
CHAPTER 6

Manipulator dynamics

6.1 INTRODUCTION
6.2 ACCELERATION OF A RIGID BODY
6.3 MASS DISTRIBUTION
6.4 NEWTON'S EQUATION, EULER'S EQUATION
6.5 ITERATIVE NEWTON—EULER DYNAMIC FORMULATION
6.6 ITERATIVE VS. CLOSED FORM

6.7 AN EXAMPLE OF CLOSED-FORM DYNAMIC EQUATIONS
6.8 THE STRUCTURE OF A MANIPULATOR'S DYNAMIC EQUATIONS
6.9 LAGRANGIAN FORMULATION OF MANIPULATOR DYNAMICS
6.10 FORMULATING MANIPULATOR DYNAMICS IN CARTESIAN SPACE
6.11 INCLUSION OF NONRIGID BODY EFFECTS
6.12 DYNAMIC SIMULATION
6.13 COMPUTATIONAL CONSIDERATIONS

6.1 INTRODUCTION

Our study of manipulators so far has focused on kinematic considerations only.
We have studied static positions, static forces, and velocities; but we have never
considered the forces required to cause motion. In this chapter, we consider the
equations of motion for a manipulator—the way in which motion of the manipulator
arises from torques applied by the actuators or from external forces applied to the
manipulator.

Dynamics of mechanisms is a field in which many books have been written.
Indeed, one can spend years studying the field. Obviously, we cannot cover the
material in the completeness it deserves. However, certain formulations of the
dynamics problem seem particularly well suited to application to manipulators. In
particular, methods which make use of the serial-chain nature of manipulators are
natural candidates for our study.

There are two problems related to the dynamics of a manipulator that we wish
to solve. In the first problem, we are given a trajectory point, e, and ë, and we
wish to find the required vector of joint torques, r. This formulation of dynamics
is useful for the problem of controlling the manipulator (Chapter 10). The second
problem is to calculate how the mechanism wifi move under application of a set of
joint torques. That is, given a torque vector, r, calculate the resulting motion of the
manipulator, g, é, and 0. This is useful for simulating the manipulator.

165

166 Chapter 6 Manipulator dynamics

6.2 ACCELERATION OF A RIGID BODY

We now extend our analysis of rigid-body motion to the case of accelerations. At
any instant, the linear and angular velocity vectors have derivatives that are called
the linear and angular accelerations, respectively. That is,

B B

BV =_BV = lim (6.1)
dt At-+o

and

urn)
(6.2)

dt

As with velocities, when the reference frame of the differentiation is understood to
be some universal reference frame, {U}, we wifi use the notation

U.
VA — VAORG .3

and

WAQA. (6.4)

Linear acceleration

We start by restating (5.12), an important result from Chapter 5, which describes
the velocity of a vector B as seen from frame {A} when the origins are coincident:

AV = BVQ + AQB x BQ• (6.5)

The left-hand side of this equation describes how A is changing in time. So, because
origins are coincident, we could rewrite (6.5) as

(6.6)

This form of the equation wifi be useful when deriving the corresponding acceleration
equation.

By differentiating (6.5), we can derive expressions for the acceleration of B
as viewed from {A} when the origins of {A} and {B} coincide:

(6.7)

Now we apply (6.6) twice-—once to the first term, and once to the last term. The
right-hand side of equation (6.7) becomes

(68)+

Combining two terms, we get

(6.9)

Section 6.3 Mass distribution 167

Finally, to generalize to the case in which the origins are not coincident, we add one
term which gives the linear acceleration of the origin of {B}, resulting in the final
general formula:

(6.10)

+ AQ x (AQ x BQ)

A particular case that is worth pointing out is when B is constant, or

By = = 0. (6.11)

In this case, (6.10) simplifies to

+Q X (AQB .B Q)+Ac2B (6.12)

We wifi use this result in calculating the linear acceleration of the links of a
manipulator with rotational joints. When a prismatic joint is present, the more
general form of (6.10) wifi be used.

Angular acceleration

Consider the case in which {B} is rotating relative to {A} with AQB and {C} is rotating
relative to {B} with B To calculate we sum the vectors in frame {AI:

AQ _AQ ARBQ 613C B+B C

By differentiating, we obtain

d1A
— +

Now, applying (6.6) to the last term of (6.14), we get

XBRQc. (6.15)

We wifi use this result to calculate the angular acceleration of the links of a
manipulator.

6.3 MASS DISTRIBUTION

In systems with a single degree of freedom, we often talk about the mass of a rigid
body. In the case of rotational motion about a single axis, the notion of the moment
of inertia is a familiar one. For a rigid body that is free to move in three dimensions,
there are infinitely many possible rotation axes. In the case of rotation about an
arbitrary axis, we need a complete way of characterizing the mass distribution of a
rigid body. Here, we introduce the inertia tensor, which, for our purposes, can be
thought of as a generalization of the scalar moment of inertia of an object.

We shall now define a set of quantities that give information about the
distribution of mass of a rigid body relative to a reference frame. Figure 6.1 shows
a rigid body with an attached frame. Inertia tensors can be defined relative to any
frame, but we wifi always consider the case of an inertia tensor defined for a frame

168 Chapter 6 Manipulator dynamics

FIGURE 6.1: The inertia tensor of an object describes the object's mass distribution.
Here, the vector A P locates the differential volume element, dv.

attached to the rigid body. Where it is important, we will indicate, with a leading
superscript, the frame of reference of a given inertia tensor. The inertia tensor
relative to frame {A} is expressed in the matrix form as the 3 x 3 matrix

r 'Xx —'xz 1
A1 = , (6.16)

L J

where the scalar elements are given by

= +z2)pdv,

= + z2)pdv,

= + y2)pdv, (6.17)

=

=

=
yzpdv,

in which the rigid body is composed of differential volume elements, dv, containing
material of density p. Each volume element is located with a vector, A p = {xyzlT
as shown in Fig. 6.1.

The elements Ifl,, and are called the mass moments of inertia. Note
that, in each case, we are integrating the mass elements, pdv, times the squares of
the perpendicular distances from the corresponding axis. The elements with mixed
indices are called the mass products of inertia. This set of six independent quantities

Ax

Section 6.3 Mass distribution 169

will, for a given body, depend on the position and orientation of the frame in which
they are defined. If we are free to choose the orientation of the reference frame, it is
possible to cause the products of inertia to be zero. The axes of the reference frame
when so aligned are called the principal axes and the corresponding mass moments
are the principal moments of inertia.

EXAMPLE 6.1

Find the inertia tensor for the rectangular body of uniform density p with respect to
the coordinate system shown in Fig. 6.2.

First, we compute Using volume element dv = dx dy dz, we get

= jh fw(2
+ z2)p dx dy dz

= f f(Y2 + z2)wpdy dz

çh

J0
+ z21) wpdz

in
(12 + h2),

3

(6.18)

where in is the total mass of the body. Permuting the terms, we can get and
by inspection:

and

2 +h2)

FIGURE 6.2: A body of uniform density.

Y

(6.19)

(6.20)= + co2).

fA}

Ii

170 Chapter 6 Manipulator dynamics

We next compute

=f f —ypdydz (6.21)

cu w212
—4---pdz

in
= -4-wl.

Permuting the terms, we get
= (6.22)

and
= (6.23)

Hence, the inertia tensor for this object is

A1 = ¶(w2 + . (6.24)

As noted, the inertia tensor is a function of the location and orientation of
the reference frame. A well-known result, the parallel-axis theorem, is one way
of computing how the inertia tensor changes under translations of the reference
coordinate system. The parallel-axis theorem relates the inertia tensor in a frame
with origin at the center of mass to the inertia tensor with respect to another
reference frame. Where {C} is located at the center of mass of the body, and {A} is
an arbitrarily translated frame, the theorem can be stated [1] as

A1 = + +
A1 _C1

— p625xy — xy

where = locates the center of mass relative to {A}. The remaining
moments and products of inertia are computed from permutations of x,y, and z in
(6.25). The theorem may be stated in vector—matrix form as

A1 = C1 + in[P — (6.26)

where 13 is the 3 x 3 identity matrix.

EXAMPLE 6.2

Find the inertia tensor for the same solid body described for Example 6.1 when it is
described in a coordinate system with origin at the body's center of mass.

Section 6.4 Newton's equation, Euler's equation 171

We can apply the parallel-axis theorem, (6.25), where

rxcl
yc 1

LZcJ L12

Next, we fmd

=

Cj = 0. (6.27)

The other elements are found by symmetry. The resulting inertia tensor written in
the frame at the center of mass is

0 0

Cj = 0 + h2) 0 . (6.28)

0 0

The result is diagonal, so frame {C} must represent the principal axes of this body.

Some additional facts about inertia tensors are as follows:

1. If two axes of the reference frame form a plane of symmetry for the mass
distribution of the body, the products of inertia having as an index the
coordinate that is normal to the plane of symmetry wifi be zero.

2. Moments of inertia must always be positive. Products of inertia may have
either sign.

3. The sum of the three moments of inertia is invariant under orientation changes
in the reference frame.

4. The eigenvalues of an inertia tensor are the principal moments for the body.
The associated eigenvectors are the principal axes.

Most manipulators have links whose geometry and composition are somewhat
complex, so that the application of (6.17) is difficult in practice. A pragmatic option
is actually to measure rather than to calculate the moment of inertia of each link by
using a measuring device (e.g., an inertia pendulum).

6.4 NEWTON'S EQUATION, EULER'S EQUATION

We wifi consider each link of a manipulator as a rigid body. If we know the
location of the center of mass and the inertia tensor of the link, then its mass
distribution is completely characterized. In order to move the links, we must
accelerate and decelerate them. The forces required for such motion are a function
of the acceleration desired and of the mass distribution of the links. Newton's
equation, along with its rotational analog, Euler's equation, describes how forces,
inertias, and accelerations relate.

172 Chapter 6 Manipulator dynamics

FIGURE 6.3: A force F acting at the center of mass of a body causes the body to
accelerate at Uc.

Newton's equation

Figure 6.3 shows a rigid body whose center of mass is accelerating with acceleration
In such a situation, the force, F, acting at the center of mass and causing this

acceleration is given by Newton's equation

where m is the total mass of the body.

Euler's equation

F = (6.29)

Figure 6.4 shows a rigid body rotating with angular velocity cv and with angular
acceleration th. In such a situation, the moment N, which must be acting on the body
to cause this motion, is given by Euler's equation

N = CIó) + x CIa) (6.30)

where Cj is the inertia tensor of the body written in a frame, {C}, whoseorigin is
located at the center of mass.

FIGURE 6.4: A moment N is acting on a body, and the body is rotating with velocity
cv and accelerating at th.

(1)

Section 6.5 Iterative Newton—Euler dynamic formulation 173

6.5 ITERATIVE NEWTON-EULER DYNAMIC FORMULATION

We now consider the problem of computing the torques that correspond to a
given trajectory of a manipulator. We assume we know the position, velocity, and
acceleration of the joints, (0, 0, 0). With this knowledge, and with knowledge of
the kinematics and the mass-distribution information of the robot, we can calculate
the joint torques required to cause this motion. The algorithm presented is based
upon the method published by Luh, Walker, and Paul in [2].

Outward iterations to compute velocities and accelerations

In order to compute inertial forces acting on the links, it is necessary to compute
the rotational velocity and linear and rotational acceleration of the center of mass
of each link of the manipulator at any given instant. These computations wifi be
done in an iterative way, starting with link 1 and moving successively, link by link,
outward to link n.

The "propagation" of rotational velocity from link to link was discussed in
Chapter 5 and is given (for joint i + 1 rotational) by

i+1 — i+lR i+12wi+1_1 i+1•

From (6.15), we obtain the equation for transforming angular acceleration from one
link to the next:

i+lth = i+lR 'th1 + X + (6.32)

When joint i + 1 is prismatic, this simplifies to

= 1+lR 1w1. (6.33)

The linear acceleration of each link-frame origin is obtained by the application of
(6.12):

= x + x ('co1 x + (6.34)

For prismatic joint i + 1, (6.34) becomes (from (6.10))

= x + x (1w1 x +

xd 1+12 1+12 635
I i+1 i+1 i+1

We also will need the linear acceleration of the center of mass of each link, which
also can be found by applying (6.12):

= 'th1 x + x (1w1 + + (6.36)

Here, we imagine a frame, {C1 }, attached to each link, having its origin located at
the center of mass of the link and having the same orientation as the link frame,
{i}. Equation (6.36) doesn't involve joint motion at all and so is valid for joint i + 1,
regardless of whether it is revolute or prismatic.

Note that the application of the equations to link 1 is especially simple, because
ow0 = °th0 = 0.

174 Chapter 6 Manipulator dynamics

The force and torque acting on a link

Having computed the linear and angular accelerations of the mass center of each
link, we can apply the Newton—Euler equations (Section 6.4) to compute the inertial
force and torque acting at the center of mass of each link. Thus we have

N1 = ClIth. x (6.37)

where } has its origin at the center of mass of the link and has the same orientation
as the link frame, {i}.

Inward iterations to compute forces and torques

Having computed the forces and torques acting on each link, we now need to
calculate the joint torques that will result in these net forces and torques being
applied to each link.

We can do this by writing a force-balance and moment-balance equation based
on a free-body diagram of a typical link. (See Fig. 6.5.) Each link has forces and
torques exerted on it by its neighbors and in addition experiences an inertial force
and torque. In Chapter 5, we defined special symbols for the force and torque
exerted by a neighbor link, which we repeat here:

= force exerted on link i by link i 1,

= torque exerted on link i by link i — 1.

By summing the forces acting on link i, we arrive at the force-balance
relationship:

638
1 — Jj i+1 Ji+1•

By summing torques about the center of mass and setting them equal to zero,
we arrive at the torque-balance equation:

'N1 = — + ('Pc.) X tf — ('p1+' — 'Pc) X (6.39)

FIG U RE 6.5: The force balance, including inertial forces, for a single manipulator link.

li + 11
+ 1

Section 6.5 Iterative Newton—Euler dynamic formulation 175

Using the result from the force-balance relation (6.38) and adding a few
rotation matrices, we can write (6.39) as

= — — x —
x (6.40)

Finally, we can rearrange the force and torque equations so that they appear as
iterative relationships from higher numbered neighbor to lower numbered neighbor:

I,C_1 641ii — i+1 Ji+1 I j,

= + + x + x (6.42)

These equations are evaluated link by link, starting from link ii and working
inward toward the base of the robot. These inward force iterations are analogous
to the static force iterations introduced in Chapter 5, except that inertial forces and
torques are now considered at each link.

As in the static case, the required joint torques are found by taking the Z
component of the torque applied by one link on its neighbor:

= (6.43)

For joint i prismatic, we use

= ifT (6.44)

where we have used the symbol r for a linear actuator force.
Note that, for a robot moving in free space, N+lfN+l and N+lliN+l are set

equal to zero, and so the first application of the equations for link n is very simple.
If the robot is in contact with the environment, the forces and torques due to
this contact can be included in the force balance by having nonzero N+1 fN+1 and
N+1

The iterative Newton—Euler dynamics algorithm

The complete algorithm for computing joint torques from the motion of the joints
is composed of two parts. First, link velocities and accelerations are iteratively
computed from link 1 out to link n and the Newton—Euler equations are applied
to each link. Second, forces and torques of interaction and joint actuator torques
are computed recursively from link n back to link 1. The equations are summarized
next for the case of all joints rotational:

176 Chapter 6 Manipulator dynamics

Outward iterations: i : 0 —÷ 5

i+1 _i+lDi i £3
i m &i+1 1+1'

i+lth = 'thy + x + (6.46)

= !+1R(ith X + x ('cot x 'p1+1) + (6.47)

_i+1• i+1
— X c1÷1

X (i+1Wj+l x i+lp) + (6.48)

i+lp
= (6.49)

= i+lth + x (6.50)

Inward iterations: i : 6 —÷ 1

= + 'Fe, (6.51)

= 'N1 + 1+1k + x 'F1

x (6.52)

= '2,. (6.53)

Inclusion of gravity forces in the dynamics algorithm

The effect of gravity loading on the links can be included quite simpiy by setting
= G, where G has the magnitude of the gravity vector but points in the opposite

direction. This is equivalent to saying that the base of the robot is accelerating
upward with 1 g acceleration. This fictitious upward acceleration causes exactly the
same effect on the links as gravity would. So, with no extra computational expense,
the gravity effect is calculated.

6.6 ITERATIVE VS. CLOSED FORM

Equations (6.46) through (6.53) give a computational scheme whereby, given the
joint positions, velocities, and accelerations, we can compute the required joint
torques. As with our development of equations to compute the Jacobian in
Chapter 5, these relations can be used in two ways: as a numerical computational
algorithm, or as an algorithm used analytically to develop symbolic equations.

Use of the equations as a numerical computational algorithm is attractive
because the equations apply to any robot. Once the inertia tensors, link masses, Pc,
vectors, and matrices are specified for a particular manipulator, the equations
can be applied directly to compute the joint torques corresponding to any motion.

However, we often are interested in obtaining better insight into the structure
of the equations. For example, what is the form of the gravity terms? How does
the magnitude of the gravity effects compare with the magnitude of the inertial
effects? To investigate these and other questions, it is often useful to write closed-
form dynamic equations. These equations can be derived by applying the recursive

Section 6.7 An example of closed-form dynamic equations 177

Newton—Euler equations symbolically to e, and e. This is analogous to what we
did in Chapter 5 to derive the symbolic form of the Jacobian.

6.7 AN EXAMPLE OF CLOSED-FORM DYNAMIC EQUATIONS

Here we compute the closed-form dynamic equations for the two-link planar
manipulator shown in Fig. 6.6. For simplicity, we assume that the mass distribution
is extremely simple: All mass exists as a point mass at the distal end of each link.
These masses are in1 and in2.

First, we determine the values of the various quantities that wifi appear in the
recursive Newton—Euler equations. The vectors that locate the center of mass for
each link are

1Pc1

PC2 = 12X2.

Because of the point-mass assumption, the inertia tensor written at the center of
mass for each link is the zero matrix:

C111 =
C212 =

There are no forces acting on the end-effector, so we have

fl3 = 0.

The base of the robot is not rotating; hence, we have

COO = 0,

th0 =0.

T7

FIGURE 6.6: Two-link planar manipulator with point masses at distal ends of links.

178 Chapter 6 Manipulator dynamics

To include gravity forces, we wifi use

=

The rotation between successive link frames is given by

r
= CH1 0.0

[0.0 0.0 1.0

0.0
i+lR = —S1 0.0

L 0.0 0.0 1.0

We now apply equations (6.46) through (6.53).
The outward iterations for link 1 are as follows:

ro
0

[é1

ro
0

L

r 01 roi

L0 01][0j L°
[q• 1 r 1 1 r

r —,n111Ô12 +

1F1 = + in1gc1
L 0

rol
0 . (6.54)

L0J
The outward iterations for link 2 are as follows:

.01 +

ro
0

+

Section 6.7 An example of closed-form dynamic equations 179

E c2 0 1 E + gs1 1 119152 — + gs12

= L

+gc1 I =001]L 0 j 0

r o •. 1
Vc = 12(91+92) + I U

° JL
1191s2 — + gs12

+ 1101c2 + + gc12 , (6.55)

0

ni21191s2 — + in2gs12 — m212(01 +
2F2 = ,n71191c2 + + fl12gc12 + 111212(01 +

0

EU
2N_I 0

[0
The inward iterations for link 2 are as follows:

2 _2f2_F2,
[0 1

= I
0 (6.56)

[rn91112c291 + + in212gc12 + ,n212(01 + J

The inward iterations for link 1 are as follows:

[c2 —s2 0 1 ,n211s291 — + rn2gs12 — in219(91 +
if1 = S2 C2 0 rn211c201 + + m2gc12 + in212(91 +

LU 0 1] 0

r +
+ ,n11191 + in1gc1

L 0

r 0

1/1=1 0

[in21112c2ö1 + + 'n2l2gc12 + ,n212(01 +

r
+1 0

L + in1l1gc1

+ [— in 21 11 2s2(91 + 02)2 + in211gs2s12
(6.57)

+rn21112c2(01 + + in211gc2c17

180 Chapter 6 Manipulator dynamics

Extracting the 2 components of the 1n1, we find the joint torques:

= + + ,n21112c2 (291 + d2) + (in1 + —

—2,n21112s20102 + in212gc12 + (in1 + in2)11gc1,

= + + rn212gc17 + in212(91 + (6.58)

Equations (6.58) give expressions for the torque at the actuators as a function
ofjoint position, velocity, and acceleration. Note that these rather complex functions
arose from one of the simplest manipulators imaginable. Obviously, the closed-form
equations for a manipulator with six degrees of freedom wifi be quite complex.

6.8 THE STRUCTURE OF A MANIPULATOR'S DYNAMIC EQUATIONS

It is often convenient to express the dynamic equations of a manipulator in a single
equation that hides some of the details, but shows some of the structure of the
equations.

The state-space equation

When the Newton—Euler equations are evaluated symbolically for any manipulator,
they yield a dynamic equation that can be written in the form

= M(O)O + v(e, e) + G(e), (6.59)

where M(O) is then x n mass matrix of the manipulator, V(O, 0) is ann x 1 vector
of centrifugal and Coriolis terms, and is an ii x 1 vector of gravity terms. We
use the term state-space equation because the term 0), appearing in (6.59),
has both position and velocity dependence [3].

Each element of M(0) and G(0) is a complex function that depends on 0, the
position of all the joints of the manipulator. Each element of V(e, 0) is a complex
function of both 0 and 0.

We may separate the various types of terms appearing in the dynamic equations
and form the mass matrix of the manipulator, the centrifugal and Coriolis vector,
and the gravity vector.

EXAMPLE 6.3

Give M(0), V(0, è), and G(0) for the manipulator of Section 6.7.
Equation (6.59) defines the manipulator mass matrix, M(0); it is composed of

all those terms which multiply and is a function of 0. Therefore, we have

M(0) = + 21112,n2c2 + + m2) 12,n2 + 1112in2c2 1
. (6.60)

[+ 1112,n2c7]
Any manipulator mass matrix is symmetric and positive definite, and is, therefore,
always invertible.

The velocity term, V (0, 0), contains all those terms that have any dependence
on joint velocity. Thus, we obtain

V(0, 0) =
[mn2hul2s2 2,

1. (6.61)
[in21112s291]

Section 6.8 The structure of a manipulator's dynamic equations 181

A term like is caused by a centrifugal force, and is recognized as such
because it depends on the square of a joint velocity. A term such as
is caused by a Coriolis force and wifi always contain the product of two different
joint velocities.

The gravity term, G(e), contains all those terms in which the gravitational
constant, g, appears. Therefore, we have

= [in217gc12 + (in1 + in2)11gc1 1
. (6.62)

L
in212gc12 J

Note that the gravity term depends only on e and not on its derivatives.

The configuration-space equation

By writing the velocity-dependent term, V(O, in a different form, we can write
the dynamic equations as

= M(e)e + B(O)[éé] + c(e)[e2] + G(O), (6.63)

where B(O) is a matrix of dimensions n x n(n — 1)/2 of Coriolis coefficients, [OO]
is an n(n — 1)/2 x 1 vector of joint velocity products given by

—

C(O) is ann x ii matrix of centrifugal coefficients, and is an n x 1 vector given
by

[92 92 92]T (6.65)

We wifi call (6.63) the configuration-space equation, because the matrices are
functions only of manipulator position [3].

In this form of the dynamic equations, the complexity of the computation is
seen to be in the form of computing various parameters which are a function of only
the manipulator position, 0. This is important in applications (such as computer
control of a manipulator) in which the dynamic equations must be updated as
the manipulator moves. (Equation (6.63) gives a form in which parameters are a
function of joint position only and can be updated at a rate related to how fast the
manipulator is changing configuration.) We will consider this form again with regard
to the problem of manipulator control in Chapter 10.

EXAMPLE 6.4

Give B(0) and C(0) (from (6.63)) for the manipulator of Section 6.7.
For this simple two-link manipulator, we have

{ee] =

=
(6.66)

182 Chapter 6 Manipulator dynamics

So we see that

B(O)
= [_2m2J112s2]

(6.67)

and

C(®) = [
0 ,n21112s2

1. (6.68)
L

in21112s2 0 j

6.9 LAGRANGIAN FORMULATION OF MANIPULATOR DYNAMICS

The Newton—Euler approach is based on the elementary dynamic formulas (6.29)
and (6.30) and on an analysis of forces and moments of constraint acting between
the links. As an alternative to the Newton—Euler method, in this section we
briefly introduce the Lagrangian dynamic formulation. Whereas the Newton—Euler
formulation might be said to be a "force balance" approach to dynamics, the
Lagrangian formulation is an "energy-based" approach to dynamics. Of course, for
the same manipulator, both will give the same equations of motion. Our statement
of Lagrangian dynamics will be brief and somewhat specialized to the case of a
serial-chain mechanical manipulator with rigid links. For a more complete and
general reference, see [4].

We start by developing an expression for the kinetic energy of a manipulator.
The kinetic energy of the ith link, can be expressed as

,_i T 11 TC.Ti
— _F (iii

where the first term is kinetic energy due to linear velocity of the link's center
of mass and the second term is kinetic energy due to angular velocity of the link.
The total kinetic energy of the manipulator is the sum of the kinetic energy in the
individual links—that is,

k = (6.70)

The and in (6.69) are functions of 0 and 0, so we see that the kinetic energy
of a manipulator can be described by a scalar formula as a function of joint position
and velocity, k(0, 0). In fact, the kinetic energy of a manipulator is given by

k(0, 0) = (6.71)

where M(0) is the n x ii manipulator mass matrix already introduced in Section 6.8.
An expression of the form of (6.71) is known as a quathatic form [5], since when
expanded out, the resulting scalar equation is composed solely of terms whose
dependence on the is quadratic. Further, because the total kinetic energy must
always be positive, the manipulator mass matrix must be a so-called positive definite
matrix. Positive definite matrices are those having the property that their quadratic
form is always a positive scalar. Equation (6.71) can be seen to be analogous to the
familiar expression for the kinetic energy of a point mass:

k = (6.72)

Section 6.9 Lagrangian formulation of manipulator dynamics 183

The fact that a manipulator mass matrix must be positive definite is analogous to
the fact that a scalar mass is always a positive number.

The potential energy of the ith link, can be expressed as

0 TO
— g +

where 0g is the 3 x 1 gravity vector, is the vector locating the center of mass of
the ith link, and Uref is a constant chosen so that the mmii: urn value of is zero.1
The total potential energy stored in the manipulator is the sum of the potential
energy in the individual links—that is,

u

=
u,. (6.74)

Because the in (6.73) are functions of e, we see that the potential energy
of a manipulator can be described by a scalar formula as a function of joint position,
u(O).

The Lagrangian dynamic formulation provides a means of deriving the equa-
tions of motion from a scalar function called the Lagrangian, which is defined as the
difference between the kinetic and potential energy of a mechanical system. In our
notation, the Lagrangian of a manipulator is

(6.75)

The equations of motion for the manipulator are then given by

(6.76)dtae ae
where r is the n x 1 vector of actuator torques. In the case of a manipulator, this
equation becomes

d8k

k (.) and U (.) have been dropped for brevity.

EXAMPLE 6.5

The links of an RP manipulator, shown in Fig. 6.7, have inertia tensors

[Ixx1 0 0C111
'yyl 0

L 0 0 'zzi

212 = 0 'yy2 o , (6.78)

[0 0 'zz2]

'Actually, only the partial derivative of the potential energy with respect to 0 wifi appear in the
dynamics, so this constant is arbitrary. This corresponds to defining the potential energy relative to an
arbitrary zero reference height.

184 Chapter 6 Manipulator dynamics

and total mass ni1 and in2. As shown in Fig. 6.7, the center of mass of link 1 is
located at a distance from the joint-i axis, and the center of mass of link 2 is at the
variable distance d2 from the joint-i axis. Use Lagrangian dynamics to determine
the equation of motion for this manipulator.

Using (6.69), we write the kinetic energy of link 1 as

and the kinetic energy of link 2 as

= + (6.79)

k2 = + +

Hence, the total kinetic energy is given by

k(O, e) = + + + +

Using (6.73), we write the potential energy of link 1 as

= in1l1g sin(91) + in1l1g

and the potential energy of link 2 as

U2 = sin(91) +

(6.80)

(6.81)

(6.82)

(6.83)

where d2,i,ax is the maximum extension of joint 2. Hence, the total potential energy
is given by

u(EJ) = g(in111 + ,n2d2) sin(91) ± rn111g + (6.84)

.1

FIGURE 6.7: The RP manipulator of Example 6.5.

Section 6i0 Formulating manipulator dynamics in Cartesian space 185

Next, we take partial derivatives as needed for (6.77):

alc
= [+ + +

1 , (6.85)ae L in2d2 J

= (6.86)

= [g(m111 + in2d2) cos(91) 1.
(6.87)

L
gin2 sin(91) J

Finally, substituting into (6.77), we have

= + + + +

+(in111 +rn2d2)gcos(81), (6.88)

= 1fl2d2 — + 11128 sin(91).

From (6.89), we can see that

M(O) = [(miii + + + 0

L
0

r 2,n2d2e1a7 1
V(O, 0) = I' (6.89)

L
—m21291 j

G(O) = [(,n1i1 + m2d2)g cos(91)

[

6.10 FORMULATING MANIPULATOR DYNAMICS IN CARTESIAN SPACE

Our dynamic equations have been developed in terms of the position and time
derivatives of the manipulator joint angles, or in joint space, with the general form

= M(O)ë + v(e, 0) + G(O). (6.90)

We developed this equation in joint space because we could use the serial-link
nature of the mechanism to advantage in deriving the equations. In this section,
we discuss the formulation of the dynamic equations that relate acceleration of the
end-effector expressed in Cartesian space to Cartesian forces and moments acting
at the end-effector.

The Cartesian state-space equation

As explained in Chapters 10 and 11, it might be desirable to express the dynamics
of a manipulator with respect to Cartesian variables in the general form [6]

= + 0) + (6.91)

186 Chapter 6 Manipulator dynamics

where .F is a force—torque vector acting on the end-effector of the robot, and
x is an appropriate Cartesian vector representing position and orientation of the
end-effector [7]. Analogous to the joint-space quantities, is the Cartesian
mass matrix, 0) is a vector of velocity terms in Cartesian space, and (0) is
a vector of gravity terms in Cartesian space. Note that the fictitious forces acting on
the end-effector, .T, could in fact be applied by the actuators at the joints by using
the relationship

r = (6.92)

where the Jacobian, J(0), is written in the same frame as .T and usually the tool
frame, {T}.

We can derive the relationship between the terms of (6.90) and those of (6.91)
in the following way. First, we premultiply (6.90) by the inverse of the Jacobian
transpose to obtain

J_Tt = + J_TV(0 , 0) + J_TG(0), (6.93)

or
= + J_TV(0 , 0) + J_TG(0). (6.94)

Next, we develop a relationship between joint space and Cartesian acceleration,
starting with the definition of the Jacobian,

= jO, (6.95)

and differentiating to obtain
= JO + Jë. (6.96)

Solving (6.96) for joint-space acceleration leads to

= — (6.97)

Substituting (6.97) into (6.94), we have

= J_TM(0)J_l.5? + J_TV(0, 0) + J_TG(0), (6.98)

from which we derive the expressions for the terms in the Cartesian dynamics as

M(0) = J_T(0)M(g)J4(0),

0) = jT (0)(V(0, 0) — (6.99)

= JT(0)G(0).

Note that the Jacobian appearing in equations (6.100) is written in the same
frames as and x in (6.91); the choice of this frame is arbitrary.2 Note that, when the
manipulator approaches a singularity, certain quantities in the Cartesian dynamics
become infinite.

2Certain choices could facilitate computation.

Section 6.10 Formulating manipulator dynamics in Cartesian space 187

EXAMPLE 6.6

Derive the Cartesian-space form of the dynamics for the two-link planar arm of
Section 6.7. Write the dynamics in terms of a frame attached to the end of the second
link.

For this manipulator, we have abeady obtained the dynamics (in Section 6.7)
and the Jacobian (equation (5.66)), which we restate here:

J(O) = r 1. (6.100)
[11c2+12 12]

First, compute the inverse Jacobian:

1 =
r

12 0
1. (6.101)

1112s2 [—11c2 12 1157]

Next, obtain the time derivative of the Jacobian:

1(e) = [01. (6.102)
[—115292 0]

Using (6.100) and the results of Section 6.7, we get
I- in1
I 0

— Si

L
0 1122

V(® 6)
= [

—(in211c2 + 112212)01 — (21n2l2+n2211c9 +

],n211s291 + 11,n2s29192

E C1 1= 1g +
. (6.103)

L
in2gc12]

When 57 = 0, the manipulator is in a singular position, and some of the
dynamic tenns go to infinity. For example, when = 0 (arm stretched straight out),
the effective Cartesian mass of the end-effector becomes infinite in the X2 direction
of the link-2 tip frame, as expected. In general, at a singular configuration there is a
certain direction, the singular direction in which motion is impossible, but general
motion in the subspace "orthogonal" to this direction is possible [8].

The Cartesian configuration space torque equation

Combining (6.91) and (6.92), we can write equivalent joint torques with the dynamics
expressed in Cartesian space:

= JT(e)(M + 6) + (6.104)

We will find it useful to write this equation in the form

r = JT (O)M G(e), (6.105)

188 Chapter 6 Manipulator dynamics

where ((9) is a matrix of dimension n x n (n — 1)/2 of Coriolis coefficients, [éè]
is an ii (a 1) /2 x 1 vector of joint velocity products given by

= 0193 (6.106)

((9) is an a x a matrix of centrifugal coefficients, and [(92] is an a x 1 vector given
by

[92 (6.107)

Note that, in (6.105), G(O) is the same as in the joint-space equation, but in general,
B(O) and C(O).

EXAMPLE 6.7

Find (0) and (0) (from (6.105)) for the manipulator
If we form the product (0) (0, 0), we find that

of Section 6.7.

r 72C2 i
I — — m2L112s2

(0) = 1 S7

L
,n21112s2

(6.108)

and

= [m2 1
. (6.109)

6.11 INCLUSION OF NONRIGID BODY EFFECTS

It is important to realize that the dynamic equations we have derived do not
encompass all the effects acting on a manipulator. They include only those forces
which arise from rigid body mechanics. The most important source of forces that are
not included is friction. All mechanisms are, of course, affected by frictional forces.
In present-day manipulators, in which significant gearing is typical, the forces due to
friction can actually be quite large—perhaps equaling 25% of the torque required
to move the manipulator in typical situations.

In order to make dynamic equations reflect the reality of the physical device,
it is important to model (at least approximately) these forces of friction. A very
simple model for friction is viscous friction, in which the torque due to friction is
proportional to the velocity of joint motion. Thus, we have

tfriction = vO, (6.110)

where v is a viscous-friction constant. Another possible simple model for friction,
Coulomb friction, is sometimes used. Coulomb friction is constant except for a sign
dependence on the joint velocity and is given by

tfrictiofl = c sgn(9), (6.111)

wherec is a Coulomb-friction constant. The value of c is often taken at one value
when 9 = 0, the static coefficient, but at a lower value, the dynamic coefficient, when
9 0. Whether a joint of a particular manipulator exhibits viscous or Coulomb

Section 6.12 Dynamic simulation 189

friction is a complicated issue of lubrication and other effects. A reasonable model
is to include both, because both effects are likely:

tfriction = c + vO. (6.112)

It turns out that, in many manipulator joints, friction also displays a dependence
on the joint position. A maj or cause of this effect might be gears that are not perfectly
round—their eccentricity would cause friction to change according to joint position.
So a fairly complex friction model would have the form

tfrictiofl = f(9, 0). (6.113)

These friction models are then added to the other dynamic terms derived from the
rigid-body model, yielding the more complete model

= M(O)ë + V(O, e) + + F(O, (6.114)

There are also other effects, which are neglected in this model. For example,
the assumption of rigid body links means that we have failed to include bending
effects (which give rise to resonances) in our equations of motion. However, these
effects are extremely difficult to model and are beyond the scope of this book.
(See [9, 10].)

6.12 DYNAMIC SIMULATION

To simulate the motion of a manipulator, we must make use of a model of the
dynamics such as the one we have just developed. Given the dynamics written
in closed form as in (6.59), simulation requires solving the dynamic equation for
acceleration:

0= M1(e)[r — V(e, 0) — G(O) — F(O, b)]. (6.115)

We can then apply any of several known numerical integration techniques to
integrate the acceleration to compute future positions and velocities.

Given initial conditions on the motion of the manipulator, usually in the form

0(0) =

0(0) = 0, (6.116)

we integrate (6.115) forward in time numerically by steps of size There are many
methods of performing numerical integration [11]. Here, we introduce the simplest
integration scheme, called Euler integration: Starting with t = 0, iteratively compute

0(t + = 0(t) +
0(t + = 0(t) + + (6.117)

where, for each iteration, (6.115) is computed to calculate In this way, the
position, velocity, and acceleration of the manipulator caused by a certain input
torque function can be computed numerically.

Euler integration is conceptually simple, but other, more sophisticated inte-
gration techniques are recommended for accurate and efficient simulation [11]. How

190 Chapter 6 Manipulator dynamics

to select the size of is an issue that is often discussed. It should be sufficiently
small that breaking continuous time into these small increments is a reasonable
approximation. It should be sufficiently large that an excessive amount of computer
time is not required to compute a simulation.

6.13 COMPUTATIONAL CONSIDERATIONS

Because the dynamic equations of motion for typical manipulators are so complex, it
is important to consider computational issues. In this section, we restrict our attention
to joint-space dynamics. Some issues of computational efficiency of Cartesian
dynamics are discussed in [7, 8].

A historical note concerning efficiency

Counting the number of multiplications and additions for the equations (6.46)— (6.53)
when taking into consideration the simple first outward computation and simple last
inward computation, we get

126n — 99 multiplications,

106n — 92 additions,

where n is the number of links (here, at least two). Although stifi somewhat complex,
the formulation is tremendously efficient in comparison with some previously
suggested formulations of manipulator dynamics. The first formulation of the
dynamics for a manipulator [12, 13] was done via a fairly straightforward Lagrangian
approach whose required computations came out to be approximately [14]

32n4 + 86n3 + 171n2 + 53n — 128 multiplications,

25n4 + 66n3 + 129n2 + 42n — 96 additions.

For a typical case, n = 6, the iterative Newton—Euler scheme is about 100
times more efficient! The two approaches must of course yield equivalent equations,
and numeric calculations would yield exactly the same results, but the structure
of the equations is quite different. This is not to say that a Lagrangian approach
cannot be made to produce efficient equations. Rather, this comparison indicates
that, in formulating a computational scheme for this problem, care must be taken
as regards efficiency. The relative efficiency of the method we have presented stems
from posing the computations as iterations from link to link and in the particulars
of how the various quantities are represented [15].

Renaud [16] and Liegois et al. [17] made early contributions concerning
the formulation of the mass-distribution descriptions of the links. While studying
the modeling of human limbs, Stepanenko and Vukobratovic [18] began investi-
gating a "Newton—Euler" approach to dynamics instead of the somewhat more
traditional Lagrangian approach. This work was revised for efficiency by Orin et
al. [19] in an application to the legs of walking robots. Orin's group improved
the efficiency somewhat by writing the forces and moments in the local link-
reference frames instead of in the inertial frame. They also noticed the sequential
nature of calculations from one link to the next and speculated that an efficient
recursive formulation might exist. Armstrong [20] and Luh, Walker, and Paul

Section 6.13 Computational considerations 191

[2] paid close attention to details of efficiency and published an algorithm that
is 0(n) in complexity. This was accomplished by setting up the calculations in
an iterative (or recursive) nature and by expressing the velocities and accelera-
tions of the links in the local link frames. Hollerbach [14] and Silver [15] further
explored various computational algorithms. Hollerbach and Sahar [21] showed that,
for certain specialized geometries, the complexity of the algorithm would reduce
further.

Efficiency of dosed form vs. that of iterative form

The iterative scheme introduced in this chapter is quite efficient as a general means
of computing the dynamics of any manipulator, but closed-form equations derived
for a particular manipulator wifi usually be even more efficient. Consider the two-
link planar manipulator of Section 6.7. Plugging n = 2 into the formulas given in
Section 6.13, we find that our iterative scheme would require 153 multiplications
and 120 additions to compute the dynamics of a general two-link. However, our
particular two-link arm happens to be quite simple: It is planar, and the masses
are treated as point masses. So, if we consider the closed-form equations that we
worked out in Section 6.7, we see that computation of the dynamics in this form
requires about 30 multiplications and 13 additions. This is an extreme case, because
the particular manipulator is very simple, but it ifiustrates the point that symbolic
closed-form equations are likely to be the most efficient formulation of dynamics.
Several authors have published articles showing that, for any given manipulator,
customized closed-form dynamics are more efficient than even the best of the
general schemes [22—27].

Hence, if manipulators are designed to be simple in the kinematic and dynamic
sense, they wifi have dynamic equations that are simple. We might define a kinemat-
ically simple manipulator to be a manipulator that has many (or all) of its link twists
equal to 0°, 90°, or —90° and many of its link lengths and offsets equal to zero. We
might define a dynamically simple manipulator as one for which each link-inertia
tensor is diagonal in frame (C1 }.

The drawback of formulating closed-form equations is simply that it currently
requires a fair amount of human effort. However, symbolic manipulation programs
that can derive the closed-form equations of motion of a device and automati-
cally factor out common terms and perform trigonometric substitutions have been
developed [25, 28—30].

Efficient dynamics for simulation

When dynamics are to be computed for the purpose of performing a numerical
simulation of a manipulator, we are interested in solving for the joint accelera-
tions, given the manipulator's current position and velocity and the input torques.
An efficient computational scheme must therefore address both the computa-
tion of the dynamic equations studied in this chapter and efficient schemes for
solving equations (for joint accelerations) and performing numerical integration.
Several efficient methods for dynamic simulation of manipulators are reported
in[31].

192 Chapter 6 Manipulator dynamics

Memorization schemes

In any computational scheme, a trade-off can be made between computations and
memory usage. In the problem of computing the dynamic equation of a manipulator
(6.59), we have implicitly assumed that, when a value of r is needed, it is computed
as quickly as possible from 0, 0, and 0 at run time. If we wish, we can trade off this
computational burden at the cost of a tremendously large memory by precomputing
(6.59) for all possible 0, O, and 0 values (suitably quantized). Then, when dynamic
information is needed, the answer is found by table lookup.

The size of the memory required is large. Assume that each joint angle range
is quantized to ten discrete values; likewise, assume that velocities and accelerations
are quantized to ten ranges each. For a six-jointed manipulator, the number of cells
in the (0, 0, 0) quantized space is (10 x 10 x 10)6. In each of these cells, there are
six torque values. Assuming each torque value requires one computer word, this
memory size is 6 x 1018 words! Also, note that the table needs to be recomputed for
a change in the mass of the load—or else another dimension needs to be added to
account for all possible loads.

There are many intermediate solutions that trade off memory for computation
in various ways. For example, if the matrices appearing in equation (6.63) were
precomputed, the table would have only one dimension (in 0) rather than three.
After the functions of 0 are looked up, a modest amount of computation (given by
(6.63)) is done. For more details and for other possible parameterizations of this
problem, see [3] and [6].

BIBLIOG RAPHY

[1] I. Shames, Engineering Mechanics, 2nd edition, Prentice-Hall, Englewood Cliffs, NJ,
1967.

[2] J.Y.S. Luh, M.W. Walker, and R.P. Paul, "On-Line Computational Scheme for
Mechanical Manipulators," Transactions of the ASME Journal of Dynamic Systems,
Measurement, and Control, 1980.

[3] M. Raibert, "Mechanical Arm Control Using a State Space Memory," SIVIE paper
MS77-750, 1977.

[4] K.R. Symon, Mechanics, 3rd edition, Addison-Wesley, Reading, MA, 1971.

[5] B. Noble, Applied Linear Algebra, Prentice-Hall, Englewood Cliffs, NJ, 1969.

[6] 0. Khatib, "Commande Dynamique dans L'Espace Operatioimel des Robots Manip-
ulateurs en Presence d'Obstacles," These de Docteur-Ingenieur. Ecole Nationale
Superieure de 1'Aeronautique et de L'Espace (ENSAE), Toulouse.

[7] 0. Khatib, "Dynamic Control of Manipulators in Operational Space," Sixth IFTOMM
Congress on Theory of Machines and Mechanisms, New Delhi, December 15—20, 1983.

[8] 0. Khatib, "The Operational Space Formulation in Robot Manipulator Control,"
15th ISIR, Tokyo, September 11—13, 1985.

[9] E. Schmitz, "Experiments on the End-Point Position Control of a Very Flexible
One-Link Manipulator," Unpublished Ph.D. Thesis, Department of Aeronautics and
Astronautics, Stanford University, SUDAAR No. 547, June 1985.

[10] W. Book, "Recursive Lagrangian Dynamics of Flexible Manipulator Arms," Interna-
tional Journal of Robotics Research, Vol. 3, No. 3, 1984.

Bibliography 193

[11] S. Conte and C. DeBoor, Elementary Numerical Analysis: An Algorithmic Approach,
2nd edition, McGraw-Hill, New York, 1972.

[1.2] J. Uicker, "On the Dynamic Analysis of Spatial Linkages Using 4 x 4 Matrices,"
Unpublished Ph.D dissertation, Northwestern University, Evanston, IL, 1965.

[13] J. Uicker, "Dynamic Behaviour of Spatial Linkages," ASME Mechanisms, Vol. 5,
No. 68, pp. 1—15.

[14] J.M. Hollerbach, "A Recursive Lagrangian Formulation of Manipulator Dynamics
and a Comparative Study of Dynamics Formulation Complexity," in Robot Motion,
M. Brady et al., Editors, MIIT Press, Cambridge, MA, 1983.

[15] W. Silver, "On the Equivalence of Lagrangian and Newton—Euler Dynamics for
Manipulators," International Journal of Robotics Research, Vol. 1, No. 2, pp. 60—70.

[16] M. Renaud, "Contribution a l'Etude de la Modélisation et de Ia Commande des
Systémes Mécaniques Articulés," These de Docteur-Ingenieur, Université Paul
Sabatier, Toulouse, December 1975.

[17] A. Liegois, W. Khalil, J.M. Dumas, and M. Renaud, "Mathematical Models of Inter-
connected Mechanical Systems," Symposium on the Theory and Practice of Robots
and Manipulators, Poland, 1976.

[18] Y. Stepanenko and M. Vukobratovic, "Dynamics of Articulated Open-Chain Active
Mechanisms," Math-Biosciences Vol. 28, 1976, pp. 137—170.

[19] D.E. Orin et al, "Kinematic and Kinetic Analysis of Open-Chain Linkages Utilizing
Newton—Euler Methods," Math-Biosciences Vol. 43, 1979, pp. 107—130.

[20] W.W. Armstrong, "Recursive Solution to the Equations of Motion of an N-Link
Manipulator," Proceedings of the 5th World Congress on the Theory of Machines and
Mechanisms, Montreal, July 1979.

[21] J.M. Hollerbach and G. Sahar, "Wrist-Partitioned Inverse Accelerations and Manip-
ulator Dynamics," MIT Al Memo No. 717, April 1983.

[22] T.K. Kanade, P.K. Khosla, and N. Tanaka, "Real-Time Control of the CMU Direct
Drive Arm II Using Customized Inverse Dynamics," Proceedings of the 23rd IEEE
Conference on Decision and Control, Las Vegas, NV, December 1984.

[23] A. Izaguirre and R.P. Paul, "Computation of the Inertial and Gravitational Coeffi-
cients of the Dynamic Equations for a Robot Manipulator witha Load," Proceedings
of the 1985 International Conference on Robotics and Automation, pp. 1024—1032, St.
Louis, March 1985.

[24] B. Armstrong, 0. K.hatib, and J. Burdick, "The Explicit Dynamic Model and Inertial
Parameters of the PUMA 560 Arm," Proceedings of the 1986 IEEE International
Conference on Robotics and Automation, San Francisco, April 1986, pp. 510—518.

[25] J.W. Burdick, "An Algorithm for Generation of Efficient Manipulator Dynamic
Equations," Proceedings of the 1986 IEEE International Conference on Robotics and
Automation, San Francisco, April 7—11, 1986, pp. 212—218.

[26] T.R. Kane and D.A. Levinson, "The Use of Kane's Dynamical Equations in
Robotics," The International Journal of Robotics Research, Vol. 2, No. 3, Fall 1983,
pp. 3—20.

[27] M. Renaud, "An Efficient Iterative Analytical Procedure for Obtaining a Robot
Manipulator Dynamic Model," First International Symposium of Robotics Research,
NH, August 1983.

194 Chapter 6 Manipulator dynamics

[281 W. Schiehlen, "Computer Generation of Equations of Motion," in Computer Aided
Analysis and Optimization of Mechanical System Dynamics, E.J. Haug, Editor,
Springer-Verlag, Berlin & New York, 1984.

[29] G. Cesareo, F. Nicolo, and S. Nicosia, "DYMIR: A Code for Generating Dynamic
Model of Robots," in Advanced Software in Robotics, Elsevier Science Publishers,
North-Holland, 1984.

[30] J. Murray, and C. Neuman, "ARM: An Algebraic Robot Dynamic Modelling Pro-
gram," IEEE International Conference on Robotics, Atlanta, March 1984.

[31] M. Wailcer and D. Orin, "Efficient Dynamic Computer Simulation of Robotic Mech-
anisms," ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 104,
1982.

EXERCISES

6.1 [12] Find the inertia tensor of a right cylinder of homogeneous density with
respect to a frame with origin at the center of mass of the body.

6.2 [3211 Construct the dynamic equations for the two-link manipulator in Section 6.7
when each link is modeled as a rectangular solid of homogeneous density. Each
link has dimensions and and total mass m1.

6.3 [43] Construct the dynamic equations for the three-link manipulator of Chapter 3,
Exercise 3.3. Consider each link to be a rectangular solid of homogeneous density
with dimensions and h1 and total mass m1.

6.4 [13] Write the set of equations that correspond to (6.46)—(6.53) for the case where
the mechanism could have sliding joints.

6.5 [30] Construct the dynamic equations for the two-link nonpianar manipulator
shown in Fig. 6.8. Assume that all the mass of the links can be considered as a
point mass located at the distal (outermost) end of the link. The mass values are
in1 and in2, and the link lengths are 11 and 12. This manipulator is like the first two
links of the arm in Exercise 3.3. Assume further that viscous friction is acting at
each joint, with coefficients v1 and v2.

6.6 [32] Derive the Cartesian space form of the dynamics for the two-link planar
manipulator of Section 6.7 in terms of the base frame. Hint: See Example 6.5, but
use the Jacobian written in the base frame.

'Ti,

/

FIGURE 6.8: Two-link nonpianar manipulator with point masses at distal ends of links.

Exercises 195

6.7 [18] How many memory locations would be required to store the dynamic
equations of a general three-link manipulator in a table? Quantize each joint's
position, velocity, and acceleration into 16 ranges. Make any assumptions needed.

6.8 [32] Derive the dynamic equations for the two-link manipulator shown in Fig. 4.6.
Link 1 has an inertia tensor given by

o

0 'yyl o

L 0 0

Assume that link 2 has all its mass, in2, located at a point at the end-effector.
Assume that gravity is directed downward (opposite Z1).

6.9 [37] Derive the dynamic equations for the three-link manipulator with one
prismatic joint shown in Fig. 3.9. Link 1 has an inertia tensor given by

0 0

'yyi 0

L 0 0

Link 2 has point mass ui2 located at the origin of its link frame. Link 3 has an
inertia tensor given by

0 0

0 'yy3 0

L 0 0 'izz3

Assume that gravity is directed opposite and that viscous friction of magnitude
v1 is active at each joint.

6.10 [35] Derive the dynamic equations in Cartesian space for the manipulator of
Exercise 6.8. Write the equations in frame {2}.

6.11 [20] A certain one-link manipulator has

0 0

0 'yyl 0

L 0 0

Assume that this is just the inertia of the link itself. If the motor armature has a
moment of inertia and the gear ratio is 100, what is the total inertia as seen
from the motor shaft [1]?

6.12 [20] The single-degree-of-freedom "manipulator" in Fig. 6.9 has total mass in = 1,
with the center of mass at

r2
0

L0
and has inertia tensor

El 0 0C11 020
L0 0 2

From rest at t = 0, the joint angle °1 moves in accordance with the time function

01(t) = bt + Ct2

in radians. Give the angular acceleration of the link and the linear acceleration of
the center of mass in terms of frame {1} as a function of t.

196 Chapter 6 Manipulator dynamics

6.13 [40] Construct the Cartesian dynamic equations for the two-link nonpianar
manipulator shown in Fig. 6.8. Assume that all the mass of the links can be
considered as a point mass located at the distal (outermost) end of the link. The
mass values are in1 and in2, and the link lengths are 11 and 12. This manipulator is
like the first two links of the arm in Exercise 3.3. Also assume that viscous friction
is acting at each joint with coefficients and v2. Write the Cartesian dynamics
in frame {3], which is located at the tip of the manipulator and has the same
orientation as link frame {2}.

6.14 [18] The following equations were derived for a 2-DOF RP manipulator:

= + d2)81 + + 2in2d2d291

+g cos(81)[nii(di + d7Oi) + ,n2(d2 + (12)]

= + ,n2d2 — ,n1d1d2 — ,n2d282 + ,n2(d2 + 1)g sin(9i).

Some of the terms are obviously incorrect. Indicate the incorrect terms.
6.15 [28] Derive the dynamic equations for the RP manipulator of Example 6.5, using

the Newton—Euler procedure instead of the Lagrangian technique.
6.16 [25] Derive the equations of motion for the PR manipulator shown in Fig. 6.10.

Neglect friction, but include gravity. (Here, X0 is upward.) The inertia tensors
of the links are diagonal, with moments 'xxi' 'yyl' 'zzi and 'xx2' 'yy2' The
centers of mass for the links are given by

=

2p[0
- L°

6.17 [40] The velocity-related terms appearing in the manipulator dynamic equation
can be written as a matrix-vector product—that is,

V(O, e) = e, e)e,

FIGURE 6.9: One-link "manipulator" of Exercise 6.12.

Programming exercise (Part 6) 197

FIGURE 6.10: PR manipulator of Exercise 6.16.

where the in subscript stands for "matrix form." Show that an interesting rela-
tionship exists between the time derivative of the manipulator mass matrix and

namely,

M(e) = 0) —

where S is some skew-symmetric matrix.
6.18 [15] Give two properties that any reasonable friction model (i.e., the term F (0, 0)

in (6.114)) would possess.
6.19 [28] Do Exercise 6.5, using Lagrange's equations.
6.20 [28] Derive the dynamic equations of the 2-DOF manipulator of Section 6.7, using

a Lagrangian formulation.

PROGRAMMING EXERCISE (PART 6)

1. Derive the dynamic equations of motion for the three-link manipulator (from
Example 3.3). That is, expand Section 6.7 for the three-link case. The following
numerical values describe the manipulator:

11 = 17 = 0.Sm,

in1 = 4.6Kg,

in2 = 2.3Kg,

in3 = 1.0Kg,

g = 9.8m1s2.

For the first two links, we assume that the mass is all concentrated at the distal end
of the link. For link 3, we assume that the center of mass is located at the origin of
frame {3}—that is, at the proximal end of the link. The inertia tensor for link 3 is

ro.os 0 0 1
= I

0 0.1 0 Kg-rn2.

L 0 0 0.1J

in1

198 Chapter 6 Manipulator dynamics

The vectors that locate each center of mass relative to the respective link frame
are

=

=

= o.

2. Write a simulator for the three-link manipulator. A simple Euler-integration
routine is sufficient for performing the numerical integration (as in Section 6.12).
To keep your code modular, it might be helpful to define the routine

Procedure UPDATE(VAR tau: vec3; VAR period: VAR

theta, thetadot: vec3);

where "tau" is the torque command to the manipulator (always zero for this
assignment), "period" is the length of time you wish to advance time (in seconds),
and "theta" and "thetadot" are the state of the manipulator. Theta and thetadot
are updated by "period" seconds each time you call UPDATE. Note that "period"
would typically be longer than the integration step size, used in the numerical
integration. For example, although the step size for numerical integration might
be 0.001 second, you might wish to print out the manipulator position and velocity
only each 0.1 seconds.

To test your simulation, set the joint-torque commands to zero (for all time) and
perform these tests:

(a) Set the initial position of the manipulator to

[910293] =[—9000].

Simulate for a few seconds. Is the motion of the manipulator what you would
expect?

(b) Set the initial position of the manipulator to

= [303010].

Simulate for a few seconds. Is the motion of the manipulator what you would
expect?

(c) Introduce some viscous friction at each joint of the simulated manipula-
tor—that is, add a term to the dynamics of each joint in the form = vO,
where v = 5.0 newton-meter-seconds for each joint. Repeat test (b) above.
Is the motion what you would expect?

MATLAB EXERCISE 6A

This exercise focuses on the inverse-dynamics analysis (in a resolved-rate control
framework—see MATLAB Exercise 5) for the planar 2-DOF 2R robot. This robot is
the first two R-joints and first two moving links of the planar 3-DOF 3R robot. (See
Figures 3.6 and 3.7; the DH parameters are given in the first two rows of Figure 3.8.)

For the planar 2R robot, calculate the required joint torques (i.e., solve the
inverse-dynamics problem) to provide the commanded motion at every time step in a
resolved-rate control scheme. You can use either numerical Newton—Euler recursion or
the analytical equations from the results of Exercise 6.2, or both.

MATLAB Exercise 6C 199

Given: L1 = 1.0 m, L9 = 0.5 m; Both links are solid steel with mass density
p = 7806 kg/rn3; both have the width and thickness dimensions w = t 5 cm. The
revolute joints are assumed to be perfect, connecting the links at their very edges (not
physically possible).

10The initial angles are 0 = —

The (constant) commanded Cartesian velocity is = {±} = 0 (mis).

Simulate motion for 1 sec, with a control time step of 0.01 sec.

Present five plots (each set on a separate graph, please):

1. the two joint angles (degrees) 0 = 02}T vs. time;
2. the two joint rates (rad/s) = vs. time;
3. the two joint accelerations (rad/s2) = vs. time;
4. the three Cartesian components of X = {x y (rad is fine for so it will

fit) vs. time;
5. the two inverse dynamics joint torques (Nm) T = {r1 r7}T vs. time.

Carefully label (by hand is fine!) each component on each plot. Also, label the axis
names and units.

Perform this simulation twice. The first time, ignore gravity (the motion plane is
normal to the effect of gravity); the second time, consider gravity g in the negative Y
direction.

MATLAB EXERCISE 6B

This exercise focuses on the inverse-dynamics solution for the planar 3-D OF, 3R robot (of
Figures 3.6 and 3.7; the DII parameters are given in Figure 3.8) for a motion snapshot in
time only. The following fixed-length parameters are given: L1 = 4, = 3, and L3 = 2
(in). For dynamics, we must also be given mass and moment-of-inertia information:
in1 = 20, in2 = 15, in3 10 (kg), = 0.5, = 0.2, and = 0.1 (kgin2).

Assume that the CG of each link is in its geometric center. Also, assume that gravity acts
in the — V direction in the plane of motion. For this exercise, ignore actuator dynamics
and the joint gearing.

a) Write a MATLAB program to implement the recursive Newton—Euler inverse-
dynamics solution (i.e., given the commanded motion, calculate the required
driving joint torques) for the following motion snapshot in time:

11001
.

fi]
..

10.51
0 = 0 = 2 (rad/s)0 = = 1 (rad/s2)

13°°J

b) Check your results in (a) by means of the Corke MATLAB Robotics Toolbox. Try
functions rne() and gravloadQ.

MATLAB EXERCISE 6C

This exercise focuses on the forward-dynamics solution for the planar 3-DOF, 3R robot
(parameters from MATLAB Exercise 6B) for motion over time. In this case, ignore
gravity (i.e., assume that gravity acts in a direction normal to the plane of motion). Use
the Corke IVIATLAB Robotics Toolbox to solve the forward-dynamics problem (i.e.,

200 Chapter 6 Manipulator dynamics

given the commanded driving joint torques, calculate the resulting robot motion) for the
following constant joint torques and the given initial joint angles and initial joint rates:

Itil 1201 1°iol 1_600

T = 1) = 5 (Nm, constant) e0 = °20 = 900

1t3J 1 J 1

1°
e0= — (rad/s)

to

Perform this simulation for 4 seconds. Try functionfdynQ.
Present two plots for the resulting robot motion (each set on a separate graph,

please):

1. the three joint angles (degrees) 0 = °2
03}T vs. time;

2. the three joint rates (rad/s) = {O1
03}T vs. time.

Carefully label (by hand is fine!) each component on each plot. Also, label the axis
names and units.

