Ch. 16 Laurent Series. Residue Integration

서울대학교 조선해양공학과 서유택 2018.12

> Seoul National

※ 본 강의 자료는 이규열, 장범선, 노명일 교수님께서 만드신 자료를 바탕으로 일부 편집한 것입니다.

[Reference] Taylor and Maclaurin Series

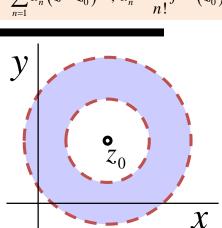
☑ Theorem 1 Taylor's Theorem

- Let f(z) be analytic in a domain D, and let $z = z_0$ be any point in D.
- Then there exists precisely one Taylor series with center z₀ that represents f (z).
- This representation is valid in the largest open disk with center z₀ in which f (z) is analytic.

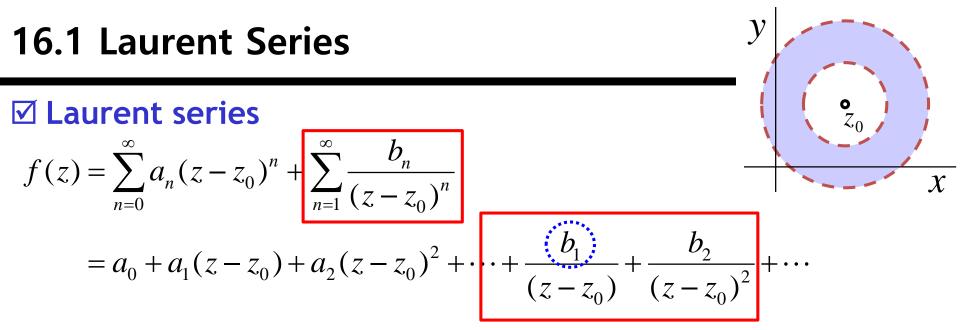
$$f(z) = \sum_{n=1}^{\infty} a_n (z - z_0)^n \quad \text{where} \quad a_n = \frac{1}{n!} f^{(n)}(z_0) = \frac{1}{2\pi i} \iint_C \frac{f(z^*)}{(z^* - z_0)^{n+1}} dz^*$$

$$Q: \text{ If } f(z) \text{ is singular at } z_0?$$
A: We cannot use a Taylor series.
Instead we may use Laurent series.
$$x$$

- Laurent series generalize Taylor series.
- Laurent series is a series of positive and negative integer powers of z - z₀ and converges in an annulus (a circular ring) with center z₀.
- By a Laurent series we can represent a given function f(z) that is analytic in an annulus and may have singularities outside the ring as well as in the "hole" of the annulus.
- For a given function the Taylor series with a given center z_0 is unique.
- In contrast, a function f(z) can have several Laurent series with the same center z_0 and valid in several concentric annuli.
- Laurent series converges for $0 < |z z_0| < R$, that is, everywhere near the center z_0 except at z_0 itself, where z_0 is a singular point of f(z).



Taylor Series $f(z) = \sum_{n=1}^{\infty} a_n (z - z_0)^n$, $a_n = \frac{1}{n!} f^{(n)}(z_0)$



- The series (or finite sum) of the negative powers of this Laurent series is called the principal part (주부) of the singularity of f(z) at z₀, and is used to classify this singularity (Sec. 16.2).
- The coefficient (b₁) of the power 1/(z − z₀) of this series is called the residue (♀♀) of f(z) at z₀.
- If in an application we want to develop a function f(z) in powers of $z z_0$ when f(z) is singular at z_0 , we cannot use a Taylor series.
- Instead we may use Laurent series, consisting of positive integer powers of $z z_0$ (and a constant) as well as negative integer powers of $z z_0$.

Taylor Series

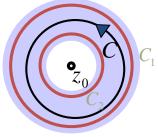
$$f(z) = \sum_{n=1}^{\infty} a_n (z - z_0)^n$$
, $a_n = \frac{1}{n!} f^{(n)}(z_0)$

☑ Theorem 1 Laurent's Theorem

Let f(z) be analytic in a domain containing two concentric circles C_1 and C_2 , with center z_0 and the annulus between them (blue in the figure). Then f(z) can be represented by the Laurent series

(1)
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

= $a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots + \frac{b_1}{(z - z_0)} + \frac{b_2}{(z - z_0)^2} + \dots$



Laurent's theorem

consisting of nonnegative and negative powers.

The coefficients of this Laurent series are given by the integrals

(2)
$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{(z^* - z_0)^{n+1}} dz^*, \ b_n = \frac{1}{2\pi i} \oint_C (z^* - z_0)^{n-1} f(z^*) dz^*,$$

taken counterclockwise around any simple closed path C that lies in the annulus and encircles the inner circle. we may write (denoting b_n by a_{-n})

(1')
$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$
 (2') $a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{(z^*-z_0)^{n+1}} dz^*, \quad (n=0, \pm 1, \pm 2, \cdots)$

Proof)

(a) The nonnegative powers are those of a Taylor series

$$f(z) = g(z) + h(z) = \frac{1}{2\pi i} \iint_{C_1} \frac{f(z^*)}{z^* - z} dz^* - \frac{1}{2\pi i} \iint_{C_2} \frac{f(z^*)}{z^* - z} dz^*$$
$$g(z) = \frac{1}{2\pi i} \iint_{C_1} \frac{f(z^*)}{z^* - z} dz^* = \sum_{n=0}^{\infty} a_n (z - z_0)^n \qquad a_n = \frac{1}{2\pi i} \iint_{C_1} \frac{f(z^*)}{(z^* - z_0)^{n+1}} dz^* \qquad f(z_0) = \frac{1}{2\pi i} \iint_{C_1} \frac{f(z^*)}{(z^* - z_0)^{n+1}} dz^*$$

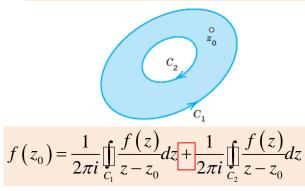
We can replace C_1 by C, by the principle of deformation of path.

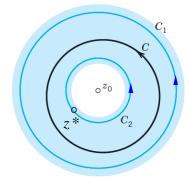
:
$$a_n = \frac{1}{2\pi i} \prod_{C} \frac{f(z^*)}{(z^* - z_0)^{n+1}} dz^*$$

(b) The negative powers

Since z lies in the annulus, it lies in the exterior of the path C_2

14.3 Cauchy's Integral Formula





Nationa

$$b_n = \frac{1}{2\pi i} \iint_C \left(z^* - z_0 \right)^{n-1} f\left(z^* \right) dz^* \qquad \frac{1 - q^{n+1}}{1 - q} = \frac{1}{1 - q} - \frac{q^{n+1}}{1 - q}$$

$$\frac{1}{(z^*-z)} = \frac{1}{z^*-z_0 - (z-z_0)} = \frac{-1}{(z-z_0)\left(1 - \frac{z^*-z_0}{z-z_0}\right)}$$

$$-\frac{1}{z-z_0}\frac{1}{1-\left(\frac{z^*-z_0}{z-z_0}\right)}\left(\frac{z^*-z_0}{z-z_0}\right)^{n+1} = \frac{-1}{z-z^*}\left(\frac{z^*-z_0}{z-z_0}\right)^{n+1}$$

$$\frac{1}{z^* - z} = -\frac{1}{z - z_0} \left[1 + \frac{z^* - z_0}{z - z_0} + \left(\frac{z^* - z_0}{z - z_0}\right)^2 + \dots + \left(\frac{z^* - z_0}{z - z_0}\right)^n \right] - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+1} - \frac{1}{z - z^*} \left(\frac{z^* - z_0}{z - z_0}\right)^{n+$$

$$h(z) = -\frac{1}{2\pi i} \iint_{C} \frac{f(z^{*})}{z^{*} - z_{0}} dz^{*} = \frac{1}{2\pi i} \begin{cases} \frac{1}{z - z_{0}} \iint_{C_{2}} f(z^{*}) dz^{*} + \frac{1}{(z - z_{0})^{2}} \iint_{C_{2}} (z^{*} - z_{0}) f(z^{*}) dz^{*} + \cdots \\ + \frac{1}{(z - z_{0})^{n}} \iint_{C_{2}} (z^{*} - z_{0})^{n-1} f(z^{*}) dz^{*} = b_{n} \\ + \frac{1}{(z - z_{0})^{n+1}} \iint_{C_{2}} (z^{*} - z_{0})^{n} f(z^{*}) dz^{*} \end{cases} + R_{n}^{*}(z)$$

$$R_{n}^{*}(z) = \frac{1}{2\pi i (z - z_{0})^{n+1}} \iint_{C_{2}} \frac{(z^{*} - z_{0})^{n+1}}{z - z^{*}} f(z^{*}) dz^{*}$$

This establishes Laurent's theorem, provided $\lim_{n\to\infty} R_n^*(z) = 0$

(c) Convergence proof of $\lim_{n\to\infty} R_n^*(z) = 0$

$$\left|\frac{f(z^*)}{z-z^*}\right| < \tilde{M} \quad \text{for all } z^* \text{ on } C_2$$

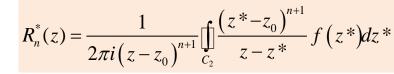
because $f(z^*)$ is analytic in the annulus and on C_2 and z^* lies on C_2 and z outside, so that $z - z^* \neq 0$

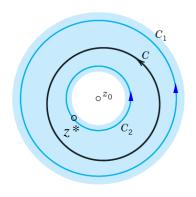
$$L = 2\pi r_2$$
 = length of C_2 , $r_2 = |z^* - z_0|$ = radius of C_2 = const

$$\left|R_{n}^{*}(z)\right| \leq \frac{1}{2\pi \left|z-z_{0}\right|^{n+1}} r_{2}^{n+1} \tilde{ML} = \frac{\tilde{ML}}{2\pi} \left(\frac{r_{2}}{\left|z-z_{0}\right|}\right)^{n+1}$$

☑ Uniqueness.

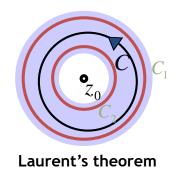
- The Laurent series of a given analytic function f(z) in its annulus of convergence is unique.
- *f*(*z*) may have different Laurent series in two annuli with the same center.
 ⇒ The uniqueness is essential.



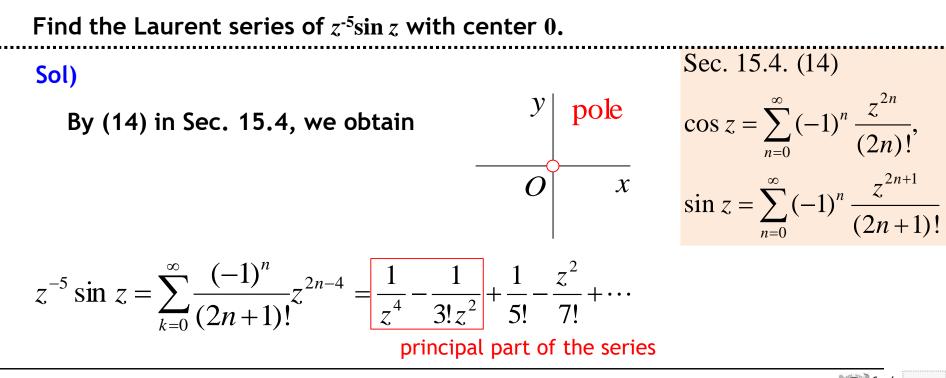


Theorem 1) Laurent's Theorem

(1)
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

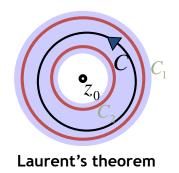


☑ Ex. 1 Use of Maclaurin Series



Theorem 1) Laurent's Theorem

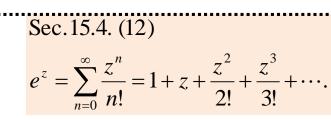
(1)
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$



☑ Ex. 2 Substitution

Find the Laurent series of $z^2e^{1/z}$ with center 0.

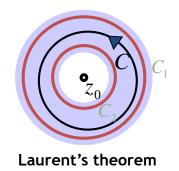
Sol) By (12) in Sec. 15.4, with z replaced by 1/z we obtain a Laurent series whose principal part is an infinite series,



$$\frac{y}{O} = \frac{z^2}{n} = z^2 \sum_{n=0}^{\infty} \frac{(1/z)^n}{n!} = \sum_{n=0}^{\infty} \frac{z^{2-n}}{n!} = z^2 + z + \frac{1}{2} + \frac{1}{3!z} + \frac{1}{4!z^2} \cdots (|z| > 0)$$

Theorem 1) Laurent's Theorem

(1)
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$



☑ Ex. 3 Development of 1/(1-z)

Develop 1/(1-z) (a) in nonnegative powers of z, (b) in negative powers of z. (valid if |z| < 1). (valid if |z| > 1). Sol) Harmonic series (a) $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \cdots$ (valid if |z| < 1). (b) $\frac{1}{1-z} = \frac{-1}{z} \cdot \frac{1}{1-z^{-1}} = \frac{-1}{z} \cdot \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n = -\sum_{n=0}^{\infty} \frac{1}{z^{n+1}} = -\sum_{n=0}^{\infty} \frac{1}{z^{n+1}} = -\frac{1}{z} - \frac{1}{z^2} - \cdots$ (valid if |z| > 1).

Theorem 1) Laurent's Theorem (1) $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$

☑ Ex. 4 Laurent Expansions in Different Concentric Annuli

Find all Laurent series of $1/(z^3 - z^4)$ with center 0.

Sol) Multiplying by $1/z^3$, we get from Example 3

$$\begin{array}{c|ccc} \text{le 3} & y & \text{pole} \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ O & 1 & x \end{array}$$

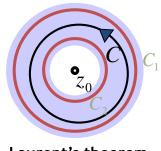
Example 16.1-3
(a)
$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$
 ($|z| < 1$)
(b) $\frac{1}{1-z} = -\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}$ ($|z| > 1$)

(I)
$$\frac{1}{z^3} \frac{1}{(1-z)} = \sum_{n=0}^{\infty} z^{n-3} = \frac{1}{z^3} + \frac{1}{z^2} + \frac{1}{z} + 1 + z + \cdots$$
 (0 < $|z| < 1$)

(II)
$$\frac{1}{z^3} \frac{1}{(1-z)} = -\sum_{n=0}^{\infty} \frac{1}{z^{n+4}} = -\frac{1}{z^4} - \frac{1}{z^5} - \dots \quad (|z| > 1)$$

Theorem 1) Laurent's Theorem

(1)
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$



Laurent's theorem

☑ Ex. 5 Use of Partial Fractions

Find all Taylor and Laurent series of f(z) with center 0.

Sol) In terms of partial fraction

$$f(z) = -\frac{1}{z-1} - \frac{1}{z-2} = \frac{1}{1-z} - \frac{1}{z-2}$$

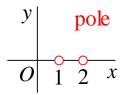
(a) and (b) in Example 3 take care of the first fraction.

(a)
$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$
 ($|z| < 1$)
(b) $\frac{1}{1-z} = -\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}$ ($|z| > 1$)

$$f(z) = \frac{-2z+3}{z^2 - 3z + 2}$$

Example 16.1 - 3

(a)
$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$
 ($|z| < 1$)
(b) $\frac{1}{1-z} = -\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}$ ($|z| > 1$)



Seoul National **13** Univ

For the second fraction,

(c)
$$-\frac{1}{z-2} = \frac{1}{2\left(1-\frac{z}{2}\right)} = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} z^n$$
 $(|z|<2)$ (d) $-\frac{1}{z-2} = -\frac{1}{z\left(1-\frac{2}{z}\right)} = -\sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}}$ $(|z|>2)$

(I) From (a) and (c), valid for |z| < 1,

$$f(z) = \sum_{n=0}^{\infty} \left(1 + \frac{1}{2^{n+1}} \right) z^n = \frac{3}{2} + \frac{5}{4} z + \frac{9}{8} z^2 + \cdots$$

(II) From (c) and (b), valid for 1 < |z| < 2,

$$f(z) = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} z^n - \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} = \frac{1}{2} + \frac{1}{4} z + \dots - \frac{1}{z} - \frac{1}{z^2} - \dots$$

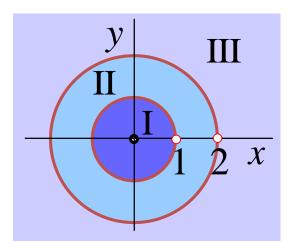
(III) From (d) and (b), valid for |z| > 2,

$$f(z) = -\sum_{n=0}^{\infty} (2^n + 1) \frac{1}{z^{n+1}} = -\frac{2}{z} - \frac{3}{z^2} - \frac{5}{z^3} - \frac{9}{z^4} \cdots$$

Example 16.1-3 (a) $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$ (|z| < 1) (b) $\frac{1}{1-z} = -\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}$ (|z| > 1)

y

pole



Theorem 1) Laurent's Theorem (1) $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$

Ex) Expand the function in a Laurent series that converges for e^z 0 < |z| < R and determine the precise region of convergence. $z^2 - z^3$

$$\frac{e^{z}}{z^{2}-z^{3}} = \frac{1}{z^{2}} \frac{e^{z}}{1-z} = \frac{1}{z^{2}} \left(1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots \right) \left(1+z+z^{2}+z^{3}+\cdots \right)$$
$$= \frac{1}{z^{2}} \left(1+2z+\frac{5}{2}z^{2}+\frac{8}{3}z^{3}+\cdots \right)$$
$$= \frac{1}{z^{2}} + \frac{1}{z} + \frac{5}{2} + \frac{8}{3}z + \cdots$$

 $R = \lim_{n \to \infty} \left| \frac{a_n}{a} \right|$

Theorem 1) Laurent's Theorem (1) $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$

Ex) Find the Laurent series that converges for $0 < |z-z_0| < R \frac{\cos z}{(z-\pi)^2}$, $z_0 = \pi$ and determine the precise region of convergence.

$$\frac{\cos z}{(z-\pi)^2} = \frac{-\cos(z-\pi)}{(z-\pi)^2}$$
$$= -\frac{1}{(z-\pi)^2} \left(1 - \frac{(z-\pi)^2}{2!} + \frac{(z-\pi)^4}{4!} + \cdots\right)$$
$$= -\frac{1}{(z-\pi)^2} + \frac{1}{2} - \frac{(z-\pi)^2}{4!} + \cdots$$

Sec. 15.4. (14) $\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!},$ $\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$

$$0 < |z - \pi| < \infty$$

16.2 Singularities (특이점) and Zeros (영점). Infinity

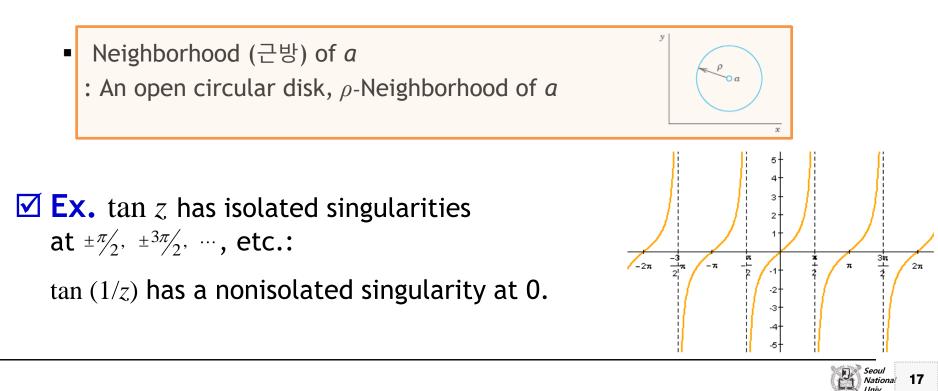
☑ Singular Point

- f(z) is singular or has a singularity at a point $z = z_0$ (a singular point of f(z))
- \iff f(z) is not analytic at $z = z_0$

but every neighborhood of $z = z_0$ contains points at which f(z) is analytic.

• $z = z_0$ is an isolated singularity (고립특이점) of f(z)

 $\Rightarrow z = z_0$ has a neighborhood without further singularities of f(z).



☑ Isolated singularities of f(z) at $z - z_0$ can be classified by the Laurent series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

valid in the immediate neighborhood of the singular point $z - z_0$, except at z_0 itself, that is, in a region of the form $0 < |z - z_0| < R$.

- Principal part: The second series, containing the negative powers, of Laurent series.
- If the principal part has <u>only finitely many terms</u>, it is of the form

$$\frac{b_1}{z-z_0} + \dots + \frac{b_m}{\left(z-z_0\right)^m} \qquad (b_m \neq 0, \ m: \text{order})$$

the singularity of f(z) at $z = z_0$ is called a **pole** (국), and *m* is called its **order** (위수)

- Simple order (단순국): Poles of the first order (*m* = 1)
- Isolated essential singular point (고립 진성 특이점): If the principal part has infinitely many terms.

☑ Ex. 1 Poles (극). Essential Singularities

• The function $f(z) = \frac{1}{z(z-2)^5} + \frac{3}{(z-2)^2}$ has a simple pole z = 0and a pole of fifth order at z = 2.

•
$$e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{n! z^n} = 1 + \frac{1}{z} + \frac{1}{2! z^2} + \cdots$$
 $\sin \frac{1}{z} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)! z^{2n+1}} = \frac{1}{z} - \frac{1}{3! z^3} + \frac{1}{5! z^5} - + \cdots$

 \Rightarrow isolated essential singularity at z = 0.

z⁻⁵sinz: a fourth-order pole at 0

•
$$1/(z^3 - z^4)$$
: a third-order pole at 0

Ex. 1
$$z^{-5} \sin z = \frac{1}{z^4} - \frac{1}{3!z^2} + \frac{1}{5!} - \frac{z^2}{7!} + \cdots$$

Ex. 4

$$\frac{1}{z^3} \frac{1}{(1-z)} = \frac{1}{z^3} + \frac{1}{z^2} + \frac{1}{z} + 1 + z + \cdots \quad (0 < |z| < 1)$$

$$f(z) = \frac{1}{z^2}$$
 has a pole at $z = 0$, and $|f(z)| \to \infty$ as $z \to 0$ in any manner.

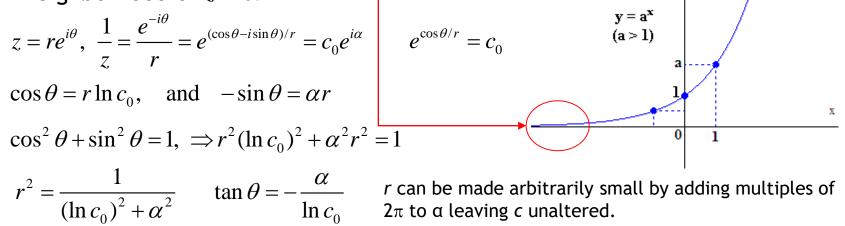
☑ Theorem 1 Poles (국)

If f(z) is analytic and has a pole at $z = z_0$, then $|f(z)| \to \infty$ as $z \to z_0$ in any manner.

☑ Ex.3 Behavior Near an Essential Singularity (진성 특이점)

The function $f(z) = e^{1/z}$ has an essential singularity at z = 0.

- It has no limit for approach along the imaginary axis.
- It approaches zero if $z \to 0$ $(1/z \to \infty)$ through negative real values.
- It takes on any given value $c = c_0 e^{i\alpha} \neq 0$ in an arbitrarily small ε-neighborhood of z = 0.



☑ Theorem 1 Poles

If f(z) is analytic and has a pole at $z = z_0$, then $|f(z)| \rightarrow \infty$ as $z \rightarrow z_0$ in any manner.

☑ Theorem 2 Picard's Theorem

If f(z) is analytic and has an isolated essential singularity at a point z_0 , it takes on every value, with at most one exceptional value, in an arbitrarily small ε neighborhood of z_0 .

☑ Zeros of Analytic Functions

Zero of an analytic function f(z) in a domain D: a $z = z_0$ in D such that $f(z_0) = 0$

- A zero has order (위수) n
 - : Not only f but also the derivatives $f', f'', \dots, f^{(n-1)}$ are all 0 at $z = z_0$ but $f^{(n)}(z_0) \neq 0$.
- Simple zero: A first-order zero (only $f(z_0) = 0$)

☑ Ex. 4 Zeros

- The function $1+z^2$ has simple zeros at $\pm i$.
- The function $(1-z^4)^2$ has second-order zeros at ± 1 and $\pm i$.
- The function e^z has no zeros.
- The function sin z has simple zeros at 0, $\pm \pi$, $\pm 2\pi$, ...

 $\sin^2 z$ has second-order zeros.

$$\sin z = \frac{1}{2i}(e^{iz} - e^{-iz})$$

☑ Taylor Series at a Zero.

At an nth-order zero $z = z_0$ of f(z) \iff The derivatives $f'(z_0)$, \cdots , $f^{(n-1)}(z_0)$ are zero \implies The first few coefficients $a_0 = \ldots = a_{n-1} = 0$ of the Taylor series are zero, whereas $a_n \neq 0$

$$f(z) = a_n (z - z_0)^n + a_{n+1} (z - z_0)^{n+1} + \dots = (z - z_0)^n \left[a_n + a_{n+1} (z - z_0) + a_{n+2} (z - z_0)^2 + \dots \right]$$

☑ Theorem 3 Zeros

The zeros of an analytic function f(z) ($\neq 0$) are isolated; that is, each of them has a neighborhood that contains no further zeros of f(z).

☑ Theorem 4 Poles and Zeros

Let f(z) be analytic at $z = z_0$ and have a zero of nth order at $z = z_0$. Then 1/f(z) has a pole of *n*th order at $z = z_0$; and so does h(z)/f(z), provided h(z) is analytic at $z = z_0$ and $h(z) \neq 0$.

☑ [Reference] Riemann Sphere. Point at Infinity

Riemann Sphere: A sphere S of diameter 1 touching the complex z-plane at z = 0

Image (상) of a point P (a number z in the plane)

: The intersection P* of the segment PN with S, where N is the "North Pole" diametrically opposite to the origin in the plane.

- Each point on S represents a complex number z, except for N, which does not correspond to any point in the complex plane.
- **Point at infinity** (denoted ∞): The image of N
- Extended complex plane: The complex plane with ∞.

z (복소평면, P)에 대응하는 점들이 S 위에 존재

N

P*

☑ Analytic or Singular at Infinity

Set z = 1/w and f(1/w) = g(w)

- f(z) is analytic at infinity $\iff g(w)$ is analytic at w = 0.
- f(z) is singular at infinity $\iff g(w)$ is singular at w = 0.
- *f*(*z*) has an nth-order zero at infinity ⇐⇒ *g*(*w*) has such a zero at *w* = 0.
- Similarly for poles and essential singularities.

16.3 Residue Integration Method (유수적분)

The purpose of **Cauchy's residue integration:** the evaluation of integrals

$$\oint_C f(z) dz$$

Laurent's theorem

If f(z) has a singularity at a point $z = z_0$ inside C, but is otherwise analytic on C and inside C, then f(z) has a Laurent series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{(b_1)}{z - z_0} + \frac{(b_2)}{(z - z_0)^2} + \cdots$$

that converges for all points near $z = z_0$ (except at $z = z_0$ itself), in some domain of the form $0 < |z - z_0| < R$.

Now comes the key idea. The coefficient b_1 of the first negative power $1/(z - z_0)$ of this Laurent series is given by the integral formula (2) with n = 1, namely,

$$b_1 = \frac{1}{2\pi i} \oint_C f(z) dz \implies \oint_C f(z) dz = 2\pi i \cdot b_1 \leftarrow \cdots$$

The coefficient b_1 is called the residue (\mathbf{R}) of f(z) at $z = z_0$.

$$b_1 = \operatorname{Res}_{z=z_0} f(z)$$

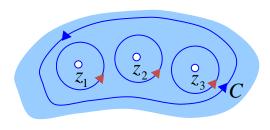
Sec. 16.1 (2)
$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{(z^* - z_0)^{n+1}} dz^*$$

 $b_n = \frac{1}{2\pi i} \oint_C (z^* - z_0)^{n-1} f(z^*) dz^*$

 $\oint_C f(z)dz = 2\pi i \cdot b_1$ Several Singularities Inside the Contour $b_1 = \operatorname{Res} f(z)$ ☑ Theorem 1 Residue Theorem Let f(z) be analytic inside a simple closed path C and on C, except for finitely many singular points z_1, z_2, \dots, z_k inside C. Then the integral of f(z) taken counterclockwise around C equals $2\pi i$ times the sum of the residues of f(z) at z_1, z_2, \dots, z_k : (6) $\oint_C f(z) dz = 2\pi i \sum_{i=1}^{k} \operatorname{Res}_{z=z_j} f(z)$ $\frac{O}{Z_1}$

☑ Theorem 1 Residue Theorem

(6)
$$\oint_C f(z)dz = 2\pi i \sum_{j=1}^k \operatorname{Res}_{z=z_j} f(z)$$



☑ Ex. 1 Evaluation of an Integral by Means of a Residue

Integrate the function $f(z) = z^{-4} \sin z$ counterclockwise around the unit circle C.

Sol) From (14) in Sec. 15.4 we obtain the Laurent series

$$f(z) = \frac{\sin z}{z^4} = \frac{1}{z^3} - \frac{1}{3!z} + \frac{z}{5!} - \frac{z^3}{7!} + \cdots$$

(1)
$$\oint_C f(z)dz = 2\pi ib_1$$

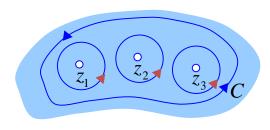
Sec 15.4 (14)
$$\sin z = \sum_{k=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - + \cdots$$

which converges for |z| > 0 (that is, for all $z \neq 0$). This series shows that f(z) has a pole of third order at z = 0 and the residue $b_1 = -1/3!$. From (1) we thus obtain the answer.

$$\oint_C \frac{\sin z}{z^4} dz = 2\pi i b_1 = 2\pi i \left(-\frac{1}{6}\right) = -\frac{\pi i}{3}$$

☑ Theorem 1 Residue Theorem

(6)
$$\oint_C f(z) dz = 2\pi i \sum_{j=1}^k \operatorname{Res}_{z=z_j} f(z)$$



☑ Ex. 2 Use the Right Laurent Series

Integrate the function $f(z) = 1/(z^3 - z^4)$ clockwise around the circle C: |z| = 1/2

Sol)
$$z^3 - z^4 = z^3(1 - z)$$
 shows that $f(z)$ is singular at $z = 0$ and $z = 1$.

(I)
$$\frac{1}{z^3} \frac{1}{(1-z)} = \sum_{n=0}^{\infty} z^{n-3} = \frac{1}{z^3} + \frac{1}{z^2} + \frac{1}{z} + 1 + z + \dots \quad (0 < |z| < 1)$$

(II) $\frac{1}{z^3} \frac{1}{(1-z)} = -\sum_{n=0}^{\infty} \frac{1}{z^{n+4}} = -\frac{1}{z^4} - \frac{1}{z^5} - \dots \quad (|z| > 1)$

Example 16.1 - 4

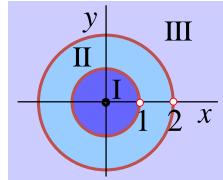
Now z = 1 lies outside *C*. Hence it is of no interest here. 0 < |z| < 1. This is series (I) in Example 4, Sec. 16.1,

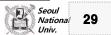
We see from it that this residue is 1. Clockwise integration thus yields

$$\oint_C \frac{dz}{z^3 - z^4} = -2\pi i \operatorname{Res}_{z=0} f(z) = -2\pi i$$

CAUTION! Had we used the wrong series (II) in Example 4, Sec. 16.1,

we would have obtained the wrong answer, 0, because this series has no power 1/z.





☑ Formulas for Residues

To calculate a residue at a pole, we need not produce a whole Laurent series, but, more economically, we can derive formulas for residues once and for all.

Simple Poles

1.
$$z_0$$
 is a simple pole of $f(z)$: (3) $\underset{z=z_0}{\text{Res}} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z)$
Proof) $f(z) = \frac{b_1}{(z - z_0)} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots (0 < |z - z_0| < R)$
 $\lim_{z \to z_0} (z - z_0) f(z) = b_1 + a_0(z - z_0) + a_1(z - z_0)^2 + a_2(z - z_0)^3 + \cdots = b_1$
2. Assume that $f(z) = \frac{p(z)}{q(z)}$, $p(z_0) \neq 0$, and a simple zero at z_0
(4) $\underset{z=z_0}{\text{Res}} f(z) = \underset{z=z_0}{\text{Res}} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$
Proof) $q(z) = q(z_0) + (z - z_0)q'(z_0) + \frac{(z - z_0)^2}{2!}q''(z_0) + \frac{(z - z_0)^3}{3!}q''' + \cdots$
 $\underset{z=z_0}{\text{Res}} f(z) = \underset{z \to z_0}{\lim} (z - z_0) \frac{p(z)}{q(z)} = \underset{z \to z_0}{\lim} \frac{(z - z_0)p(z)}{(z - z_0)[q'(z_0) + (z - z_0)q''(z_0)/2 + \cdots]} + \cdots = \frac{p(z)}{q'(z_0)}$

National

Univ.

30

☑ Formulas for Residues

To calculate a residue at a pole, we need not produce a whole Laurent series, but, more economically, we can derive formulas for residues once and for all.

Poles of Any Order

An mth-order pole:
$$\operatorname{Res}_{z=z_0} f(z) = \frac{1}{(m-1)!} \lim_{z \to z_0} \left\{ \frac{d^{m-1}}{dz^{m-1}} \left[(z-z_0)^m f(z) \right] \right\}$$

A second-order pole:
$$\operatorname{Res}_{z=z_0} f(z) = \lim_{z \to z_0} \left[(z-z_0)^2 f(z) \right]'$$

Proof)
$$f(z) = \frac{b_m}{(z-z_0)^m} + \frac{b_{m-1}}{(z-z_0)^{m-1}} + \dots + \frac{b_1}{(z-z_0)} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \dots$$

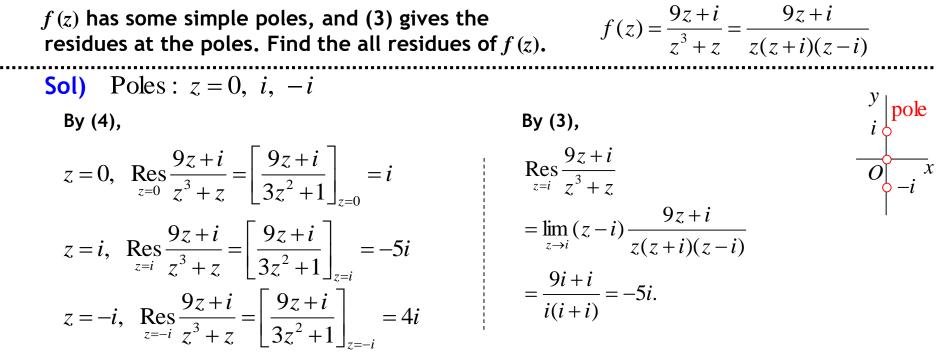
$$(z-z_0)^m f(z) = b_m + b_{m-1}(z-z_0) + \dots + b_1(z-z_0)^{m-1} + a_0(z-z_0)^m + \dots$$

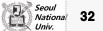
$$b_{1} = \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \left[\left(z - z_{0} \right)^{m} f(z) \right]$$

☑ Simple Poles.

- **1.** z_0 is a simple pole of f(z): (3) $\operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z z_0) f(z)$
- 2. Assume that $f(z) = \frac{p(z)}{q(z)}$, $p(z_0) \neq 0$, and a simple zero at z_0 (4) $\underset{z=z_0}{\operatorname{Res}} f(z) = \underset{z=z_0}{\operatorname{Res}} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$

☑ Ex. 3 Residue at a Simple pole





☑ Simple Poles.

1.
$$z_0$$
 is a simple pole of $f(z)$: (3) Res $f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z)$

2. Assume that $f(z) = \frac{p(z)}{q(z)}$, $p(z_0) \neq 0$, and a simple zero at z_0 (4) Res $f(z) = \operatorname{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$

☑ Ex. 5 Residue at a Pole of Higher Order

Evaluate the following integral counterclockwise around any simple closed path such that (a) 0 and 1 are inside C, (b) 0 is inside, 1 outside, (c) 1 is inside, 0 outside (d) 0 and 1 are outside.

$$\oint_C \frac{4-3z}{z^2-z} dz = \oint_C \frac{4-3z}{z(z-1)} dz$$

Sol) The integrand has simple poles at 0 and 1, with residues [by (3)]

$$\operatorname{Res}_{z=0} \frac{4-3z}{z(z-1)} = \left[\frac{4-3z}{(z-1)}\right]_{z=0} = -4,$$

$$\operatorname{Res}_{z=1} \frac{4-3z}{z(z-1)} = \left[\frac{4-3z}{z}\right]_{z=1} = 1.$$

 $\iint_{C} f(z) dz = 2\pi i \sum_{i=1}^{k} \operatorname{Res}_{z=z_{i}} f(z)$

☑ Simple Poles.

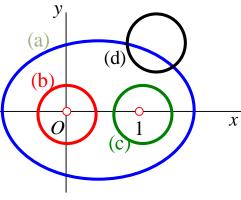
1.
$$z_0$$
 is a simple pole of $f(z)$: (3) Res $f(z) = b_1 = \lim_{z \to z_1} (z - z_0) f(z)$

2. Assume that $f(z) = \frac{p(z)}{q(z)}$, $p(z_0) \neq 0$, and a simple zero at z_0 (4) Res $f(z) = \operatorname{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q(z)}$

☑ Ex. 5 Residue at a Pole of Higher Order

Evaluate the following integral counterclockwise around any simple closed path such that (a) 0 and 1 are inside C, (b) 0 is inside, 1 outside, (c) 1 is inside, 0 outside (d) 0 and 1 are outside.

$$\oint_C \frac{4-3z}{z^2-z} dz = \oint_C \frac{4-3z}{z(z-1)} dz$$



$$\operatorname{Res}_{z=0} \frac{4-3z}{z(z-1)} = -4, \qquad \operatorname{Res}_{z=1} \frac{4-3z}{z(z-1)} = 1.$$
(a) $2\pi i (-4+1) = -6\pi i$ (b) $2\pi i (-4) = -8\pi i$
(c) $2\pi i (1) = 2\pi i$ (d) 0

 $\iint_{C} f(z) dz = 2\pi i \sum_{i=1}^{k} \operatorname{Res}_{z=z_{i}} f(z)$

☑ Simple Poles.

$$\oint_C f(z)dz = 2\pi i \sum_{j=1}^k \operatorname{Res}_{z=z_j} f(z)$$

- **1.** z_0 is a simple pole of f(z): (3) $\operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z z_0) f(z)$
- 1. z_0 is a simple point of $j \ll z_{z=z_0}$ 2. Assume that $f(z) = \frac{p(z)}{q(z)}$, $p(z_0) \neq 0$, and a simple zero at z_0 (4) $\underset{z=z_0}{\operatorname{Res}} f(z) = \underset{z=z_0}{\operatorname{Res}} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$

✓ Ex. Evaluate (counterclockwise).

$$\oint_C \tan 2\pi z dz, \ C :|z - 0.2| = 0.2$$

y singular

$$\frac{y}{O} = \lim_{z \to 1/4} -\frac{\sin 2\pi z}{2\pi \sin 2\pi z} = -\frac{1}{2\pi}$$

$$\prod_{c} \tan 2\pi z dz = -2\pi i \frac{1}{2\pi} = -i$$

16.4 Residue Integration of Real Integrals

\square Integrals of Rational Functions (유리함수) of $\cos\theta$ and $\sin\theta$

Certain classes of complicated real integrals can be integrated by the residue theorem, as we shall see.

We first consider integrals of the type

(1)
$$J = \int_0^{2\pi} F(\cos\theta, \sin\theta) d\theta \quad Ex) \frac{\sin^2\theta}{5 - 4\cos\theta}$$

where $F(\cos\theta, \sin\theta)$ is a real rational function of $\cos\theta$ and $\sin\theta$.

Setting $e^{i\theta} = z, dz/d\theta = ie^{i\theta}, d\theta = dz/iz$

Then,

(3)
$$J = \oint_C f(z) \frac{dz}{iz}$$
$$\begin{cases} \cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right) = \frac{1}{2} \left(z + \frac{1}{z} \right) \\ \sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right) = \frac{1}{2i} \left(z - \frac{1}{z} \right) \end{cases}$$

and, as θ ranges from 0 to 2π in (1), the variable $z = e^{i\theta}$ ranges counterclockwise once around the unit circle |z| = 1.

\square Integrals of Rational Functions of $\cos\theta$ and $\sin\theta$

(1)
$$J = \int_{0}^{2\pi} F(\cos\theta, \sin\theta) d\theta$$
 (3) $J = \oint_{C} f(z) \frac{dz}{iz}$
Real rational function
(3) $J = \oint_{C} f(z) \frac{dz}{iz}$
(3) $I = \oint_{C} f(z) \frac{dz}{iz}$
(4) $\frac{d\theta}{iz}$
Show by the present method that $\int_{0}^{2\pi} \frac{d\theta}{\sqrt{2} - \cos\theta} = 2\pi$.
(4) $\frac{d\theta}{\sqrt{2} - \cos\theta} = \frac{1}{2}(z+1/z)$ and $e^{i\theta} = z$ $(d\theta = dz/iz)$
Then the integral becomes
 $\int_{0}^{2\pi} \frac{d\theta}{\sqrt{2} - \cos\theta} = \oint_{C} \frac{dz/iz}{\sqrt{2} - \frac{1}{2}(z+\frac{1}{z})} = -\frac{2}{i} \oint_{C} \frac{dz}{(z-\sqrt{2}-1)(z-\sqrt{2}+1)}$
C: counterclockwise once

around the unit circle |z| = 1

\square Integrals of Rational Functions of $\cos\theta$ and $\sin\theta$

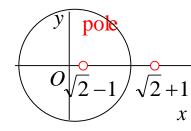
(1)
$$J = \int_0^{2\pi} F(\cos\theta, \sin\theta) d\theta \quad \Longrightarrow \quad (3) \quad J = \oint_C f(z) \frac{dz}{iz}$$

Real rational function

☑ Ex. 1 An Integral - continued

$$-\frac{2}{i} \oint_C \frac{dz}{(z-\sqrt{2}-1)(z-\sqrt{2}+1)}$$

C: counterclockwise once around the unit circle |z| = 1



Nationa

We see that the integrand has a simple pole at $z_1 = \sqrt{2} + 1$ outside the unit circle *C*, so that it is of no interest here, and another simple pole at $z_2 = \sqrt{2} - 1$.

(where
$$z - \sqrt{2} + 1 = 0$$
) inside *C* with

$$\operatorname{Res}_{z=z_{2}} \frac{1}{(z - \sqrt{2} - 1)(z - \sqrt{2} + 1)} = \left[\frac{1}{z - \sqrt{2} - 1}\right]_{z=\sqrt{2} - 1} = -\frac{1}{2}$$

$$-\frac{2}{i} \oint_{C} \frac{dz}{(z - \sqrt{2} - 1)(z - \sqrt{2} + 1)} = -\frac{2}{i} \cdot 2\pi i \cdot \operatorname{Res}_{z=z_{2}} \frac{1}{(z - \sqrt{2} - 1)(z - \sqrt{2} + 1)} = -\frac{2}{i} \cdot 2\pi i \cdot \left(-\frac{1}{2}\right) = 2\pi$$

☑ Improper Integral

As another large class, let us consider real integrals of the form

$$(4) \quad \int_{-\infty}^{\infty} f(x) dx$$

Such an integral, whose interval of integration is not finite is called an improper integral (이상적분), and it has the meaning

(5')
$$\int_{-\infty}^{\infty} f(x)dx = \lim_{a \to -\infty} \int_{a}^{0} f(x)dx + \lim_{b \to \infty} \int_{0}^{b} f(x)dx$$

If both limits exist, we may couple the two independent passages to $-\infty$ and ∞ , and write

(5)
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) dx$$

The limit in (5) is called the Cauchy principal value of the integral. It is written

pr.v.
$$\int_{-\infty}^{\infty} f(x) dx$$

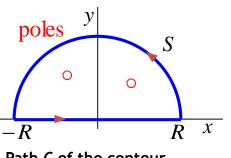
☑ Improper Integral

(5')
$$\int_{-\infty}^{\infty} f(x)dx = \lim_{a \to -\infty} \int_{a}^{0} f(x)dx + \lim_{b \to \infty} \int_{0}^{b} f(x)dx$$

(5)
$$\int_{-\infty}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)dx$$

- We assume that the function f(x) in (5') is a real rational function whose denominator(문모) is different from zero for all x and
- is of degree at least two units higher than the degree of the numerator(문자).
- Then the limits in (5') exist, and we may start from (5).

We consider the corresponding contour integral



Path C of the contour integral in (5*)

(5*) $\iint_C f(z)dz = \int_S f(z)dz + \int_{-R}^{R} f(x)dx$

around a path C

$$\oint_C f(z)dz = 2\pi i \sum \operatorname{Res} f(z)$$

Since f(x) is rational, f(z) has finitely many poles in the upper half-plane, and if we choose R large enough, then C encloses all these poles. By the residue theorem we then obtain

(6)
$$\int_{-R}^{R} f(x)dx = 2\pi i \sum \operatorname{Res} f(z) - \int_{S} f(z)dz$$

☑ Improper Integral

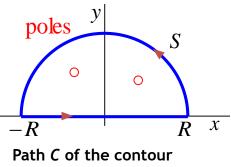
(5')
$$\int_{-\infty}^{\infty} f(x)dx = \lim_{a \to -\infty} \int_{a}^{0} f(x)dx + \lim_{b \to \infty} \int_{0}^{b} f(x)dx$$

(5)
$$\int_{-\infty}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)dx$$

(5*)
$$\iint_C f(z)dz = \int_S f(z)dz + \int_{-R}^R f(x)dx$$

around a path C

(6)
$$\int_{-R}^{R} f(x) dx = 2\pi i \sum \operatorname{Res} f(z) - \int_{S} f(z) dz$$



integral in (5*)

We prove that, if $R \rightarrow \infty$, the value of the integral over the semicircle *S* approaches zero.*

If we set $z=Re^{i\theta}$, S is represented by R=const.

$$f(z) \mid < \frac{k}{\mid z \mid^2} \qquad \left(\mid z \mid^2 = R > R_0 \right)$$

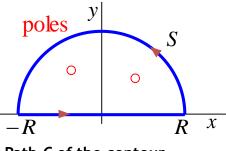
☑ Improper Integral

(5')
$$\int_{-\infty}^{\infty} f(x)dx = \lim_{a \to -\infty} \int_{a}^{0} f(x)dx + \lim_{b \to \infty} \int_{0}^{b} f(x)dx$$

(5)
$$\int_{-\infty}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)dx$$

By the ML-inequality

$$\left|\int_{s} f(z) dz\right| < \frac{k}{R^2} \pi R = \frac{k\pi}{R}$$

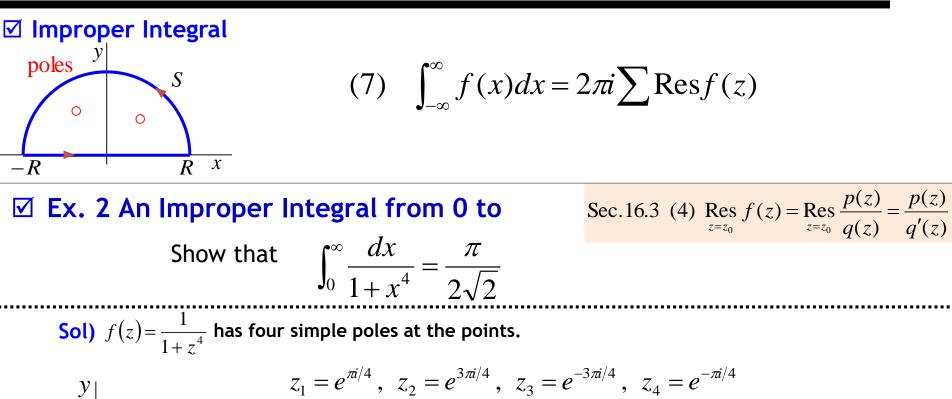


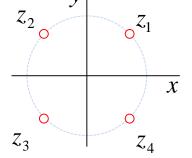
Path C of the contour integral in (5*)

as R approaches infinity, the value of the integral over S approaches zero,

(7)
$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum \operatorname{Res} f(z)$$

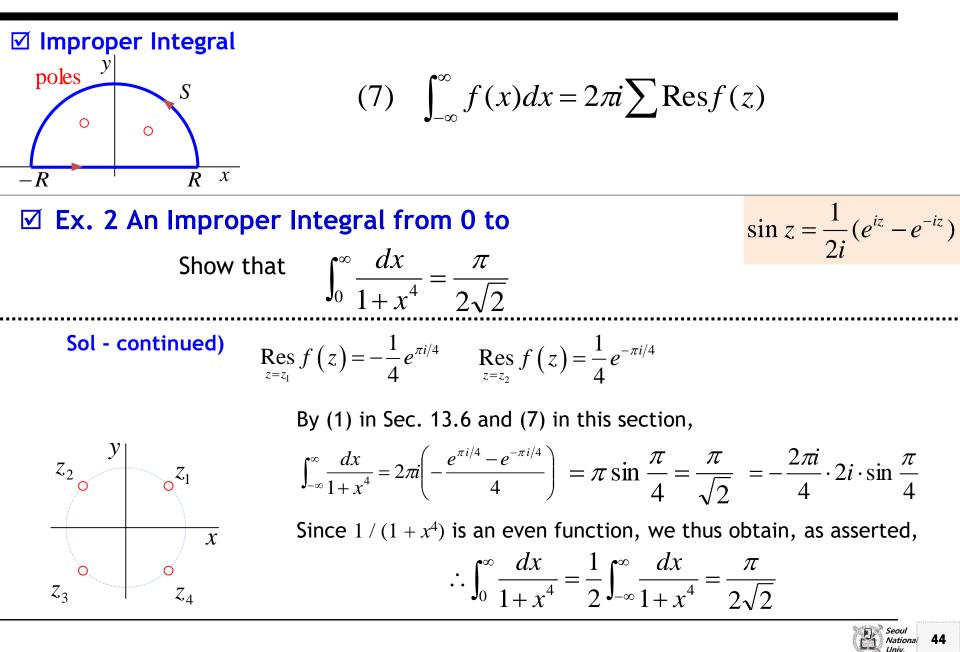
where we sum over all the residues of f(z) at the poles of f(z) in the upper half-plane.





The first two of these poles lie in the upper half-plane. From (4) in the last section we find the residues.

$$\operatorname{Res}_{z=z_{1}} f(z) = \left[\frac{1}{(1+z^{4})'}\right]_{z=z_{1}} = \left[\frac{1}{4z^{3}}\right]_{z=z_{1}} = \frac{1}{4}e^{-3\pi i/4} = -\frac{1}{4}e^{\pi i/4}$$
$$\operatorname{Res}_{z=z_{2}} f(z) = \left[\frac{1}{4z^{3}}\right]_{z=z_{2}} = \frac{1}{4}e^{-9\pi i/4} = \frac{1}{4}e^{-\pi i/4}$$



☑ Another Kind of Improper Integral

(11)
$$\int_{A}^{B} f(x)dx$$

(12)
$$\int_{A}^{B} f(x)dx = \lim_{\varepsilon \to 0} \int_{A}^{a-\varepsilon} f(x)dx + \lim_{\eta \to 0} \int_{a+\eta}^{B} f(x)dx$$

(13)
$$\lim_{\varepsilon \to 0} \left[\int_{A}^{a-\varepsilon} f(x)dx + \int_{a+\varepsilon}^{B} f(x)dx \right]$$

This is called the Cauchy principal value (주값) of the integral. It is written

pr. v. $\int_{A}^{B} f(x) dx$.

a-r a

a+r x

☑ Another Kind of Improper Integral

Proof) By the definition of a simple pole

1

$$f(z) = \frac{b_1}{z-a} + g(z), \quad b_1 = \operatorname{Res}_{z=a} f(z) \qquad 0 < |z-a| < R$$

Here g(z) is analytic on the semicircle of integration

$$C_2: z = a + re^{i\theta}, \quad 0 \le \theta \le \pi$$

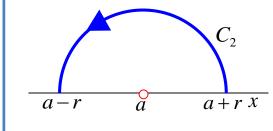
And for all z between C₂ and the x-axis $\rightarrow g(z) \leq M$

$$\int_{C_2} f(z)dz = \int_0^\pi \frac{b_1}{re^{i\theta}} ire^{i\theta}d\theta + \int_{C_2} g(z)dz = b_1\pi i + \int_{C_2} g(z)dz$$
$$\int_{C_2} g(z)dz \le ML = M\pi r \to 0 \quad \text{as } r \to 0 \quad \therefore \lim_{r \to 0} \int_{C_2} f(z)dz = \pi i \operatorname{Res}_{z=a} f(z)$$

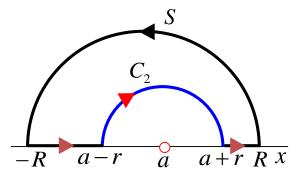
* Kreyszig E. Advanced Engineering Mathematics, 9th edition, Wiley, 2006, p723

☑ Another Kind of Improper Integral

If f(z) has a simple pole at z = a on the real axis, then



$$\lim_{z \to 0} \int_{C_2} f(z) dz = \pi i \operatorname{Res}_{z=a} f(z)$$



For sufficiently large R the integral over the entire contour has the value J given by $2\pi i$ times the sum of the residues of f(z) at the singularities in the upper half-plane.

$$J = 2\pi i \sum \operatorname{Res} f(z)$$

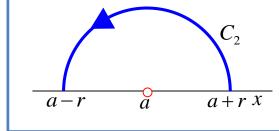
We assume that $f(z) \rightarrow 0$, as x goes infinite then the value of the integral over the large semicircle S approaches 0 as $R \rightarrow \infty$.

For $r \rightarrow 0$ the integral over C_2 (clockwise!) approaches the value.

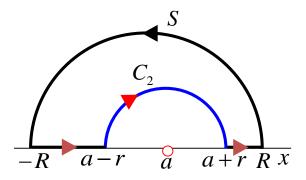
$$K = -\pi i \operatorname{Res}_{z=a} f(z)$$

☑ Another Kind of Improper Integral

Theorem 1 Simple Poles on the Real Axis If f(z) has a simple pole at z = a on the real axis, then



$$\lim_{r \to 0} \int_{C_2} f(z) dz = \pi i \operatorname{Res}_{z=a} f(z)$$



$$J = 2\pi i \sum \operatorname{Res} f(z) \qquad K = -\pi i \operatorname{Res}_{z=a} f(z)$$

Together this show that the principal value P of the integral from $-\infty$ to ∞ Plus K equals J.

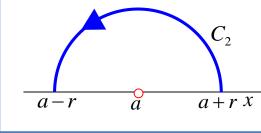
Hence
$$P = J - K = 2\pi i \sum \operatorname{Res} f(z) + \pi i \operatorname{Res}_{z=a} f(z)$$

If f(z) has several simple poles on the real axis, then

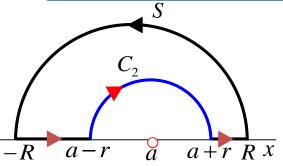
$$K = -\pi i \sum \operatorname{Res} f(z).$$

☑ Another Kind of Improper Integral

If f(z) has a simple pole at z = a on the real axis, then



$$\lim_{z \to 0} \int_{C_2} f(z) dz = \pi i \operatorname{Res}_{z=a} f(z)$$



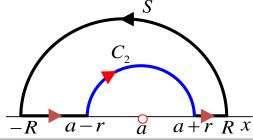
$$P = J - K = 2\pi i \sum \operatorname{Res} f(z) + \pi i \operatorname{Res}_{z=a} f(z).$$
$$J = 2\pi i \sum \operatorname{Res} f(z) \qquad K = -\pi i \sum \operatorname{Res} f(z).$$

Hence the desired formula is

(14) pr. v.
$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum \operatorname{Res} f(z) + \pi i \sum \operatorname{Res} f(z)$$

where the first sum extends over all poles in the upper half-plane and the second over all poles on the real axis, the latter being simple by assumption.

☑ Another Kind of Improper Integral



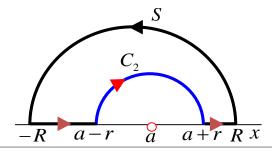
where the first sum extends over all poles in the upper half-plane and the second over all poles on the real axis, the latter being simple by assumption.

Nationa

(14) pr. v. $\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum \operatorname{Res} f(z) + \pi i \sum \operatorname{Res} f(z)$

$$\begin{array}{c} \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(3)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(4)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(4)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(4)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(4)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(4)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(4)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(4)} \operatorname{Res}_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z) \\ \text{(4)} \operatorname{Res}_{z=z_0} f(z) = h_1 = h_2 \\ \text{(4)} \operatorname{Res}_{z=z_0} f(z) = h_1 \\ \text{(4)} \operatorname{Res}_{z=$$

☑ Another Kind of Improper Integral



where the first sum extends over all poles in the upper half-plane and the second over all poles on the real axis, the latter being simple by assumption.

(14) pr. v. $\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum \operatorname{Res} f(z) + \pi i \sum \operatorname{Res} f(z)$

☑ Ex. 4 Poles on the Real Axis

