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4.1 INTRODUCTION

In the last chapter, we considered the problem of computing the position and
orientation of the tool relative to the user's workstation when given the joint angles
of the manipulator. In this chapter, we investigate the more difficult converse
problem: Given the desired position and orientation of the tool relative to the
station, how do we compute the set of joint angles which wifi achieve this desired
result? Whereas Chapter 3 focused on the direct kinematics of manipulators, here
the focus is the inverse kinematics of manipulators.

Solving the problem of finding the required joint angles to place the tool
frame, {T}, relative to the station frame, {S}, is split into two parts. First, frame
transformations are performed to find the wrist frame, {W}, relative to the base
frame, {B}, and then the inverse kinematics are used to solve for the joint angles.

4.2 SOLVABILITY

The problem of solving the kinematic equations of a manipulator is a nonlinear one.
Given the numerical value of T, we attempt to find values of Consider
the equations given in (3.14). In the case of the PUMA 560 manipulator, the precise
statement of our current problem is as follows: Given as sixteen numeric values
(four of which are trivial), solve (3.14) for the six joint angles through £96.

For the case of an arm with six degrees of freedom (like the one corresponding
to the equations in (3.14)), we have 12 equations and six unknowns. However,
among the 9 equations arising from the rotation-matrix portion of only 3 are
independent. These, added to the 3 equations from the position-vector portion of
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102 Chapter 4 Inverse manipulator kinematics

give 6 equations with six unknowns. These equations are nonlinear, transcendental
equations, which can be quite difficult to solve. The equations of (3.14) are those of a
robot that had very simple link parameters—many of the were 0 or ±90 degrees.
Many link offsets and lengths were zero. It is easy to imagine that, for the case of a
general mechanism with six degrees of freedom (with all link parameters nonzero)
the kinematic equations would be much more complex than those of (3.14). As with
any nonlinear set of equations, we must concern ourselves with the existence of
solutions, with multiple solutions, and with the method of solution.

Existence of solutions

The question of whether any solution exists at all raises the question of the
manipulator's workspace. Roughly speaking, workspace is that volume of space that
the end-effector of the manipulator can reach. For a solution to exist, the specified
goal point must lie within the workspace. Sometimes, it is useful to consider two
definitions of workspace: Dextrous workspace is that volume of space that the robot
end-effector can reach with all orientations. That is, at each point in the dextrous
workspace, the end-effector can be arbitrarily oriented. The reachable workspace is
that volume of space that the robot can reach in at least one orientation. Clearly,
the dextrous workspace is a subset of the reachable workspace.

Consider the workspace of the two-link manipulator in Fig. 4.1. If = 12, then
the reachable workspace consists of a disc of radius The dextrous workspace
consists of only a single point, the origin. If l2, then there is no dextrous
workspace, and the reachable workspace becomes a ring of outer radius + 12

and inner radius — 121. Inside the reachable workspace there are two possible
orientations of the end-effector. On the boundaries of the workspace there is only
one possible orientation.

These considerations of workspace for the two-link manipulator have assumed
that all the joints can rotate 360 degrees. This is rarely true for actual mechanisms.
When joint limits are a subset of the full 360 degrees, then the workspace is obviously
correspondingly reduced, either in extent, or in the number of possible orientations

FIG U RE 4.1: Two-link manipulator with link lengths l1 and 12.
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Section 4.2 Solvability 103

attainable. For example, if the arm in Fig. 4.1 has full 360-degree motion for 01, but
only 0 <02 <180°, then the reachable workspace has the same extent, but only one
orientation is attainable at each point.

When a manipulator has fewer than six degrees of freedom, it cannot attain
general goal positions and orientations in 3-space. Clearly, the planar manipulator
in Fig. 4.1 cannot reach out of the plane, so any goal point with a nonzero Z-
coordinate value can be quickly rejected as unreachable. In many realistic situations,
manipulators with four or five degrees of freedom are employed that operate out
of a plane, but that clearly cannot reach general goals. Each such manipulator
must be studied to understand its workspace. In general, the workspace of such a
robot is a subset of a subspace that can be associated with any particular robot.
Given a general goal-frame specification, an interesting problem arises in connection
with manipulators having fewer than six degrees of freedom: What is the nearest
attainable goal frame?

Workspace also depends on the tool-frame transformation, because it is usually
the tool-tip that is discussed when we speak of reachable points in space. Generally,
the tool transformation is performed independently of the manipulator kinematics
and inverse kinematics, so we are often led to consider the workspace of the wrist
frame, {W}. For a given end-effector, a tool frame, {T}, is defined; given a goal frame,
{G}, the corresponding {W} frame is calculated, and then we ask: Does this desired
position and orientation of {W} lie in the workspace? In this way, the workspace
that we must concern ourselves with (in a computational sense) is different from the
one imagined by the user, who is concerned with the workspace of the end-effector
(the {T} frame).

If the desired position and orientation of the wrist frame is in the workspace,
then at least one solution exists.

Multiple solutions

Another possible problem encountered in solving kinematic equations is that of
multiple solutions. A planar arm with three revolute joints has a large dextrous
workspace in the plane (given "good" link lengths and large joint ranges), because
any position in the interior of its workspace can be reached with any orientation.
Figure 4.2 shows a three-link planar arm with its end-effector at a certain position

FIGURE 4.2: Three-link manipulator. Dashed lines indicate a second solution.
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FIGURE 4.3: One of the two possible solutions to reach point B causes a collision.

and orientation. The dashed lines indicate a second possible configuration in which
the same end-effector position and orientation are achieved.

The fact that a manipulator has multiple solutions can cause problems, because
the system has to be able to choose one. The criteria upon which to base a decision
vary, but a very reasonable choice would be the closest solution. For example, if the
manipulator is at point A, as in Fig. 4.3, and we wish to move it to point B, a good
choice would be the solution that minimizes the amount that each joint is required
to move. Hence, in the absence of the obstacle, the upper dashed configuration in
Fig. 4.3 would be chosen. This suggests that one input argument to our kinematic
inverse procedure might be the present position of the manipulator. In this way,
if there is a choice, our algorithm can choose the solution closest in joint-space.
However, the notion of "close" might be defined in several ways. For example,
typical robots could have three large links followed by three smaller, orienting links
near the end-effector. In this case, weights might be applied in the calculation of
which solution is "closer" so that the selection favors moving smaller joints rather
than moving the large joints, when a choice exists. The presence of obstacles might
force a "farther" solution to be chosen in cases where the "closer" solution would
cause a collision—in general, then, we need to be able to calculate all the possible
solutions. Thus, in Fig. 4.3, the presence of the obstacle implies that the lower dashed
configuration is to be used to reach point B.

The number of solutions depends upon the number ofjoints in the manipulator
but is also a function of the link parameters (a1, a1, and for a rotary joint
manipulator) and the allowable ranges of motion of the joints. For example, the
PUMA 560 can reach certain goals with eight different solutions. Figure 4.4 shows
four solutions; all place the hand with the same position and orientation. For each
solution pictured, there is another solution in which the last three joints "ifip" to an
alternate configuration according to the following formulas:

94 = 94 + 180

95 = (4.1)

= + 1800.

So, in total, there can be eight solutions for a single goal. Because of limits on joint
ranges, some of these eight could be inaccessible.

A
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FIGURE 4.4: Four solutions of the PUMA 560.

In general, the more nonzero link parameters there are, the more ways there
wifi be to reach a certain goal. For example, consider a manipulator with six
rotational joints. Figure 4.5 shows how the maximum number of solutions is related
to how many of the link length parameters (the are zero. The more that are
nonzero, the bigger is the maximum number of solutions. For a completely general
rotary-jointed manipulator with six degrees of freedom, there are up to sixteen
solutions possible [1, 6].

Method of solution

Unlike linear equations, there are no general algorithms that may be employed to
solve a set of nonlinear equations. In considering methods of solution, it wifi be wise
to define what constitutes the "solution" of a given manipulator.

A manipulator wifi be considered solvable if the joint variables can be
determined by an algorithm that allows one to determine all the sets of joint
variables associated with a given position and orientation [2].
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a1 Number of solutions

a1a3a5=O
a3=a50

a3=O

FIGURE 4.5: Number of solutions vs. nonzero a1.

The main point of this definition is that we require, in the case of multiple
solutions, that it be possible to calculate all solutions. Hence, we do not consider
some numerical iterative procedures as solving the manipulator—namely, those
methods not guaranteed to find all the solutions.

We wifi split all proposed manipulator solution strategies into two broad
classes: closed-form solutions and numerical solutions. Because of their iterative
nature, numerical solutions generally are much slower than the corresponding
closed-form solution; so much so, in fact, that, for most uses, we are not interested
in the numerical approach to solution of kinematics. Iterative numerical solution to
kinematic equations is a whole field of study in itself (see [6,11,12]) and is beyond
the scope of this text.

We wifi restrict our attention to closed-form solution methods. In this context,
"closed form" means a solution method based on analytic expressions or on the
solution of a polynomial of degree 4 or less, such that noniterative calculations suffice
to arrive at a solution. Within the class of closed-form solutions, we distinguish two
methods of obtaining the solution: algebraic and geometric. These distinctions are
somewhat hazy: Any geometric methods brought to bear are applied by means of
algebraic expressions, so the two methods are similar. The methods differ perhaps
in approach only.

A major recent result in kinematics is that, according to our definition of
solvability, all systems with revolute and prismatic joints having a total of six degrees
of freedom in a single series chain are solvable. However, this general solution is
a numerical one. Only in special cases can robots with six degrees of freedom be
solved analytically. These robots for which an analytic (or closed-form) solution
exists are characterized either by having several intersecting joint axes or by having
many equal to 0 or ±90 degrees. Calculating numerical solutions is generally time
consuming relative to evaluating analytic expressions; hence, it is considered very
important to design a manipulator so that a closed-form solution exists. Manipulator
designers discovered this very soon, and now virtually all industrial manipulators
are designed sufficiently simply that a closed-form solution can be developed.

A sufficient condition that a manipulator with six revolute joints have a closed-
form solution is that three neighboring joint axes intersect at a point. Section 4.6
discusses this condition. Almost every manipulator with six degrees of freedom built
today has three axes intersecting. For example, axes 4, 5, and 6 of the PUMA 560
intersect.
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4.3 THE NOTION OF MANIPULATOR SUBSPACE WHEN n <6

The set of reachable goal frames for a given manipulator constitutes its reachable
workspace. For a manipulator with n degrees of freedom (where ii < 6), this
reachable workspace can be thought of as a portion of an n-degree-of-freedom
subspace. In the same manner in which the workspace of a six-degree-of-freedom
manipulator is a subset of space, the workspace of a simpler manipulator is a subset
of its subspace. For example, the subspace of the two-link robot of Fig. 4.1 is a plane,
but the workspace is a subset of this plane, namely a circle of radius li + 12 for the
case that = 12.

One way to specify the subspace of an n-degree-of-freedom manipulator is to
give an expression for its wrist or tool frame as a function of n variables that locate it.
If we consider these n variables to be free, then, as they take on all possible values,
the subspace is generated.

EXAMPLE 4.1

Give a description of the subspace of for the three-link manipulator from
Chapter 3, Fig. 3.6.

The subsp ace of T is given by

0.0 X

BT= 0.0 Y (42W 0.0 0.0 1.0 0.0 '0001
where x and y give the position of the wrist and describes the orientation of the
terminal link. As x, y, and are allowed to take on arbitrary values, the subspace
is generated. Any wrist frame that does not have the structure of (4.2) lies outside
the subspace (and therefore lies outside the workspace) of this manipulator. Link
lengths and joint limits restrict the workspace of the manipulator to be a subset of
this subspace.

FIGURE 4.6: A polar two-link manipulator.
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(4.3)

EXAMPLE 4.2

Give a description of the subspace of for the polar manipulator with two degrees
of freedom shown in Fig. 4.6. We have

=

where x and y can take any values. The orientation is restricted because the °22 axis
must point in a direction that depends on x and y. The axis always points down,
and the 0X2 axis can be computed as the cross product x 022. In terms of x and
y, we have

02 =

_________

The subspace can therefore be given as

1.y

+
0

(4.4)

(4.5)

Usually, in defining a goal for a manipulator with n degrees of freedom, we
use n parameters to specify the goal. If, on the other hand, we give a specification of
a full six degrees of freedom, we wifi not in general be able to reach the goal with
an n < 6 manipulator. In this case, we might be interested instead in reaching a goal
that lies in the manipulator's subspace and is as "near" as possible to the original
desired goal.

Hence, when specifying general goals for a manipulator with fewer than six
degrees of freedom, one solution strategy is the following:

1. Given a general goal frame, T, compute a modified goal frame, T, such

that lies in the manipulator's subspace and is as "near" to as possible.
A definition of "near" must be chosen.

2. Compute the inverse kinematics to find joint angles using T as the desired
goal. Note that a solution stifi might not be possible if the goal point is not in
the manipulator's workspace.

It generally makes sense to position the tool-frame origin to the desired location
and then choose an attainable orientation that is near the desired orientation. As
we saw in Examples 4.1 and 4.2, computation of the subspace is dependent on
manipulator geometry. Each manipulator must be individually considered to arrive
at a method of making this computation.
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Section 4.7 gives an example of projecting a general goal into the subspace of a
manipulator with five degrees of freedom in order to compute joint angles that will
result in the manipulator's reaching the attainable frame nearest to the desired one.

4.4 ALGEBRAIC VS. GEOMETRIC

As an introduction to solving kinematic equations, we will consider two different
approaches to the solution of a simple planar three-link manipulator.

Algebraic solution

Consider the three-link planar manipulator introduced in Chapter 3. It is shown
with its link parameters in Fig. 4.7.

Following the method of Chapter 3, we can use the link parameters easily to
find the kinematic equations of this arm:

i a1—1 d1

1 0 0 0 Ui

2 0 L1 0 02

3 0 L7 0 03

FIGURE 4.7: Three-link planar manipulator and its link parameters.

C123 —S123 0.0 11c1 + 12c12

B T
W

— 0T
—

— 3 —

S123

0.0
0

0.0
0.0 1.0
0 0

11s1 + 12s12

0.0
1

(4.6)
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To focus our discussion on inverse kinematics, we wifi assume that the necessary
transformations have been performed so that the goal point is a specification of the
wrist frame relative to the base frame, that is, Because we are working with
a planar manipulator, specification of these goal points can be accomplished most
easily by specifying three numbers: x, y, and where is the orientation of link 3
in the plane (relative to the +X axis). Hence, rather than giving a general T as a
goal specification, we wifi assume a transformation with the structure

0.0 X

BT= 5çb 0.0 Y (47
W 0.0 0.0 1.0 0.00001

All attainable goals must lie in the subspace implied by the structure of equa-
tion (4.7). By equating (4.6) and (4.7), we arrive at a set of four nonlinear equations
that must be solved for and 93:

= c123, (4.8)

Sc/, = s123, (4.9)

x = 11c1 + l7c12, (4.10)

y = + l2s12. (4.11)

We now begin our algebraic solution of equations (4.8) through (4.11). If we
square both (4.10) and (4.11) and add them, we obtain

x2 + y2 = + + 2l1l2c2, (4.12)

where we have made use of

= —

= C157 + Sic2. (4.13)

Solving (4.12) for c2, we obtain

x2 + y2 _12_ 12
1 2 (4.14)

21112

In order for a solution to exist, the right-hand side of (4.14) must have a value
between —1 and 1. In the solution algorithm, this constraint would be checked at
this time to find out whether a solution exists. Physically, if this constraint is not
satisfied, then the goal point is too far away for the manipulator to reach.

Assuming the goal is in the workspace, we write an expression for as

(4.15)

Finally, we compute using the two-argument arctangent routine1:

= Atan2(s2, c2). (4.16)

1See Section 2.8.
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The choice of signs in (4.15) corresponds to the multiple solution in which we can
choose the "elbow-up" or the "elbow-down" solution. In determining we have
used one of the recurring methods for solving the type of kinematic relationships
that often arise, namely, to determine both the sine and cosine of the desired joint
angle and then apply the two-argument arctangent. This ensures that we have found
all solutions and that the solved angle is in the proper quadrant.

Having found we can solve (4.10) and (4.11) for 01. We write (4.10) and
(4.11) in the form

x = k1c1 — k2s1, (4.17)

y = k1s1 + k2c1, (4.18)

where

= + 12c2,

= 12s2. (4.19)

In order to solve an equation of this form, we perform a change of variables.
Actually, we are changing the way in which we write the constants k1 and k2.

If

_________

r = + (4.20)

and
y = Atan2(k2, k1),

then

= r cos y,

k2=rsiny. (4.21)

Equations (4.17) and (4.18) can now be written as

= cosycos91 —sinysin01, (4.22)

=cosysin91+sinycos01, (4.23)

so

cos(y + Oi) = (4.24)

sin(y + = (4.25)

Using the two-argument arctangent, we get

y + = Atan2 = Atan2(y, x), (4.26)

and so
01 = Atan2(y, x) — Atan2(k2, k1). (4.27)
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Note that, when a choice of sign is made in the solution of above, it
wifi cause a sign change in k2, thus affecting The substitutions used, (4.20)
and (4.21), constitute a method of solution of a form appearing frequently in
kinematics—namely, that of (4.10) or (4.11). Note also that, if x = y = 0, then
(4.27) becomes undefined—in this case, is arbitrary.

Finally, from (4.8) and (4.9), we can solve for the sum of through 93:

+ + 93 = Atan2(s4, c4) = (4.28)

From this, we can solve for 03, because we know the first two angles. It is typical
with manipulators that have two or more links moving in a plane that, in the course
of solution, expressions for sums of joint angles arise.

In summary, an algebraic approach to solving kinematic equations is basically
one of manipulating the given equations into a form for which a solution is known.
It turns out that, for many common geometries, several forms of transcendental
equations commonly arise. We have encountered a couple of them in this preceding
section. In Appendix C, more are listed.

Geometric solution

In a geometric approach to finding a manipulator's solution, we try to decompose
the spatial geometry of the arm into several plane-geometry problems. For many
manipulators (particularly when the = 0 or ±90) this can be done quite easily.
Joint angles can then be solved for by using the tools of plane geometry [7]. For the
arm with three degrees of freedom shown in Fig. 4.7, because the arm is planar, we
can apply plane geometry directly to find a solution.

Figure 4.8 shows the triangle formed by 11, 12, and the line joining the origin of
frame {0} with the origin of frame {3}. The dashed lines represent the other possible
configuration of the triangle, which would lead to the same position of the frame
(3}. Considering the solid triangle, we can apply the "law of cosines" to solve for 92:

(4.29)

FIGURE 4.8: Plane geometry associated with a three-link planar robot.

x2 + = + — 21112 cos(180 +

x



Section 4.5 Algebraic solution by reduction to polynomial 113

Now; cos(180 + = — cos(92), so we have

x2 + y2 _12_ 12
c2= 2111 2 (4.30)

12

In order for this triangle to exist, the distance to the goal point ,/x2 + y2 must be
less than or equal to the sum of the link lengths, 11 + 12. This condition would be
checked at this point in a computational algorithm to verify existence of solutions.
This condition is not satisfied when the goal point is out of reach of the manipulator.
Assuming a solution exists, this equation is solved for that value of that lies
between 0 and —180 degrees, because only for these values does the triangle in
Fig. 4.8 exist. The other possible solution (the one indicated by the dashed-line
triangle) is found by symmetry to be =

To solve for we find expressions for angles and as indicated in Fig. 4.8.
First, $ may be in any quadrant, depending on the signs of x and y. So we must use
a two-argument arctangent:

$ = Atan2(y, x). (4.31)

We again apply the law of cosines to find

x2 + y2 + 12_ 12
1 2 (4.32)

211\/x2 + y2

Here, the arccosine must be solved so that 0 < <180°, in order that the geometry
which leads to (4.32) will be preserved. These considerations are typical when using
a geometric approach—we must apply the formulas we derive only over a range of
variables such that the geometry is preserved. Then we have

= $ ± (4.33)

where the plus sign is used if <0 and the minus sign if 02 > 0.

We know that angles in a plane add, so the sum of the three joint angles must
be the orientation of the last link:

01 + 02 + 03 = (4.34)

This equation is solved for 03 to complete our solution.

4.5 ALGEBRAIC SOLUTION BY REDUCTION TO POLYNOMIAL

Transcendental equations are often difficult to solve because, even when there is only
one variable (say, 9), it generally appears as sin 0 and cos 9. Making the following
substitutions, however, yields an expression in terms of a single variable, u:

0
u = tan

1 u2
cos 0 = , (4.35)

1 + u2

2usin0=
1+u2
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This is a very important geometric substitution used often in solving kinematic
equations. These substitutions convert transcendental equations into polynomial
equations in u. Appendix A lists these and other trigonometric identities.

EXAMPLE 4.3

Convert the transcendental equation

acos8+bsin9 =c (4.36)

into a polynomial in the tangent of the half angle, and solve for 0.
Substituting from (4.35) and multiplying through by 1 + u2, we have

a(1 — u2) + 2bu = c(1 + u2). (437)

Collecting powers of it yields

(a + c)u2 — 2bu + (c a) = 0, (4.38)

which is solved by the quadratic formula:

b±,1b2+a2_c2
(4.39)a+c

Hence,

____________

0 =2tan1 (4.40)a±c /
Should the solution for u from (4.39) be complex, there is no real solution to
the original transcendental equation. Note that, if a + c = 0, the argument of the
arctangent becomes infinity and hence 0 = 180°. In a computer implementation,
this potential division by zero should be checked for ahead of time. This situation
results when the quadratic term of (4.38) vanishes, so that the quadratic degenerates
into a linear equation.

Polynomials up to degree four possess closed-form solutions [8, 9], so manip-
ulators sufficiently simple that they can be solved by algebraic equations of this
degree (or lower) are called closed-form-solvable manipulators.

4.6 PIEPER'S SOLUTION WHEN THREE AXES INTERSECT

As mentioned earlier, although a completely general robot with six degrees of
freedom does not have a closed-form solution, certain important special cases
can be solved. Pieper [3, 4] studied manipulators with six degrees of freedom in
which three consecutive axes intersect at a point.2 In this section, we outline the
method he developed for the case of all six joints revolute, with the last three axes
intersecting. His method applies to other configurations, which include prismatic

2lncluded in this family of manipulators are those with three consecutive parallel axes, because they
meet at the point at infinity.
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joints, and the interested reader should see [4]. Pieper's work applies to the majority
of commercially available industrial robots.

When the last three axes intersect, the origins of link frames (4), {5}, and {6}
are all located at this point of intersection. This point is given in base coordinates as

x

= = (4.41)

1

or, using the fourth colunm of (3.6) for i = 4, as

= (4.42)

or as
fl (93)

= (4.43)

where
a3

f2 —d4sa3
(4.44)

3

1 1

Using (3.6) for in (4.44) yields the following expressions for f1:

= a3c3 + d4sa3s3 + a2,

f2 = a3ca2s3 d4sa3ca2c3 d4sa2ca3 — d3sa2, (4.45)

= — + d4ca2ca3 +

Using (3.6) for and in (4.43), we obtain

c1g1 — s1g2

on — s1g1+c1g2
40RG g3

1

where

g1 = c9f1 — s2f2 + a1,

g2 = s2coi1f1 + c2ca1f2 — — d2sa1, (4.47)

g3 = + c2sa1f2 + + d2ca1.

We now write an expression for the squared magnitude of which we wifi
denote as r = x2 + y2 + z2, and which is seen from (4.46) to be

7 2 2 (4.48)
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so, using (4.47) for the we have

r = + + + + + 2d2f3 + 2a1(c2f1 — s2f2). (4.49)

We now write this equation, along with the Z-component equation from (4.46), as a
system of two equations in the form

r = (kjc2 + k2s2)2a1 + k3,

z = (k1s2 — k2c2)sa1 + k4, (4.50)

where

k1 =

k2 = —f2,

(4.51)

= +

Equation (4.50) is useful because dependence on has been eliminated and because
dependence on takes a simple form.

Now let us consider the solution of (4.50) for 03. We distinguish three cases:

1. If = 0, then we have r = k3, where r is known. The right-hand side (k3) is a
function of 03 only. After the substitution (4.35), a quadratic equation in tan
may be solved for 03.

2. If sa1 = 0, then we have z = k4, where z is known. Again, after substituting
via (4.35), a quadratic equation arises that can be solved for 03.

3. Otherwise, eliminate s2 and c2 from (4.50) to obtain

"

2 + 4)
(4.52)

4a1 sci1

This equation, after the (4.35) substitution for 03, results in an equation of
degree 4, which can be solved for

Having solved for we can solve (4.50) for 02 and (4.46) for
To complete our solution, we need to solve for 04, 05, and These axes

intersect, so these joint angles affect the orientation of only the last link. We can
compute them from nothing more than the rotation portion of the specified goal,

Having obtained 02, and 03, we can compute by which notation we
mean the orientation of link frame {4} relative to the base frame when 04 = 0. The
desired orientation of {6} differs from this orientation only by the action of the last
three joints. Because the problem was specified as given we can compute

= 60R. (4.53)

31t is helpful to note that + + = + + + + 2d4d3ccs3 + 2a2a3c3 + 2a2d4sa3s3.
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For many manipulators, these last three angles can be solved for by using
exactly the Z—Y—Z Euler angle solution given in Chapter 2, applied to 194=0

For any manipulator (with intersecting axes 4, 5, and 6), the last three joint angles
can be solved for as a set of appropriately defined Euler angles. There are always
two solutions for these last three joints, so the total number of solutions for the
manipulator will be twice the number found for the first three joints.

4.7 EXAMPLES OF INVERSE MANIPULATOR KINEMATICS

In this section, we work out the inverse kinematics of two industrial robots. One
manipulator solution is done purely algebraically; the second solution is partially
algebraic and partially geometric. The following solutions do not constitute a
cookbook method of solving manipulator kinematics, but they do show many of
the common manipulations likely to appear in most kinematic solutions. Note that
Pieper's method of solution (covered in the preceding section) can be used for these
manipulators, but here we choose to approach the solution a different way, to give
insight into various available methods.

The Unimation PUMA 560

As an example of the algebraic solution technique applied to a manipulator with six
degrees of freedom, we will solve the kinematic equations of the PUMA 560, which
were developed in Chapter 3. This solution is in the style of [5].

We wish to solve

r11 r17 r13

r21 r23

r31 r32 r330001
= (4.54)

for when is given as numeric values.
A restatement of (4.54) that puts the dependence on on the left-hand side

of the equation is

= (4.55)

Inverting we write (4.55) as

c1 s1 0 0 r11 r12 r13
—S1 C1 0 0 r21 r22

(4 56
0 0 1 0 r31 r32 r33
0 001 0001

where is given by equation (3.13) developed in Chapter 3. This simple technique
of multiplying each side of a transform equation by an inverse is often used to
advantage in separating out variables in the search for a solvable equation.

Equating the (2, 4) elements from both sides of (4.56), we have

+ = d3. (4.57)
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To solve an equation of this form, we make the trigonometric substitutions

=psinq5, (4.58)

where

P

= (4.59)

Substituting (4.58) into (4.57), we obtain

ClScb — S1C4 — —.

From the difference-of-angles formula,

= (4.61)

Hence,

I d2
— = ±\/1

—
(4.62)

and so

"d / d2\
. (4.63)

p p

Finally, the solution for may be written as

= Atan2 (d3, ±,,/p2 + — (4.64)

Note that we have found two possible solutions for corresponding to the plus-
or-minus sign in (4.64). Now that is known, the left-hand side of (4.56) is known.
If we equate both the (1,4) elements and the (3,4) elements from the two sides of
(4.56), we obtain

+ = ci3c23 — d4s23 + a2c2,

= a3s23 + d4c,3 + a2s2. (4.65)

If we square equations (4.65) and (4.57) and add the resulting equations, we obtain

a3c3 — d4s3 = K, (4.66)

where

K= A
. (4.67)

2a2
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Note that dependence on has been removed from (4.66). Equation (4.66) is of
the same form as (4.57) and so can be solved by the same kind of trigonometric
substitution to yield a solution for 93:

93 = Atan2(a3, d4) — Atan2(K, + — K2). (4.68)

The plus-or-minus sign in (4.68) leads to two different solutions for 03. If we consider
(4.54) again, we can now rewrite it so that all the left-hand side is a function of only
knowns and 92:

= (4.69)

or
C1C23 S1C23 —a7c3 r11 Px

C1S23 S1S23 C23 a2s3 r23 = (4.70)
—s1 c1 0 —d3 r32 r33 6

0 0 0 1 0001
where is given by equation (3.11) developed in Chapter 3. Equating both

the (1,4) elements and the (2,4) elements from the two sides of (4.70), we get

+ — — a2c3 = a3,

— — C23p + a2s3 = d4. (4.71)

These equations can be solved simultaneously for s23 and c23, resulting in

(—a3 — + + s1p3,) (a2s3 d4)
S23

= +

(a2s3 — (a3 + a2c3) +
= . (4.72)

+ +

The denominators are equal and positive, so we solve for the sum of and 93 as

= Atan2[(—a3 — a2c3)p — + — a2s3),

(a2s3 (a3 + a2c3) + (4.73)

Equation (4.73) computes four values of 023, according to the four possible combina-
tions of solutions for and 93, then, four possible solutions for are computed as

97 = — 03, (4.74)

where the appropriate solution for 93 is used when forming the difference.
Now the entire left side of (4.70) is known. Equating both the (1,3) elements

and the (3,3) elements from the two sides of (4.70), we get

r13 C1 C23 + r23s1c23 — r33s23 = —c4s5,

—r13s1 + r23c1 = s4s5. (4.75)

As long as 0, we can solve for 94 as

94 = Atan2(—r13s1 + r23c1, —r13c1c23 — r23s1c23 + r33s73). (4.76)
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When 85 = 0, the manipulator is in a singular configuration in which joint axes 4 and
6 line up and cause the same motion of the last link of the robot. In this case, all that
matters (and all that can be solved for) is the sum or difference of 84 and This
situation is detected by checking whether both arguments of the Atan2 in (4.76) are
near zero. If sO, 84 is chosen arbitrarily,4 and when is computed later, it will be
computed accordingly.

If we consider (4.54) again, we can now rewrite it so that all the left-hand side
is a function of only knowns and 94, by rewriting it as

= (4.77)

where is given by

c1c23c4+s1s4 S1C23C4C1S4 S23C4 —a2c3c4+d3s4—a3c4
—c1c23s4 + s1c4 —s1c23s4 — c1c4 s23s4 a2c3s4 + d3c4 + a3s4

(4 78)
—c1s23 —s1s23 —C23 — d4

0 0 0 1

and is given by equation (3.10) developed in Chapter 3. Equating both the (1,3)
elements and the (3,3) elements from the two sides of (4.77), we get

r13(c1c23c4 + s1s4) + r23(s1c73c4 — c1s4) — r33(s93c4) = —s5,

r13(c1s23) + r23(—s1s23) + r33(—c23) = c5. (4.79)

Hence, we can solve for 05 as

95 = Atan2(s5, c5), (4.80)

where s5 and c5 are given by (4.79).
Applying the same method one more time, we compute and write

(4.54) in the form
= (4.81)

Equating both the (3,1) elements and the (1,1) elements from the two sides of (4.77)
as we have done before, we get

= Atan2(s6, c6), (4.82)

where

s6 = —r11(c1c23s4 — s1c4) r21(s1c23s4 + c1c4) + r31(s23s4),

c6 = + s1s4)c5 — c1s73s5] + r21[(s1c73c4 — c1s4)c5 — s1s23s5]

—r31(s23c4c5 + c23s5).

Because of the plus-or-minus signs appearing in (4.64) and (4.68), these equations
compute four solutions. Additionally, there are four more solutions obtained by

41t is usually chosen to be equal to the present value of joint 4.
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"ifipping" the wrist of the manipulator. For each of the four solutions computed
above, we obtain the ifipped solution by

94 = 94 + 180°,

95 = (4.83)

= + 1800.

After all eight solutions have been computed, some (or even all) of them might have
to be discarded because of joint-limit violations. Of any remaining valid solutions,
usually the one closest to the present manipulator configuration is chosen.

The Yasukawa Motomart L-3

As the second example, we will solve the kinematic equations of the Yasukawa
Motoman L-3, which were developed in Chapter 3. This solution wifi be partially
algebraic and partially geometric. The Motoman L-3 has three features that make
the inverse kinematic problem quite different from that of the PUMA. First, the
manipulator has only five joints, so it is not able to position and orient its end-
effector in order to attain general goal frames. Second, the four-bar type of linkages
and chain-drive scheme cause one actuator to move two or more joints. Third, the
actuator position limits are not constants, but depend on the positions of the other
actuators, so finding out whether a computed set of actuator values is in range is not
trivial.

If we consider the nature of the subspace of the Motoman manipulator (and
the same applies to many manipulators with five degrees of freedom), we quickly
realize that this subspace can be described by giving one constraint on the attainable
orientation: The pointing direction of the tool, that is, the ZT axis, must lie in the
"plane of the arm." This plane is the vertical plane that contains the axis of joint
1 and the point where axes 4 and 5 intersect. The orientation nearest to a general
orientation is the one obtained by rotating the tool's pointing direction so that it lies
in the plane, using a minimum amount of rotation. Without developing an explicit
expression for this subspace, we will construct a method for projecting a general
goal frame into it. Note that this entire discussion is for the case that the wrist frame
and tool frame differ only by a translation along

In Fig. 4.9, we indicate the plane of the arm by its normal, M, and the desired
pointing direction of the tool by ZT. This pointing direction must be rotated by
angle 0 about some vector K in order to cause the new pointing direction, Z,, to lie
in the plane. It is clear that the ft that minimizes 9 lies in the plane and is orthogonal
to both ZT and

For any given goal frame, M is defined as

1M= I, (4.84)
0 ]

where and are the X and Y coordinates of the desired tool position. Then K
is given by

K=MxZT. (4.85)
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FIGURE 4.9: Rotating a goal frame into the Motoman's subspace.

The new is

(4.86)

The amount of rotation, 9, is given by

cos9 = ZT

sin8 = (2T x . k. (4.87)

Using Rodriques's formula (see Exercise 2.20), we have

(4.88)

Finally, we compute the remaining unknown column of the new rotation matrix of
the tool as

(4.89)

Equations (4.84) through (4.89) describe a method of projecting a given general goal
orientation into the subspace of the Motoman robot.

Assuming that the given wrist frame, lies in the manipulator's subspace,
we solve the kinematic equations as follows. In deriving the kinematic equations for
the Motoman L-3, we formed the product of link transformations:

= (4.90)

Ifwelet
r11 r12 r13

0T = r21 r22
(4.91)

5 r31 r32 r330001
and premultiply both sides by we have

= (4.92)
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where the left-hand side is

c1r11 + s1r21 c1r12 + s1r22 c1r13 + s1r23 +
—r33

(4 93
—s1r11 + c1r21 —s1r12 + c1r27 —s1r13 + c1r23 +

0 0 0 1

and the right-hand side is
* * S234 *

* * C234 * (494)
s5 c5 0 0
00 0 1

in the latter, several of the elements have not been shown. Equating the (3,4)
elements, we get

+ = 0, (4.95)

which gives us5
= pr). (4.96)

Equating the (3,1) and (3,2) elements, we get

55 = —s1r11 + c1r21,

C5 = + c1r22, (4.97)

from which we calculate as

05 = Atan2(r21c1 — r11s1, r22c1 — r12s1). (4.98)

Equating the (2,3) and (1,3) elements, we get

C234 =

= c1r13 + s1r23, (4.99)

which leads to
°234 = Atan2(r13c1 + r23s1, r33). (4.100)

To solve for the individual angles 03, and 94, we will take a geometric approach.
Figure 4.10 shows the plane of the arm with point A at joint axis 2, point B at joint
axis 3, and point C at joint axis 4.

From the law of cosines applied to triangle ABC, we have

+ + — 122

cos 93 = . (4.101)
21213

Next, we have6

93 = Atan2 (i/i — cos2O3, cos03). (4.102)

5For this manipulator, a second solution would violate joint limits and so is not calculated.
6For this manipulator, a second solution would violate joint limits and so is not calculated.



124 Chapter 4 Inverse manipulator kinematics

FIGURE 4.10: The plane of the Motoman manipulator.

From Fig. 4.10, we see that = — fi, or

= —Atan2 + p2) — Atan2(13 Sffl93, 12 + 13 COS 93). (4.103)

Finally, we have

04 = — 93. (4.104)

Having solved for joint angles, we must perform the further computation to obtain
the actuator values. Referring to Section 3.7, we solve equation (3.16) for the A1:

A1 = —

A2 = cos (92 — + 2700) + + —

A3 = cos (92 +03 — tan1 + 900) + +

A4 = + — — 93 — 94),
k4

A5 = — 95). (4.105)

The actuators have limited ranges of motion, so we must check that our computed
solution is in range. This "in range" check is complicated by the fact that the
mechanical arrangement makes actuators interact and affect each other's allowed
range of motion. For the Motoman robot, actuators 2 and 3 interact in such a way
that the following relationship must always be obeyed:

A2 — 10, 000 > A3 > A2 + 3000. (4.106)
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That is, the limits of actuator 3 are a function of the position of actuator 2. Similarly,

32,000 — A4 <A5 <55,000. (4.107)

Now, one revolution of joint 5 corresponds to 25,600 actuator counts, so, when
A4 > 2600, there are two possible solutions for A5. This is the only situation in which
the Yasukawa Motoman L-3 has more than one solution.

4.8 THE STANDARD FRAMES

The ability to solve for joint angles is really the central element in many robot
control systems. Again, consider the paradigm indicated in Fig. 4.11, which shows
the standard frames.

The way these frames are used in a general robot system is as follows:

1. The user specifies to the system where the station frame is to be located. This
might be at the corner of a work surface, as in Fig. 4.12, or even affixed to a
moving conveyor belt. The station frame, (SI, is defined relative to the base
frame, {B}.

2. The user specifies the description of the tool being used by the robot by giving
the {T}-frame specification. Each tool the robot picks up could have a different
{T} frame associated with it. Note that the same tool grasped in different ways
requires different {T}-frame definitions. {T} is specified relative to {W}—that
is,

3. The user specifies the goal point for a robot motion by giving the description
of the goal frame, {G}, relative to the station frame. Often, the definitions of
{T} and {S} remain fixed for several motions of the robot. In this case, once
they are defined, the user simply gives a series of {G} specifications.

FIGURE 4.11: Location of the "standard" frames.

{G }
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FIG U RE 4.12: Example workstation.

In many systems, the tool frame definition (VT) is constant (for example, it is
defined with its origin at the center of the fingertips). Also, the station frame
might be fixed or might easily be taught by the user with the robot itself. In
such systems, the user need not be aware of the five standard frames—he or
she simpiy thinks in terms of moving the tool to locations (goals) with respect
to the work area specified by station frame.

4. The robot system calculates a series of joint angles to move the joints through
in order that the tool frame wifi move from its initial location in a smooth
manner until {T} = {G} at the end of motion.

4.9 SOLVE-ING A MANIPULATOR

The SOLVE function implements Cartesian transformations and calls the inverse
kinematics function. Thus, the inverse kinematics are generalized so that arbi-
trary tool-frame and station-frame definitions may be used with our basic inverse
kinematics, which solves for the wrist frame relative to the base frame.

Given the goal-frame specification, SOLVE uses the tool and station
definitions to calculate the location of {W} relative to {B},

B T — BT ST WT—l
W S T T

Then, the inverse kinematics take as an input and calculate through

(4.108)

Tool frame

Base frame \
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4.10 REPEATABILITY AND ACCURACY

Many industrial robots today move to goal points that have been taught. A taught
point is one that the manipulator is moved to physically, and then the joint position
sensors are read and the joint angles stored. When the robot is commanded to
return to that point in space, each joint is moved to the stored value. In simple
"teach and playback" manipulators such as these, the inverse kinematic problem
never arises, because goal points are never specified in Cartesian coordinates. When
a manufacturer specifies how precisely a manipulator can return to a taught point,
he is specifying the repeatability of the manipulator.

Any time a goal position and orientation are specified in Cartesian terms,
the inverse kinematics of the device must be computed in order to solve for the
required joint angles. Systems that allow goals to be described in Cartesian terms
are capable of moving the manipulator to points that were never taught—points in
its workspace to which it has perhaps never gone before. We will call such points
computed points. Such a capability is necessary for many manipulation tasks. For
example, if a computer vision system is used to locate a part that the robot must
grasp, the robot must be able to move to the Cartesian coordinates supplied by the
vision sensor. The precision with which a computed point can be attained is called
the accuracy of the manipulator.

The accuracy of a manipulator is bounded by the repeatability. Clearly,
accuracy is affected by the precision of parameters appearing in the kinematic
equations of the robot. Errors in knowledge of the Denavit—Hartenberg parameters
will cause the inverse kinematic equations to calculate joint angle values that are
in error. Hence, although the repeatability of most industrial manipulators is quite
good, the accuracy is usually much worse and varies quite a bit from manipulator
to manipulator. Calibration techniques can be devised that allow the accuracy of
a manipulator to be improved through estimation of that particular manipulator's
kinematic parameters [10].

4.11 COMPUTATIONAL CONSIDERATIONS

In many path-control schemes, which we will consider in Chapter 7, it is necessary
to calculate the inverse kinematics of a manipulator at fairly high rates, for exam-
ple, 30 Hz or faster. Therefore, computational efficiency is an issue. These speed
requirements rule out the use of numerical-solution techniques that are iterative in
nature; for this reason, we have not considered them.

Most of the general comments of Section 3.10, made for forward kinematics,
also hold for the problem of inverse kinematics. For the inverse-kinematic case, a
table-lookup Atan2 routine is often used to attain higher speeds.

Structure of the computation of multiple solutions is also important. It is
generally fairly efficient to generate all of them in parallel, rather than pursuing one
after another serially. Of course, in some applications, when all solutions are not
required, substantial time is saved by computing only one.

When a geometric approach is used to develop an inverse-kinematic solution,
it is sometimes possible to calculate multiple solutions by simple operations on the
various angles solved for in obtaining the first solution. That is, the first solution
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is moderately expensive computationally, but the other solutions are found very
quickly by summing and differencing angles, subtracting jr, and so on.
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EXERCISES

4.1 [15] Sketch the fingertip workspace of the three-link manipulator of Chapter 3,
Exercise 3.3 for the case = 15.0, 12 = 10.0, and 13 = 3.0.

4.2 [26] Derive the inverse kinematics of the three-link manipulator of Chapter 3,
Exercise 3.3.

4.3 [12] Sketch the fingertip workspace of the 3-DOF manipulator of Chapter 3,
Example 3.4.
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4.4 [24] Derive the inverse kinematics of the 3-DOF manipulator of Chapter 3,
Example 3.4.

4.5 [38] Write a Pascal (or C) subroutine that computes all possible solutions for the
PUMA 560 manipulator that lie within the following joint limits:

—170.0 <170.0,

—225.0 <45.0,

—250.0 <63 <75.0,

—135.0 <64 <135.0,

—100.0 <95 <100.0,

—180.0 <°6 <180.0.

Use the equations derived in Section 4.7 with these numerical values (in inches):

a2 = 17.0,

£13 = 0.8,

d3 = 4.9,

d4 = 17.0.

4.6 [15] Describe a simple algorithm for choosing the nearest solution from a set of
possible solutions.

4.7 [10] Make a list of factors that might affect the repeatability of a manipulator.
Make a second list of additional factors that affect the accuracy of a manipulator.

4.8 [12] Given a desired position and orientation of the hand of a three-link planar
rotary-jointed manipulator, there are two possible solutions. If we add one more
rotational joint (in such a way that the arm is still planar), how many solutions
are there?

4.9 [26] Figure 4.13 shows a two-link planar arm with rotary joints. For this arm, the
second link is half as long as the first—that is, ii = 212. The joint range limits in

FIGURE 4.13: Two-link planar manipulator.

L1
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degrees are

0 <180,

—90 <180.

Sketch the approximate reachable workspace (an area) of the tip of link 2.
4.10 [23] Give an expression for the subspace of the manipulator of Chapter 3,

Example 3.4.
4.11 [24] A 2-DOF positioning table is used to orient parts for arc-welding. The

forward kinematics that locate the bed of the table (link 2) with respect to the
base (link 0) are

r c1c2 —c1s2 s1 12s1 +

OT_I S2 C2 0 0
2

— s1s2 c1 12c1 + h1
LO 0 0 1

Given any unit direction fixed in the frame of the bed (link 2), give the
inverse-kinematic solution for 02 such that this vector is aligned with 02 (i.e.,
upward). Are there multiple solutions? Is there a singular condition for which a
unique solution cannot be obtained?

4.12 [22] In Fig. 4.14, two 3R mechanisms are pictured. In both cases, the three axes
intersect at a point (and, over all configurations, this point remains fixed in space).
The mechanism in Fig. 4.14(a) has link twists (as) of magnitude 90 degrees. The
mechanism in Fig. 4.14(b) has one twist of in magnitude and the other of 180—
in magnitude.
The mechanism in Fig. 4.14(a) can be seen to be in correspondence with Z—Y—Z
Euler angles, and therefore we know that it suffices to orient link 3 (with arrow
in figure) arbitrarily with respect to the link 0. Because 0 is not equal to 90
degrees, it turns out that the other mechanism cannot orient link 3 arbitrarily.

FIGURE 4.14: Two 3R mechanisms (Exercise 4.12).

(a) (b)
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FIGURE 4.15: A 4R manipulator shown in the position e = [0,900, —90°, 01T (Exer-
cise 4.16).

Describe the set of orientations that are unattainable with the second mechanism.
Note that we assume that all joints can turn 360 degrees (i.e. no limits) and we
assume that the links may pass through each other if need be (i.e., workspace not
limited by self-coffisions).

4.13 [13] Name two reasons for which closed-form analytic kinematic solutions are
preferred over iterative solutions.

4.14 [14] There exist 6-DOF robots for which the kinematics are NOT closed-form
solvable. Does there exist any 3-DOF robot for which the (position) kinematics
are NOT closed-form solvable?

4.15 [38] Write a subroutine that solves quartic equations in closed form. (See [8, 9].)
4.16 [25] A 4R manipulator is shown schematically in Fig. 4.15. The nonzero link

parameters are a1 = 1, a2 = 45°, d3 = and a3 = and the mechanism is
pictured in the configuration corresponding to e = [0,90°, —90°, 0]T. Each joint
has ±180° as limits. Find all values of 83 such that

= [1.1, 1.5,

4.17 [25] A 4R manipulator is shown schematically in Fig. 4.16. The nonzero link
parameters are a1 = —90°, d2 = 1, a2 = 45°, d3 = 1, and a3 = 1, and the
mechanism is pictured in the configuration corresponding to 0 = [0, 0, 90°, 0]T.
Each joint has ±180° as limits. Find all values of 83 such that

= [0.0, 1.0, 1414]T

4.18 [15] Consider the RRP manipulator shown in Fig. 3.37. How many solutions do
the (position) kinematic equations possess?

4.19 [15] Consider the RRR manipulator shown in Fig. 3.38. How many solutions do
the (position) kinematic equations possess?

4.20 [15] Consider the R PP manipulator shown in Fig. 3.39. How many solutions do
the (position) kinematic equations possess?

I
I

I
I

1

I
I

I
I

xo,1 y-)

A
x4
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FIGURE 4.16: A 4R manipulator shown in the position 0 = [0,0, 900, 0]T (Exer-
cise 4.17).

4.21 [15] Consider the PRR manipulator shown in Fig. 3.40. How many solutions do
the (position) kinematic equations possess?

4.22 [15] Consider the PPP manipulator shown in Fig. 3.41. How many solutions do
the (position) kinematic equations possess?

4.23 [38] The following kinematic equations arise in a certain problem:

sine —asin9+b,

= ccos9 +d,

Given a, b, c, d, and i/i, show that, in the general case, there are four solutions for
6. Give a special condition under which there are just two solutions for 9.

4.24 [20] Given the description of link frame {i} in terms of link frame {i — 1), find the
four Denavit—Hartenberg parameters as functions of the elements of Y'T.

PROGRAMMING EXERCISE (PART 4)

1. Write a subroutine to calculate the inverse kinematics for the three-link manipu-
lator of Section 4.4. The routine should pass arguments in the form

Procedure INVKIN(VAR wreib: frame; VAR current, near, far: vec3;
VAR sol: boolean);

where "wreib," an input, is the wrist frame specified relative to the base frame;
"current," an input, is the current position of the robot (given as a vector of joint
angles); "near" is the nearest solution; "far" is the second solution; and "sol" is
a flag that indicates whether solutions were found. (sol = FALSE if no solutions
were found). The link lengths (meters) are

11 = 17 = 0.5.

zo,1

L/

yo,1

x4
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The joint ranges of motion are

—170° 170°.

Test your routine by calling it back-to-back with KIN to demonstrate that they are
indeed inverses of one another.

2. A tool is attached to link 3 of the manipulator. This tool is described by the
tool frame relative to the wrist frame. Also, a user has described his work area, the
station frame relative to the base of the robot, as T. Write the subroutine

Procedure SOLVE(VAR -brels: frame; VAR current, near, far: vec3;
VAR sol: boolean);

where "trels" is the {T} frame specified relative to the {S} frame. Other parameters
are exactly as in the INVKIN subroutine. The defmitions of {T} and {S} should be

globally defined variables or constants. SOLVE should use calls to TMULT, TINVERT,
and INVKIN.

3. Write a main program that accepts a goal frame specified in terms of x, y, and
This goal specification is (T} relative to {S}, which is the way the user wants to
specify goals.
The robot is using the same tool in the same working area as in Programming
Exercise (Part 2), so {T} and {S} are defined as

= [x y 9] = [0.1 0.2 30.0],

= [x y 8] = [—0.1 0.3 0.0].

Calculate the joint angles for each of the following three goal frames:

[x1 Yi = [0.0 0.0 — 90.0],

Er7 Y2 02] = [0.6 —0.3 45.0],

[x3 Y3 03] = [—0.4 0.3 120.0],

[x4 04] = [0.8 1.4 30.0].

Assume that the robot wifi start with all angles equal to 0.0 and move to these
three goals in sequence. The program should find the nearest solution with respect
to the previous goal point. You should call SOLVE and WHERE back-to-back to make
sure they are truly inverse functions.

MATLAB EXERCISE 4

This exercise focuses on the inverse-pose kinematics solution for the planar 3-DOF,
3R robot. (See Figures 3.6 and 3.7; the DH parameters are given in Figure 3.8.) The

following fixed-length parameters are given: L1 = 4, L2 = 3, and L3 = 2(m).

a) Analytically derive, by hand, the inverse-pose solution for this robot: Given
T, calculate all possible multiple solutions for 8-, 83 }. (Three methods are

presented in the text—choose one of these.) Hint: To simplify the equations, first

calculate from and L3.

b) Develop a MATLAB program to solve this planar 3R robot inverse-pose kine-

matics problem completely (i.e., to give all multiple solutions). Test your program,
using the following input cases:
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1009
' 0100

H — 0 0 1 0
0001

0.5 —0.866 0 7.5373
o 0.866 0.6 0 3.9266

0 0 1 0
0 0 01
0 1 0 —3

o — —100 2
I1I)HT_ 001 0

000 1

rO.866 0.5 0 —3.1245
o I —0.5 0.866 0 9.1674

0 0 1 0
Lo 0 0 1

For all cases, employ a circular check to validate your results: Plug each resulting
set of joint angles (for each of the multiple solutions) back into the forward-
pose kinematics MATLAB program to demonstrate that you get the originally
commanded

c) Check all results by means of the Corke MATLAB Robotics Toolbox. Try function
ikineQ.




