, the series may converge or diverge, so that the test fails and
permits no conclusion.

Proof) (c) harmonic series 1+%+%+1+---

z .
= a5 n oo, |20t 51 L =1 diverge!
Z, n+1 Z,
1 1 1 1 Zn+l ’ n+l1
another series 1+=+—+—+--- = ~, as N — o, —1 L=1
Z (n+1) Z,
¥
1 1 A\ :
s, =1+~ 5+ +—<1+_[ ——2—— \<j_F
4 Area 1 . Area} Area 1=
converge! Py f——__J .
0 1 2 3 4 x




15.1 Sequences, Series, Convergence Tests

M Theorem 8 Ratio Test

Zn+1

If a series z; +z,+ ... with z, #0 (n=1, 2, ---)is such that lim :

n—oo

=L, then:

a. If L <1, the series converges absolutely.
b. If L > 1, the series diverges.

c. If L =1, the series may converge or diverge, so that the test fails and
permits no conclusion.

M Ex. 4 Ratio Test
Is the following series convergent or divergent?
© (100 +75i)"

2

=1+(100+75i)+%(100+75i)2+---

Sol) The series is convergent, since

(100+75i)"* )
(n+1)! |1OO + 75|| 125

= = —0=L
(100+75i)" n+1 n+1

n!

k. eoul
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15.1 Sequences, Series, Convergence Tests

If for infinitely many n

M Theorem 9 Root Test (2
If a series z, +z, + ... is such that for every n greater than some N

(where g < 1 is fixed), this series converges absolutely.

Tdd)
Q/mgq<l (n>N)

Y|z,| =1, the series diverges.

Proof) \/7<q<1 z,<q"<1 foralln>N

1
|zl|+|zz|+|z3| <(A+q+9°+--)<—

¥ Theorem 5 Comparison Test (H| ml A )
If a series z, +z,+ ... is given and we can find a convergent series b, + b, +

... with nonnegative real terms such that |z,| < b, |z,| < b,,....

q then the given series converges, even absolutely.

Absolutely convergence follows from Theorem 5 Comparison Test

MEl o> |z,|21 C> 7, +2,+... diverges.

This diverges from Theorem 3 Divergence.

M Theorem 3 Divergence
If a series z; +z,+... converges, then limz, =0.
m—»0
Hence if this does not hold, the series diverges.




15.1 Sequences, Series, Convergence Tests

M Caution!
, , 1 1 1
harmonic series 1+—+—+—+---
2 3 4

Y|z, =¥1/n <1 but diverge! because q< 1is not fixed.

M Theorem 10 Root Test
If a series z, +z,+ ... is such that limy/|z,| =L, then:

N—o0

a. The series converges absolutely if L < 1.
b. The series diverges if L > 1.

c. If L =1, the test fails; that is, no conclusion is possible.

Ex) harmonic series 1+1+1+£+... :
2 3 4 0.8

limgfz] = limYA/n =1 the test fails. o lim¥1/n

N—o0 N—»o0

0 2000 4000 6000 8000 10000 12000

Ef: -Is\.lﬁ.l;::‘lc:nal 16
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15.2 Power Series

M Power Series (HE&H&2T)
= Power series in powers of z—2, : ian (z—zo)n = a, +a1(z—zo)+a2(z—zo)2 TR
Coefficients: Complex (or real) nc:gnstants 8oy Ay, oo
Center: Complex (or real) constant z,

. . 2
= A power series in powers of z: Zanzn =8, taz+a,Z +---
n=0
M Convergence Behavior of Power Series
M Ex. 1 Convergence in a Disk. Geometric Series

The geometric series Dz, =1+z+2"+-
n=0

converges absolutely if Z| <1

diverges if |z|>1 M Theorem 6 Geometric Series (7|0l 2=

The geometric series 2.¢" =1+q+q" +--

m=0

converges with the sum T if |¢|<1 and divergesif |¢g|>1.
— 9




15.2 Power Series

M Convergence of Power Series
= Power series play an important role in complex analysis.

The sums are analytic functions (Theorem 5, Sec. 15.3) = The sum should be
convergent.

Every analytic function f (z) can be represented by power series at z,
(Theorem 1, Sec. 15.4) = The sum should converge to f (z,).

Ex) Maclaurin series of e?

For specific z = z,, the left side and the right side have the same value.
= The right sum should converge for the specific value.

= This doesn’t mean convergence of e as z —o.




15.2 Power Series

M Ex. 2 Convergence for Every z s 3

0 ZI’] Z Z
The power series (which is the Maclaurin series of €?) Zm =1+z +—|+—|+...
n=0 "=

is absolutely convergent for every z

By the ratio test, for any fixed z,

7 n+1

(n+1)!

—|=———0 a n-ow
L5 n+1

M Ex. 3 Convergence Only at the Center (Useless Series)

The following series converges only at z = 0, but diverges for every z # 0

Zn!zn —14+7+272°+62%+...
n=0

(n+1)1z™

n

| =(n+1)|zl > a n—>o (zfixed and =0)
n!z

7%
155y v,
Y
©



15.2 Power Series

M Theorem 1 Convergence of a Power Series

a. Every power series converges at the center z,.

b. If a power series converges at a point Z =27, # Z,, it converges

absolutely for every z closer to z, than z;,that is, |z —z,| <|z; — z.

c. If a power series diverges at a z = z,, it diverges for every z

farther away from z, than z,

o . , , - FFHH"‘\\P‘IV&:‘gent
Ya(z-z) =ay+a(z2-2))+a,(z-2,) +-- PN
|

n=0 I f Conv.




15.2 Power Series

M Radius of Convergence (3 9X| &) of a Power
= Circle of convergence (=&®): The smallest circle with center z, that includes
a

all the points at which a given power series converges.

Radius of convergence (=3gt4): Radius of the circle of convergence.
|z - z,| = R is the circle of convergence and its radius R the radius of convergence.
&= Convergence everywhere within that circle, that is, for all z for which |z-z,|=R

Diverges for all z for which |z - z;| > R. y

Divergent

Notations R = and R = 0.

R = w0: the series converges for all z.

R = 0: the series converges only at the center.

Circle of convergence
Real power series: In which powers, coefficients, and center are real.

Convergence interval (=&+7h: Interval [x-x,| < R of length 2R on the real line.




15.2 Power Series

M Theorem 2 Radius of Convergence R

Suppose that the sequence |a,., / a,

, h=1 2, --- converges with limit
L*. If L* =0, then R = w; that is, the power series converges for all z. If

L* =0 (hence L* > 0), then

R=_ _jim| 2
a

L * n—o0

(Cauchy - Hadamard formula)

n+1

If |a,.,/a,|—, then R =0 (convergence only at the center z,)

Proof) The ratio of the terms in the ratio test is
an+1(z — Zo)nJr1 A1
an(z o Zo)n a,

i) Let L*#0, thus L*>0

The series converges if L*=L*z —z)| <1, |z — 5| < 1/L* and diverge if |z —z,| > 1/L*.
= 1/L* is radius of convergence.

ii) If L*=0, then L =0 for every z. = convergence for all z by the ratio test.

iii) If |a,./a,|—>«, then z-2,|>1 = diverge for any z # z, and all sufficiently
large n.

an +1

a

n

z-z,| L=Ilim

n—o0

Z—-2,|=L*z-z2 L=L*|z-z,
0 0

a‘n +1

a

n




15.2 Power Series

M Theorem 2 Radius of Convergence R

Suppose that the sequence |a,., / a,

, h=1 2, --- converges with limit
L*. If L* =0, then R = w; that is, the power series converges for all z. If
L* =0 (hence L* > 0), then

(Cauchy - Hadamard formula)

If |a,.,/a,|—, then R =0 (convergence only at the center z,)

MEX. 5 Radius of Convergence - (
Radius of convergence of the power series Z

o) g jim| i _.im{(@“)! «nﬂ)lf}_.im (n+1)

M|

n—oo (2 +2)! B nN—o0

2n+2)l (n1)° | m=(2n+2)(2n+1)

: : : a1 .1 :
The series converges in the open disk |z -3i| <2 of radius 2 and center 3i.

& E‘)' ; .Is\.lﬁ.l;::‘lc:nal
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15.2 Power Series

M Radius of Convergence R

9= i

B L* n—o0

a

n

MEXx. 6 Extension of Theorem 2
Find the radius of convergence of the power series.
Z[H(—l)” +i}zn :3+12+(2+£j22+123+(2+ij25+---
— 2" 2 4 8 16
""" éol) The sequence of the ratios |a,,, /a,|=3, 2(2+3), 1/8(2+ ;) does not converge.
Thus, we can’t use Theorem 2 for this example.
1 -~ 0 on _ L
R==, L=limyla,| For odd n, tla,| =¥1/2 =5
For even n, Q/\an\ :Q/2+1/2n —1 asn—ow

R= i | : the greatest limit point of the sequence

R =1, that is, the series converge for |z| <1.




15.2 Power Series

M Radius of Convergence R

R—lim{f(nzg!);}—lim[ (2n) 4n+l((n+1)!)2]—|im ()

(2n+2)t 4" (n1y? | =(2n+2)(2n+1)
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15.3 Functions Given by Power Series

M Terminology and Notation

Given power series Y.2,2" has a nonzero radius of convergence R (thus R >0)
n=0

— |ts sum is a function of z, say f (2)
f(z)=>a,z"=a,+az+a,z*+ (2| <R)
n=0
— f (2) is represented by the power series.

M Uniqueness of a Power Series Representation
A function f (z) cannot be represented by two different power series with the

same center.




15.3 Functions Given by Power Series

M Theorem 1 Continuity of the Sum of a Power Series

If a function f (z) can be represented by a power series with radius of

convergence R > 0, then f (z) is continuous at z = 0.

Proof) f(z)=) az"=a,+az+a,z’+--- converges for [z|<r<R = f(0)=a,
n=0

We must show that lim f (z)=a,

z—0

—)> For a given £>0 Q: If not continuous?

There is a >0 such that |z|<J implies |f(z)-a|<¢

et =2 fa " =S
n=0 n=0

for 0<|z|<Tr We can always find a § > 0 such that |ZI<d <&/S which implies |f(z)-a,|<¢.

ianzn
n=1

when 0<¢/S

£ (2)-a,|=

<|2Y fa |2 <[2] Y Ja | r"t =|2|S < 55 < (£/8)S =
n=1 n=1




15.3 Functions Given by Power Series

___________________________________

(
Foragiven & >0

If |f(z)—a0|<g for |Z|<5

then for any s |z|<d8'< 5,
f(2)-a|<s is always satisfied.

but forany s |z|]<5 <4,

|f(2)—a,|<& is not always satisfied.

\_

We can find |z|<d<e/S which satisfies |f(z)-a|<e

_____________________________ . Qgte
Case | ! i
i
o<elS L INL ag—c
—elS —5 o &S
Case |l
O>¢&lS




15.3 Functions Given by Power Series

M Theorem 2 Identity Theorem for Power Series. Uniqueness

Let the power series a, + a;z + a,z> + ... and by + b;z + b,z> + ... both be
convergence for |z| <R, where R is positive, and let them both have the
same sum for all these z.

— Then the series are identical, that is, a,= by, a,=b;, a,=b,, ...

Hence if a function f (z) can be represented by a power series with any
center z,, this representation is unique.

Proof) We proceed by induction (7 '& &#). By assumption,
ayta,z+taz+...=by+bz+bz2+ ...
The sums of these two power series are continuous at z=0 — a, = b,,.

Now assume thata,=b, Forn=0, 1, ..., m. Divide the result by z"!

Qg tAnZ T a2+ ... =b gt bz D7

Letting z — 0, we concluded form this that a,,,; = b,,.;




15.3 Functions Given by Power Series

M Operations on Power Series
= Termwise addition or subtraction
Termwise addition or subtraction of two power series with radii of convergence R, and R,.
— A power series with radius of convergence at least equal to the smaller of R; and R,.

= Termwise multiplication
Termwise multiplication of two power series

f(z)=§:anzn =a,+az+--- and g(z)zibnz“ =b, +bz+--
n=0 n=0

Cauchy product of the two series:

i(aobn +ab, , +-+ab)z" =ab, +(ah, +ab,)z+(ab, +ab, +ab,)z* +---

n=0

= Termwise differentiation and integration
by termwise differentiation, that is,

D na,z"t=a,+2a,z+3a,2° +---
=1




15.3 Functions Given by Power Series

M Theorem 3 Termwise Differentiation of a Power Series

The derived series (0I22%) of a power series has the same radius of
convergence as the original series.

Proof) nla,| _n . la | . |a R = — im|-:
lim =lim—-—Iim =lim L* no=la .
e (n+l)fa,,| e+ =la,, | e, ,
L L _1
MEX. 1 Application of Theorem 3 (Zanzn] =) naz"
n=0 n=1

Radius of convergence of the power series

o0 n o0 _
Z[ jz”: n(rlzll)z”:22+323+6z4+1025+-~.
n=2 -

nj _n(n=1)---(n-k+1)
— nYk k'

n=2
) n—-1)n
R=1im %, =1 R:hm( ) =
n—>o0 an+1 n—o0 n(n +1)
Z_zf”( )_n(n_l)i n_i n 7N E> R =1Ilim (n_l)n:
2 2 = “l(2 >=(n(n+1)




15.3 Functions Given by Power Series

M Theorem 4 Termwise Integration of Power Series

The power series Z a, z”+1=a02+ﬁzz+ﬁz3 L.
= n+1 2 3

obtained by integrating the series a, + a,z + a,z° + ... term by term has the

same radius of convergence as the original series.




15.3 Functions Given by Power Series

M Power Series Represent Analytic Functions

“HAEHBZHE s BRH

M Theorem 5 Analytic Functions. Their Derivatives

= A power series with a nonzero radius of convergence R represents an

analytic function at every point interior to its circle of convergence.

= The derivatives of this function are obtained by differentiating the

original series term by term.

= All the series thus obtained have the same radius of convergence as

the original series.

= Hence, by the first statement, each of them (£&t$) represents an

analytic function.




15.3 Functions Given by Power Series

M Ex) Find the radius of convergence in two ways: (a) directly by the Cauchy-
Hadamard formula in Sec. 15.2, and (b) from a series of simpler terms by using
Theorem 3 or Theorem 4.

. R:i*zlim & (Cauchy - Hadamard formula)
> n+k B n+k L = an+1
Z_; « |- N\ n(n-1)--(n-k+1)  nl
= k)~ k! ~ (n=k)!K!
Sol) (@) = (n+k) > In+k)™
Z( j Zn+kzz<( j Zk Zn
n=0 K n=0 k
an
Y n+k n+1+k
a, | k B k (n+1+k)VkI(n+)!  nl(n+1+k)! _n+k+1_)1
| |k n+1+Kk n+Kk (n+k)!Yk!n! (n+k)!(n+1)! n+1
k k
R =lim|-2n|=1
N—o0 an+1




15.3 Functions Given by Power Series

M Ex) Find the radius of convergence in two ways: (a) directly by the Cauchy-
Hadamard formula in Sec. 15.2, and (b) from a series of simpler terms by using
Theorem 3 or Theorem 4.

i n+k _1z”+k n) n(n-1)---(n-k+1)  nl
~\ k k) k! ~ (n=k)!k!
Sol) (b) i(mk]lzm: (MK e 1 e
— Kk (n+k)! (n+D)(n+2)---(n+k)

ﬁ Integrate k times term by term

k1z

.. Radius of convergence = 1




15.4 Taylor and Maclaurin Series

MTaylor series
Taylor series of a complex function f (2):

- . 1 1 f(z*)
f(z)= _ h ——f — dz*
() nzz;an(z z,) Where a ~ () Zﬂi[lj(z*—zo)nﬂ z

Integrate counterclockwise around a simple closed path C that contains z; in its
interior.

f (z) is analytic in a domain containing C and every point inside C.

M Maclaurin series: Taylor series with center z, = 0
M Taylor’s formula

f(2)= 1 (2)+ 2 f'(z0)+(z‘2f°) £r(2) 5+ Z2B) 05 14R (2)

Remainder:

7%
(S
i
)
W
(-]



[Reference] 14.4 Derivatives of Analytic Functions

M Theorem 1 Derivatives of an Analytic Function

If f(z) is analytic in a domain D, then it has derivatives of all orders in
D, which are then also analytic functions in D. The values of these
derivatives at a point z, in D are given by the formulas

and in general

£ (2) == (] ") 4 (o1 2 )

= 2721 . (Z_Zo)n+l

here C is any simply closed path in D that enclose z, and whose full
interior belongs to D; and we integrate counterclockwise around C.




15.4 Taylor and Maclaurin Series

M Theorem 1 Taylor’s Theorem

Let f (z) be analytic in a domain D, and let z = z, be any point in D.

Then there exists precisely one Taylor series with center z, that
represents f (z).

This representation is valid in the largest open disk with center z, in

which f (z) is analytic. The remainders R,(z) of the power series can be

represented in the form

Rn(z):(Z_ZO)Mm f(z*) dz *

271 ¢ (2%-2))"" (2*-2)

The coefficients satisfy the inequality /<

where M is the maximum of |f (z)| on a circle | z — z,| = r in D whose

interior is also in D.




15.4 Taylor and Maclaurin Series

1 f (z*) Cauchy’s Integral Formula
M Proof) (z)= *
‘ 0 -
1 1 1 27 L 71-1,
- = Z—1
(z*-2) 2*-2,-(2-1,) (Z*—zo)[l— z—zo): Z*—ZOO <1
2*-1, = q
4l n+1
1+g+...+q" = a _ 1 9
1-g 1-gq 1-¢
n+l |
i=1+q+..+q +q L m x
1_q 1_q f(z):zan(z_zo)n
_ Z—Zo _i o I f(z*) )
| 2% -1 Y (20)_2ﬁi@(z*_zo)“ 10z




15.4 Taylor and Maclaurin Series

M Proof-continued
f(Z)z 1 m f(Z*) dZ*+Z_Z_ODj f(Z*) dZ*+"'+(Z;Z_O) U']( f(z*)nd2*+Rn(Z)
C C

27i T (2%-1,) 27i

f(z):ian(z—zo)” will converge and represent f (z) if and only if

n=1

limR, (z)=0

nN—o0

f (z) is analytic inside and on C — f (z*)/(z*- z) is analytic inside and on C.

f(z%) < N '[f(z)dz <ML (ML-inequality)
(z*-z,)| c
_ n+1 * . n+1 _ n+1
Rn(z)\=|Z 4 Il f(2) guclzzanl Loonr=ni|Z25) ry
27 C(z*_zo) 27 r r
z—-z)|]<r =|z-7|/r<1
imR, (2) =0 : ;




15.4 Taylor and Maclaurin Series

M Accuracy of Approximation.

We can achieve any preassigned accuracy in approximating f(z) by a partial sum
by choosing n large enough.

M Singularity, Radius of Convergence.
» Singular point: Point at which the function is not analytic
= On the circle of convergence there is at least one singular point (z = ¢)

= The radius of convergence R is usually equal to the distance from the center

(zy) to the nearest singular point. singular point

Z=C

M Theorem 2 Relation to the Last Section

A power series with a nonzero radius of convergence is the Taylor series of its sum.

Power series Taylor series
ian(z—zo)”:ao+a1(z—zo)+a2(z—zo)2+-~ f(z):ian(z—zo)n where anzﬁf(”)(zo)
n=0 n=1 -




Derivatives of Analytic Functions

15.4 Taylor and Maclaurin Series (0 (=g 1@

271 ¥ (2 - z,)™

M Maclaurin series
A Maclaurin series is a Taylor series with center z, = 0.

- 1 1 (') ..
f(2)=Yaz" a=—f"0)or a = dz
() nz=(; n n n! () n 2721§C Z*n+1

M Important Special Taylor (Maclaurin) Series f(z)=(1-2)"
M Ex. 1 Geometric Series

f'(2) = 11— 2) 2(-1) = (1—2)2

1 ! n -3 -3
Let f(z)=—— then we have f®(z)=—" f™O)=n!, |f"(z)=-20-2)°(-)=2(-2)

1_2 (1_ Z)n+1 ’

M (Y (1 (e _
Hence the Maclaurin expansion of 1/(1-z) is the @) =nid=2) "=
geometric series
L:Zz”:1+z+zz+--., ('.'anzlf(”)(O):lnlzlj
—7 = n! n!




Derivatives of Analytic Functions

15.4 Taylor and Maclaurin Series (0 (=g 1@

271 ¥ (2 - z,)™

M Maclaurin series
A Maclaurin series is a Taylor series with center z, = 0.

- 1 1 (') ..
f(2)=Yaz" a=—f"0)or a = dz
() nz=(; n n n! () n 2721§C Z*n+1

M Important Special Taylor (Maclaurin) Series
M Ex. 2 Exponential Function

f(z)=¢"
We know that the exponential function e’ is analytic for all z, and (ez)' =e’,
o0 Zn 22 Z3
' =Y =147+t (-.-an=1f<“>(zo):1e°=lj
—r Nl 21 3l n! n! n!




Derivatives of Analytic Functions

15.4 Taylor and Maclaurin Series LICORSLY, LC
7l

(Z _ Zo)m—l

M Maclaurin series
A Maclaurin series is a Taylor series with center z, = 0.

- 1 (@),
f(2)=Yaz" a=—f"0)or a =
() nzz(;n n n! () n 2721§C Z*n+1

Furthermore, by setting z = iy and separating the series into the real and
imaginary parts,

y = (iy)" : y© iy’ Ly
eV =) ——=l+iy+—————+——---
nz_;‘ n! Y 21 3 4
- v y2 oe¥ =cosy+isiny
= kzz(; (2k)' + Ikzc;( 1" (2k 1! Euler’s formula

Maclaurin series of cosy  Maclaurin series of siny




Derivatives of Analytic Functions

15.4 Taylor and Maclaurin Series f<n>(zo>:Zmiujc(z_fgmdz

M Maclaurin series

A Maclaurin series is a Taylor series with center z, = 0.

2 1 f(2) 4,
f(2)=)az", a==1f"0)or a =
@) =2z a=_170 o a, Zﬂii:

«N+1

M Important Special Taylor (Maclaurin) Series ez:iZ_: cz
M Ex. 3 Trigonometric and Hyperbolic Functions =0 1>
Find the Maclaurin series of cos z and sin z.

© fi=o)\N 2 3 4 5
iZ:Z(lz) A AR A AR

e =l+1iz-———1—+—+1——+
n=0 n' 2' 3' 4' 5'

o0 1 n 2 3 4 5
e_izzz( 2) S Y L LR
o n! 2! 3! 41 5l

1 A
cosz_— el e ) =1- ... =

( e N TRT kZ(;( 1) (2n)l
. 1 iz Sizy 23 25 B ® i Z2n+1
smz:ﬁ(e —e )_z—§+a_+..._k§(_1) D!




Derivatives of Analytic Functions

15.4 Taylor and Maclaurin Series F0(g,) =" gjc(zjgmdz

277

M Maclaurin series
A Maclaurin series is a Taylor series with center z, = 0.

- 1 1 (') ..
f(2)=Yaz" a=—f"0)or a = dz
() nz=(; n n n! () n 2721§C Z*n+1

© Zn ZZ 23
eZ:Z—:1+z+_+_+..._
o N! |
o (  2\N _ 2)2 3 ZZ Z3 Z4 25
e‘Z:Z( ) =1+(—Z)+( ) +( 2) T TP S AN S A
o 0 2 3 20 3 4 5
2 4 o0 2n
coshz==(e" +e Z):1+Z— L => ‘
21 4l 0 (2n)!
23 S 0 Z2n+l
sinhz=—-(e"-e")=z2+—+— :Z
3l 5! = (2n+1)!




Derivatives of Analytic Functions

15.4 Taylor and Maclaurin Series F0(g,) =" gjc(zjgmdz

27l

M Maclaurin series
A Maclaurin series is a Taylor series with center z, = 0.

- 1 1
f(2)=Yaz" a=—f"0)or a =
() nz=(; n n n! () n 27Z| §C Z*n+1

M Important Special Taylor (Maclaurin) Series F0)=1 [ ()=t —@+2)*
M Ex. 4 Logarithm £10) = -1 1+z
f"(2)=-(1+12)7
Find the Maclaurin series of Ln(1+ z) "0 =2 <ty —21s2)”
f“(0)=-3 £ (z2) =-31(1+2)™

an=$f<”>(o)=$(—1)”“(n_1)!=Hn)nﬂ GO0 00 -0" 0D

22 23 Z4 0 (_1)I’H—1
~nl+))=z2—+———4—--- = z"
(1+2) 2 3 4 nzzc; n
(_1)n+1
o n |_pnntl_
=y =i ‘Z‘<1
n+1

*Ration test, Radius of Convergence ) Kreyszig E. Advanced Engineering Mathematics, 9th edition, Wiley, 2006, p669 : .Lj tional



Derivatives of Analytic Functions

15.4 Taylor and Maclaurin Series (0 (=g 1@

271 ¥ (2 - z,)™

M Maclaurin series
A Maclaurin series is a Taylor series with center z, = 0.

- 1 1 (') ..
f(2)=Yaz" a=—f"0)or a = dz
() nz=(; n n n! () n 2721§C Z*n+1

Find the Maclaurin series of Ln 1+—Z
—Z
2 3 4
Ln (l+z):z—Z fEE L
2 3 4
Replacing z by -z and multiplying both sides by -1, we get
N2 (3 ([ \4 2 3 4
—Ln (1-z)=Ln i:—(—z)+( 2 _(£2) +( 2) ez Pty
1-z 2 3 4 2 3 4

By adding both series we obtain

Ln 1+—Z:2(2+Z—3+i+---j (Jz‘<1)
1-z 3 5
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i
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Derivatives of Analytic Functions

15.4 Taylor and Maclaurin Series (0 (=g 1@

271 ¥ (2 - z,)™

M Maclaurin series
A Maclaurin series is a Taylor series with center z, = 0.

i 1 1 ¢ f(27)

_ " g =T _ .
f(z)_nzzc;anz, an_n!f (0) or a, 27zi§0 -0z
N L A L A —-— i il eA-
EX) sinz— o 72041 73 45

sz:kzz:;(_) 2n+1)! 31 51
22 22 1(2) 1(22) 1(z2)
Sin—=—-—| — | +=| — | —=| —
=2 az) 6lz) W) (rew
1 0
—— =) "=1+z7+7°+
1-12 nzzc;
Z+2 _
1— 72 1_22:(z+2)(1_22j:(z+2)(1+22+z4+z6+---)
=2+2+222+22+22° +2°+225 + 2" +--- (R=1)




15.4 Taylor and Maclaurin Series

M Practical Methods
M Ex. 5 Substitution
Find the Maclaurin series of f(z)=

1+ 72

n=0 n=0

1 1 c 2\" c n_2n 2 4 6
f(z)=1+22=1_(_22)=2(—z ) =Y (-1)'2" =1-22+ 7" - 2"+ (\z\<1)

M Ex. 6 Integration
Find the Maclaurin series of f (z) = arctan z

f'(z)=1+122 and £ (0)=0

» Integrate term by term

o
=2 (-1)'z"
n=0

1+2°2 <

c (_1)” 2n+1 23 25
tanz="> =
— arctan z 2 ol Z

(12l <2)

I
[l
b iy
S2Y
o
o



15.4 Taylor and Maclaurin Series

M Ex. 7 Development by Using the Geometric Series

1
Develop —— in powers of z—z,, where c—z,#0
C—Z e 2
EZZZ =1+z+2%+---.
1 1 _ 1 =0
c-z c-z,—(z2-12 -
0 ( o) (C—ZO)(l—Z Zoj
c—1,
1 & S| 2
_ Z 212, | _ 1.27% (275,
(c-z,) =\ c—1, (c-z,)| c-z, (c—z,

: Z7—1
This converges for 0

R <1, thatis |z—2z)|<|c—2,




15.4 Taylor and Maclaurin Series

M Binomial Series (0| & &%)

m & [(—m m(m+1 m(m-+1)(m+2

1,n:(1+z) 2:( ]f“zl—nu+— ( +)22— ( +_)( " )z3+~-

(1+ Z) n—o\ N ! 3!
M Ex. 8 Binomial Series, Reduction by Partial Fractions
Find the Taylor series of the following with center z;=1
27°+9z+5
f (Z) ~— 3, 2
2°+172°-8z-12

8 31 23 2 215 3
— )= (-1 = (2 =1) =
9 54 (2= 108 (2-) 1944 (2=




15.5 Uniform Convergence: SKIP

M Definition Uniform Convergence

A series with sum s(z) is called uniformly convergent in a region G if for
every ¢ > 0 we can find an N = N(¢), not depending on z, such that

s(z)-s,(z)|<e foralln>N(e) andallz in G

Uniformity of convergence is thus a property that always refers to an
infinite set in the z-plane, that is, a set consisting of infinitely many
points

M Theorem 1 Uniform Convergence of Power Series
A power series s m
P Y a,(z2-12)
m=0

with a nonzero radius of convergence R is uniformly convergent in every
circular disk |z _ Zo| <r of radius r <R.

4 ational
- E_]] iv.



15.5 Uniform Convergence

M Properties of Uniformly Convergent Series

* |mportance
1. If a series of continuous terms is uniformly convergent, its sum is also continuous.
2. Under the same assumption, termwise integration is permissible.

= Question
1. How can a converging series of continuous terms manage to have a discontinuous
sum?

2. How can something go wrong in termwise integration?
3. What is the relation between absolute convergence and uniform convergence?

M Theorem 2 Continuity of the Sum
Let the series Y f,(2)=f,(z)+ f,(z)+
m=0

be uniformly convergent in a region G. Let F(z) be its sum. Then if each
term f_(2) is continuous at a point z; in G, the function F(z) is continuous

at z,




15.5 Uniform Convergence

M Ex. 2 Series of Continuous Terms with a Discontinuous Sum

. . X
Consider the series x>+ =+ + NI (x real)

nth partial sum:

) 1 1 1 %
S, =X"|1+ + S+ + - s 2 s
1+X° (14 XZ) (1+ x2) s,
) 1 1 1 |1 1 1 |
Sp 5 Sp =X 1+ + n| 2t + n n+l Sea |
+X { X (1+%F) (1+x) } {1+x (1+x*) (1+%%) ] )
2 | e
X s, =x?|1- l2 _ s =14 - 12 |
1+X 1+X ) (1+x ) |
: 1+x* (x=0) | 5 I
s=lims, = :
N> 0 (X = 0) Partial sums

All the terms are continuous and the series converges even absolutely
Sum is discontinuous at x = 0.
The convergence cannot be uniform in an interval containing x = 0.




15.5 Uniform Convergence

M Termwise Integration

M Ex. 3 Series for which Termwise Integration is Not Permissible
Let u, (X)= mxe ™ and consider the series

mi;ofm(x) where £, (x)=u, (X)-U,_, (X)

in the interval 0<x<1.

Sol) (i) nth partial sum: s, =u, —U, +U, —U, +---+U, —U _, =U, —U, =U,
The series has the sum F(x)=Ilims, (x)=limu,(x)=0(0<x<1)

N—»00 N—00
1
= [F(x)x=0
0

(ii) By integrating term by term and using s, = f, + f, +---+ f =u_

w 1 1 1 1
fom dx—Ilijf x)dx = lim ['s, (x)dx = lim [u, (x)dx = lim [ nxe™™ dx
m=1 0 N—o0 N—o0 N—o0 N—o0
1 1
_Lm_(l_e )_2




15.5 Uniform Convergence

M Theorem 3 Termwise Integration

LetF Zf +f()

be a umformly convergent series of continuous functions in a region G. Let C be

any path in G.
Then the series ZOI i, (2)dz =_[ fo(Z)dZ+I f,(z)dz+---
m=0C C C

is convergent and has the sum jF (z)dz

M Theorem 4 Termwise Differentiation

Let the series f,(z)+ f,(z)+f,(z)+--- be convergent in a region G and let F(z) be its
sum. Suppose that the series f,'(z)+ f,'(z)+ f,'(z)+--- converges uniformly in G

and its terms are continuous in G. Then

F'(z)=1, (2)+f (z)+ f, (2)+ forallz inG




15.5 Uniform Convergence

M Test for Uniform Convergence

M Theorem 5 Weierstrass M-Test for Uniform Convergence
Consider a series of the form Z:,) f.(2)=fo(z)+ f.(z)+ in a region G of the z-

plane. Suppose that one can find a convergent series of constant terms
Mg+M+M,+...
such that | f, (z)| <M, for all zin G and every m =0, 1, .... Then the series

is uniformly convergent in G.




15.5 Uniform Convergence

MEX. 4 Weierstrass M-Test
Does the following series converge uniformly in the disk

> g

= m? +cosh m|z|

Sol)
m
2" +1 2| +1 2
2 = S
m* + cosh m|z| m m
. 1 .
By the Weierstrass M-test and the convergence of ZF = Uniform convergence

m=1




15.5 Uniform Convergence

M No Relation Between Absolute and Uniform Convergence
MEX. 5 No Relation Between Absolute and Uniform Convergence

= (-1 1 1 1
The series ( = — + —+--- converges absolutely but not uniformly.
;x%m x> +1 x*+2 x°+3 g y y
2 2 2
The series x*+——+—* X ... converge uniformly on the whole real line but not

1+X (1+ x2)2 (1+ xz)
absolutely.

A series of alternating terms whose absolute values form a monotone decreasing sequence
with limit zero.

By Leibniz test of calculus the remainder R, does no exceed its first term in absolute value.

1 1 : 1
Given e >0, for all x we have |R,(X)|<5——<=<¢ ifn>N(e)>=
X*+n+1 n &
N(e) does not depend on x =) uniform convergence
m-1
For any fixed x we have [ |__ 1 _k
X*4+m| xX*+m m

where k is a suitable constant, and kZ% diverges =) The convergence is not absolute.




