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Ch. 16 Laurent Series. 

Residue Integration

서울대학교

조선해양공학과

서유택

2018.12

※ 본 강의 자료는 이규열, 장범선, 노명일 교수님께서 만드신 자료를 바탕으로 일부 편집한 것입니다. 
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[Reference] Taylor and Maclaurin Series

 Theorem 1 Taylor’s Theorem

 Let f (z) be analytic in a domain D, and let z = z0 be any point in D. 

 Then there exists precisely one Taylor series with center z0 that 

represents f (z). 

 This representation is valid in the largest open disk with center z0 in 

which f (z) is analytic.
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Q: If f (z) is singular at z0?

A: We cannot use a Taylor series. 

Instead we may use Laurent series.
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16.1 Laurent Series 

 Laurent series generalize Taylor series.

 Laurent series is a series of positive and negative integer

powers of z – z0 and converges in an annulus (a circular 

ring) with center z0.

 By a Laurent series we can represent a given function f (z) that is analytic in an 

annulus and may have singularities outside the ring as well as in the “hole” of 

the annulus.
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 For a given function the Taylor series with a given center z0 is unique. 

 In contrast, a function f(z) can have several Laurent series with the same center 

z0 and valid in several concentric annuli.

 Laurent series converges for 0 < |z – z0| < R, that is, everywhere near the center 

z0 except at z0 itself, where z0 is a singular point of f(z).
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16.1 Laurent Series

 Laurent series 

 The series (or finite sum) of the negative powers of this Laurent series is 

called the principal part (주부) of the singularity of f(z) at z0, and is used to 

classify this singularity (Sec. 16.2).

 The coefficient (b1) of the power 1/(z – z0) of this series is called the residue 

(유수) of f(z) at z0.
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 If in an application we want to develop a function f(z) in powers of z – z0 when 

f(z) is singular at z0, we cannot use a Taylor series.

 Instead we may use Laurent series, consisting of positive integer powers of z –

z0 (and a constant) as well as negative integer powers of z – z0.
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 Theorem 1 Laurent’s Theorem
Let f(z) be analytic in a domain containing two concentric circles C1 and C2, with center  

z0 and the annulus between them (blue in the figure). Then f(z) can be represented by the 

Laurent series

consisting of nonnegative and negative powers. 

The coefficients of this Laurent series are given by the integrals

taken counterclockwise around any simple closed path C that lies in the 

annulus and encircles the inner circle. we may write (denoting bn by a-n)

16.1 Laurent Series
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16.1 Laurent Series

   

1 2

* *1 1
( ) ( ) ( ) * *

2 * 2 *
C C

f z f z
f z g z h z dz dz

i z z i z z 
   

  

 
 

1

0

0

*1
( ) *

2 *

n

n

nC

f z
g z dz a z z

i z z





  



 

 
1

1

0

*1
*

2 *
n n

C

f z
a dz

i z z 





14.3 Cauchy’s Integral Formula

(a) The nonnegative powers are those of a Taylor series
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15.6 Taylor Series

We can replace C1 by C, by the principle of 

deformation of path.
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(b) The negative powers
Since z lies in the annulus, it lies in the exterior of the path C2
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16.1 Laurent Series
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16.1 Laurent Series

(c) Convergence proof of 
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 Uniqueness.
 The Laurent series of a given analytic function f(z) in its annulus of 

convergence is unique.

 f(z) may have different Laurent series in two annuli with the same center.

⇒ The uniqueness is essential.

 

 
 

2

1

0*

1

0

*1
( ) * *

*2

n

n n

C

z z
R z f z dz

z zi z z













Seoul 
National
Univ.

9

16.1 Laurent Series

Theorem 1) Laurent’s Theorem
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16.1 Laurent Series

Theorem 1) Laurent’s Theorem
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 Ex. 2 Substitution

Find the Laurent series of z2e1/z with center 0.

By (12) in Sec. 15.4, with z replaced by 1/z we 

obtain a Laurent series whose principal part is 

an infinite series,
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16.1 Laurent Series

Theorem 1) Laurent’s Theorem
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16.1 Laurent Series

Theorem 1) Laurent’s Theorem
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Find all Laurent series of 1/(z3 - z4) with center 0.
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16.1 Laurent Series

Theorem 1) Laurent’s Theorem
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16.1 Laurent Series
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16.1 Laurent Series

Theorem 1) Laurent’s Theorem
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기 때문에 1<|z|인 경우는 고려할 필요 없음
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16.1 Laurent Series

Theorem 1) Laurent’s Theorem
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16.2 Singularities (특이점) and Zeros (영점). Infinity

 Singular Point
 f (z) is singular or has a singularity at a point z = z0 (a singular point of f(z))

f(z) is not analytic at z = z0

but every neighborhood of z = z0 contains points at which f (z) is analytic.

 z = z0 is an isolated singularity (고립특이점) of f(z)

z = z0 has a neighborhood without further singularities of f(z).

 Neighborhood (근방) of a

: An open circular disk, ρ-Neighborhood of a

 Ex. tan z has isolated singularities

at                  , etc.:

tan (1/z) has a nonisolated singularity at 0.

3,   ,   
2 2
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16.2 Singularities and Zeros. Infinity

 Isolated singularities of f (z) at z - z0 can be classified by the Laurent 

series

valid in the immediate neighborhood of the singular point z - z0, except at 

z0 itself, that is, in a region of the form 0 < |z - z0| < R.

 Principal part: The second series, containing the negative powers, of 

Laurent series.

 If the principal part has only finitely many terms, it is of the form

the singularity of f(z) at z = z0 is called a pole (극), and m is called its order 
(위수)

 Simple order (단순극): Poles of the first order (m = 1)

 Isolated essential singular point (고립 진성 특이점): If the principal part has 

infinitely many terms.
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16.2 Singularities and Zeros. Infinity

 Ex. 1 Poles (극). Essential Singularities

 The function                                        has a simple pole z = 0

and a pole of fifth order at z = 2.



⇒ isolated essential singularity at z = 0. 

 z-5sinz: a fourth-order pole at 0

 1/(z3 ‒ z4): a third-order pole at 0

 Ex. 2 Behavior Near a Pole

has a pole at z = 0, and                    as           in any manner.
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16.2 Singularities and Zeros. Infinity

 Ex.3 Behavior Near an Essential Singularity (진성 특이점)

The function f (z) = e1/z has an essential singularity at z = 0.

 It has no limit for approach along the imaginary axis.

 It approaches zero if z → 0 (1/z → ) through negative real values.

 It takes on any given value                  in an arbitrarily small 

ε-neighborhood of z = 0.

 Theorem 1 Poles (극)

If f(z) is analytic and has a pole at z = z0 , then             as z → z0 in any manner. f z 
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   r can be made arbitrarily small by adding multiples of 

2 to α leaving c unaltered.
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16.2 Singularities and Zeros. Infinity

 Theorem 1 Poles

If f(z) is analytic and has a pole at z = z0, then             as z → z0 in any 

manner.

 Theorem 2 Picard’s Theorem

If f(z) is analytic and has an isolated essential singularity at a point z0, it takes on 

every value, with at most one exceptional value, in an arbitrarily small ε-

neighborhood of z0.

 f z 
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16.2 Singularities and Zeros. Infinity

 Zeros of Analytic Functions

Zero of an analytic function f(z) in a domain D: a z = z0 in D such that f(z0) = 0

 A zero has order (위수) n

: Not only f but also the derivatives are all 0 at z = z0

but                 .

 Simple zero: A first-order zero (only f(z0) = 0)

 Ex. 4 Zeros

 The function 1+z2 has simple zeros at .

 The function (1‒z4)2 has second-order zeros at      and     . 

 The function ez has no zeros.

 The function sin z has simple zeros at                    

sin2 z has second-order zeros.
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16.2 Singularities and Zeros. Infinity

 Taylor Series at a Zero.

At an nth-order zero z = z0 of f(z) The derivatives                         

are zero          The first few coefficients a0 = … = an-1 = 0 of the Taylor series 

are zero, whereas  

 Theorem 3 Zeros

The zeros of an analytic function f(z) (≠0) are isolated; that is, each of 

them has a neighborhood that contains no further zeros of f(z).

 Theorem 4 Poles and Zeros

Let f(z) be analytic at z = z0 and have a zero of nth order at z = z0.

Then 1/f(z) has a pole of nth order at z = z0; and so does h(z)/f(z), provided 

h(z) is analytic at z = z0 and h(z) ≠ 0.
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16.2 Singularities and Zeros. Infinity

 [Reference] Riemann Sphere. Point at Infinity

Riemann Sphere: A sphere S of diameter 1 touching the complex z-plane at z = 0

 Image (상) of a point P (a number z in the plane)

: The intersection P* of the segment PN with S, where N is the “North Pole” 

diametrically opposite to the origin in the plane.

 Each point on S represents a complex number z, except for N, which does 

not correspond to any point in the complex plane.

 Point at infinity (denoted ∞): The image of N

 Extended complex plane: The complex plane 

with ∞. 

z (복소평면, P)에 대응하는 점들이 S 위에 존재
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16.2 Singularities and Zeros. Infinity

 Analytic or Singular at Infinity

Set z = 1/w and f(1/w) = g(w)

 f (z) is analytic at infinity g(w) is analytic at w = 0. 

 f (z) is singular at infinity g(w) is singular at w = 0.

 f (z) has an nth-order zero at infinity g(w) has such a zero at 

w = 0.

 Similarly for poles and essential singularities.
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16.3 Residue Integration Method (유수적분)

The purpose of Cauchy’s residue integration: the evaluation of integrals

C dzzf )(

If f(z) has a singularity at a point z = z0 inside C, but is otherwise analytic on C and inside C, 

then f (z) has a Laurent series
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that converges for all points near z = z0 (except at z = z0 itself), in some domain of the 

form 0 < | z - z0 | < R.

Now comes the key idea. The coefficient b1 of the first negative power 1/(z - z0) of

this Laurent series is given by the integral formula (2) with n = 1, namely,
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The coefficient b1 is called the residue (유수) of f (z) at z = z0.
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16.3 Residue Integration Method

 Theorem 1 Residue Theorem

Let f (z) be analytic inside a simple closed path C and on C, except for finitely 

many singular points z1, z2, ∙∙∙, zk inside C. 

Then the integral of f(z) taken counterclockwise around C equals 2πi times the 

sum of the residues of f(z) at z1, z2, ∙∙∙, zk:
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 Several Singularities Inside the Contour 12)( bidzzf
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16.3 Residue Integration Method

 Theorem 1 Residue Theorem
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From (14) in Sec. 15.4 we obtain the Laurent series
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)14(  15.4 Sec

53

0

12 zz
z

n

z
z

k

n
n

!7!5!3

11sin
)(

3

34

zz

zzz

z
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which converges for |z| > 0 (that is, for all z ≠ 0). This series shows that f(z) has a pole 

of third order at z = 0 and the residue b1 = -1/3!. From (1) we thus obtain the answer.

1(1) ( ) 2
C
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1
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 Ex. 1 Evaluation of an Integral by Means of a Residue

Integrate the function f(z) = z-4 sin z counterclockwise around the unit circle C.

Sol)
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16.3 Residue Integration Method

z3 − z4 = z3(1 − z) shows that f(z) is 

singular at z = 0 and z = 1. 

Now z = 1 lies outside C. Hence it is of no interest here. 

0 < |z| < 1. This is series (I) in Example 4, Sec. 16.1,

)1(    
111

)1(

11
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)10(1
111
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4-16.1 Example

54
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43

23
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3

3
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izfi
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dz

zC
 2)( Res 2

0
43


 

we would have obtained the wrong answer, 0, because this series has no power 1/z.

We see from it that this residue is 1. Clockwise integration thus yields

CAUTION! Had we used the wrong series (II) in Example 4, Sec. 16.1,

 Theorem 1 Residue Theorem







k

j
zzC

zfidzzf
j1
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C

 Ex. 2 Use the Right Laurent Series

Integrate the function  f (z) = 1/(z3 - z4) clockwise around the circle C: |z| = 1/2

Sol)

x

y

1 2
I
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16.3 Residue Integration Method

 Formulas for Residues

 Simple Poles

1. z0 is a simple pole of f (z): 

Proof)

2. Assume that                                    , and a simple zero at z0

Proof) 

To calculate a residue at a pole, we need not produce a whole Laurent series, but, 

more economically, we can derive formulas for residues once and for all.
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16.3 Residue Integration Method

 Formulas for Residues

 Poles of Any Order

An mth-order pole: 

A second-order pole: 

Proof) 

To calculate a residue at a pole, we need not produce a whole Laurent series, but, 

more economically, we can derive formulas for residues once and for all.
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16.3 Residue Integration Method

 Simple Poles.

1. z0 is a simple pole of f(z): 

2. Assume that                         , and a simple zero at z0
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By (4),

f (z) has some simple poles, and (3) gives the 

residues at the poles. Find the all residues of f (z). ))((
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By (3),
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 Ex. 3 Residue at a Simple pole
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16.3 Residue Integration Method

Evaluate the following integral counterclockwise around any simple closed path 

such that (a) 0 and 1 are inside C, (b) 0 is inside, 1 outside, (c) 1 is inside, 0

outside (d) 0 and 1 are outside.
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 Ex. 5 Residue at a Pole of Higher Order

Sol) The integrand has simple poles at 0 and 1, with residues [by (3)]

 Simple Poles.

1. z0 is a simple pole of f(z): 

2. Assume that                         , and a simple zero at z0
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16.3 Residue Integration Method

x

y

O

pole

1
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O 1
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iπi 2)1(2     (c)  0     (d)

Evaluate the following integral counterclockwise around any simple closed path 

such that (a) 0 and 1 are inside C, (b) 0 is inside, 1 outside, (c) 1 is inside, 0

outside (d) 0 and 1 are outside.
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 Ex. 5 Residue at a Pole of Higher Order

 Simple Poles.

1. z0 is a simple pole of f(z): 

2. Assume that                         , and a simple zero at z0
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16.3 Residue Integration Method
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O
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 Simple Poles.

1. z0 is a simple pole of f(z): 

2. Assume that                         , and a simple zero at z0
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16.4 Residue Integration of Real Integrals

Certain classes of complicated real integrals can be integrated by the residue 

theorem, as we shall see.

We first consider integrals of the type
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 Integrals of Rational Functions (유리함수) of cosθ and sinθ
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 C iz
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and, as θ ranges from 0 to 2π in (1), the variable              ranges counterclockwise 

once around the unit circle |z| = 1.
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Sol) we use                        and 

16.4 Residue Integration of Real Integrals
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Real rational function

Show by the present method that .2
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C: counterclockwise once 

around the unit circle |z| = 1

 Integrals of Rational Functions of cosθ and sinθ

 Ex. 1. An Integral



Seoul 
National
Univ.

38

16.4 Residue Integration of Real Integrals

2

( 2 1)( 2 1)C

dz

i z z


   
 C: counterclockwise once 

around the unit circle |z| = 1

We see that the integrand has a simple pole at                  outside the unit circle C, so that it is 

of no interest here, and another simple pole at                .
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 Ex. 1 An Integral - continued
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 Integrals of Rational Functions of cosθ and sinθ
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16.4 Residue Integration of Real Integrals

 Improper Integral

As another large class, let us consider real integrals of the form

(4) ( )     f x dx



Such an integral, whose interval of integration is not finite is called an improper integral 

(이상적분), and it has the meaning
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If both limits exist, we may couple the two independent passages to -∞ and ∞, and write
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The limit in (5) is called the Cauchy principal value of the integral. It is written
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16.4 Residue Integration of Real Integrals
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 We assume that the function f (x) in (5’) is a real rational function whose 

denominator(분모) is different from zero for all x and 

 is of degree at least two units higher than the degree of the numerator(분자).

 Then the limits in (5’) exist, and we may start from (5). 
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Path C of the contour 
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S
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We consider the corresponding contour integral

Since f (x) is rational, f (z) has finitely many poles in the 

upper half-plane, and if we choose R large enough, then C

encloses all these poles. By the residue theorem we then 

obtain 
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16.4 Residue Integration of Real Integrals

(5*)     ( ) ( ) ( )
R

C S R
f z dz f z dz f x dx


   

around a path C
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We prove that, if R →∞, the value of the integral over the 

semicircle S approaches zero.*

If we set z=Reiθ , S is represented by R=const.   
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16.4 Residue Integration of Real Integrals

)(Res2)(    )7( zfidxxf  





where we sum over all the residues of f (z) at the poles of f (z)

in the upper half-plane.

Path C of the contour 

integral in (5*)
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as R approaches infinity, the value of the integral 

over S approaches zero,
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16.4 Residue Integration of Real Integrals
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 Ex. 2 An Improper Integral from 0 to 
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Sol) has four simple poles at the points.
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section we find the residues.

  443

34 4

1

4

1

4

1

)1(

1
Res

11

1

ii

zzzz
zz

ee
zz

zf  


















 




x

y

1z2z

3z
4z

 
41

1

z
zf




  449

3 4

1

4

1

4

1
Res

2
2

ii

zz
zz

ee
z

zf  














RR x

y

S
poles

Show that 

 Improper Integral



Seoul 
National
Univ.

44

16.4 Residue Integration of Real Integrals
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Sol - continued)

 Ex. 2 An Improper Integral from 0 to 
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16.4 Residue Integration of Real Integrals

 Another Kind of Improper Integral

This is called the Cauchy principal value (주값) of the integral. It is written
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16.4 Residue Integration of Real Integrals

 Theorem 1 Simple Poles on the Real Axis
If  f (z) has a simple pole at z = a on the real axis, then

)(Res)(lim
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zfidzzf
azCr 

 

ra ra x

2C

a

* Kreyszig E. Advanced Engineering Mathematics, 9th edition, Wiley, 2006, p723

Proof) By the definition of a simple pole 
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Here g(z) is analytic on the semicircle of integration
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16.4 Residue Integration of Real Integrals

ra ra x

2C

a

S

RR

For sufficiently large R the integral over the entire contour 

has the value J given by 2πi times the sum of the residues 

of f (z) at the singularities in the upper half-plane.

We assume that f (z) 0, as x goes infinite then the value of the integral over the large 

semicircle S approaches 0 as R →∞. 

For r → 0 the integral over C2 (clockwise!) approaches the value.
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 Another Kind of Improper Integral

 Theorem 1 Simple Poles on the Real Axis
If  f (z) has a simple pole at z = a on the real axis, then
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16.4 Residue Integration of Real Integrals

 )( Res2 zfiJ  )(Res zfiK
az

 

Together this show that the principal value P of the 

integral from -∞ to ∞ Plus K equals J. 
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If f (z) has several simple poles on the real axis, then
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 Another Kind of Improper Integral

 Theorem 1 Simple Poles on the Real Axis
If  f (z) has a simple pole at z = a on the real axis, then

)(Res)(lim
20

zfidzzf
azCr 

 

ra ra x

2C

a



Seoul 
National
Univ.

49

16.4 Residue Integration of Real Integrals

 )( Res2 zfiJ 

).(Res)( Res2 zfizfiKJP
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Hence the desired formula is

.)( Res zfiK 
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where the first sum extends over all poles in the upper 

half-plane and the second over all poles on the real axis, 

the latter being simple by assumption.
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)()(lim)( Res  )3( 01
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16.4 Residue Integration of Real Integrals

)(Res)(Res2)(v.pr.  (14)
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where the first sum extends over all poles in the upper 

half-plane and the second over all poles on the real axis, 

the latter being simple by assumption.

Find the principal value
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z = - i in the lower 

half-plane, which is 

of no interest.
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16.4 Residue Integration of Real Integrals

Find the principal value
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 Ex. 4 Poles on the Real Axis

Sol-continued )
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z = - i in the lower 

half-plane, which is 

of no interest.
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where the first sum extends over all poles in the upper 

half-plane and the second over all poles on the real axis, 

the latter being simple by assumption.
ra ra x

2C

a

S

RR

 Another Kind of Improper Integral


