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INTRODUCTION

In previous chapters, we have seen that the particular structure of a manipulator
influences kinematic and dynamic analysis. For example, some kinematic configu-
rations will be easy to solve; others will have no closed-form kinematic solution.
Likewise, the complexity of the dynamic equations can vary greatly with the kine-
matic configuration and the mass distribution of the links. In coming chapters, we
will see that manipulator control depends not only on the rigid-body dynamics, but
also upon the friction and flexibility of the drive systems.

The tasks that a manipulator can perform will also vary greatly with the
particular design. Although we have generally dealt with the robot manipulator as
an abstract entity, its performance is ultimately limited by such pragmatic factors as
load capacity, speed, size of workspace, and repeatability. For certain applications,
the overall manipulator size, weight, power consumption, and cost will be significant
factors.

This chapter discusses some of the issues involved in the design of the
manipulator. In general, methods of design and even the evaluation of a finished
design are partially subjective topics. It is difficult to narrow the spectrum of design
choices with many hard and fast rules.

The elements of a robot system fall roughly into four categories:

The manipulator, including its internal or proprioceptive sensors;
the end-effector, or end-of-arm tooling;
external sensors and effectors, such as vision systems and part feeders; and

e

the controller.
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The breadth of engineering disciplines encompassed forces us to restrict our
attention only to the design of the manipulator itself.

In developing a manipulator design, we will start by examining the factors
likely to have the greatest overall effect on the design and then consider more
detailed questions. Ultimately, however, designing a manipulator is an iterative
process. More often than not, problems that arise in the solving of a design detail
will force rethinking of previous higher level design decisions.

8.2 BASING THE DESIGN ON TASK REQUIREMENTS

Although robots are nominally “universally programmable” machines capable of
performing a wide variety of tasks, economies and practicalities dictate that different
manipulators be designed for particular types of tasks. For example, large robots
capable of handling payloads of hundreds of pounds do not generally have the
capability to insert electronic components into circuit boards. As we shall see, not
only the size, but the number of joints, the arrangement of the joints, and the types
of actuation, sensing, and control will all vary greatly with the sort of task to be
performed.

Number of degrees of freedom

The number of degrees of freedom in a manipulator should match the number
required by the task. Not all tasks require a full six degrees of freedom.

The most common such circumstance occurs when the end-effector has an
axis of symmetry. Figure 8.1 shows a manipulator positioning a grinding tool in two
different ways. In this case, the orientation of the tool with respect to the axis of the
tool, ZT, is immaterial, because the grinding wheel is spinning at several hundred
RPM. To say that we can position this 6-DOF robot in an infinity of ways for this
task (rotation about Z; is a free variable), we say that the robot is redundant for
this task. Arc welding, spot welding, deburring, glueing, and polishing provide other
examples of tasks that often employ end-effectors with at least one axis of symmetry.

FIGURE 8.1: A 6-DOF manipulator with a symmetric tool contains a redundant
degree of freedom.
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In analyzing the symmetric-tool situation, it is sometimes helpful to imagine
a fictitious joint whose axis lies along the axis of symmetry. In positioning any
end-effector to a specific pose, we need a total of six degrees of freedom. Because
one of these six is our fictitious joint, the actual manipulator need not have more
than five degrees of freedom. If a 5-DOF robot were used in the application of
Fig. 8.1, then we would be back to the usual case in which only a finite number of
different solutions are available for positioning the tool. Quite a large percentage
of existing industrial robots are S-DOF, in recognition of the relative prevalence of
symmetric-tool applications.

Some tasks are performed in domains that, fundamentally, have fewer than six
degrees of freedom. Placement of components on circuit boards provides a common
example of this. Circuit boards generally are planar and contain parts of various
heights. Positioning parts on a planar surface requires three degrees of freedom (x,
y, and 0); in order to lift and insert the parts, a fourth motion normal to the plane is
added (2).

Robots with fewer than six degrees of freedom can also perform tasks in
which some sort of active positioning device presents the parts. In welding pipes,
for example, a tilt/roll platform, shown in Fig. 8.2, often presents the parts to be
welded. In counting the number of degrees of freedom between the pipes and the
end-effector, the tilt/roll platform accounts for two. This, together with the fact that
arc welding is a symmetric-tool task, means that, in theory, a 3-DOF manipulator
could be used. In practice, realities such as the need to avoid collisions with the
workpiece generally dictate the use of a robot with more degrees of freedom.

Parts with an axis of symmetry also reduce the required degrees of freedom
for the manipulator. For example, cylindrical parts can in many cases be picked up
and inserted independent of the orientation of the gripper with respect to the axis of
the cylinder. Note, however, that after the part is grasped, the orientation of the part
about its symmetric axis must fail to matter for all subsequent operations, because
its orientation is not guaranteed.

FIGURE 8.2: A tilt/roll platform provides two degrees of freedom to the overall
manipulator system.
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Workspace

In performing tasks, a manipulator has to reach a number of workpieces or fixtures.
In some cases, these can be positioned as needed to suit the workspace of the
manipulator. In-other cases, a robot can be installed in a fixed environment with
rigid workspace requirements. Workspace is also sometimes called work volume or
work envelope.

The overall scale of the task sets the required workspace of the manipulator. In
some cases, the details of the shape of the workspace and the location of workspace
singularities will be important considerations.

The intrusion of the manipulator itself in the workspace can sometimes
be a factor. Depending on the kinematic design, operating a manipulator in a
given application could require more or less space around the fixtures in order
to avoid collisions. Restricted environments can affect the choice of kinematic
configuration.

Load capacity

The load capacity of a manipulator depends upon the sizing of its structural
members, power-transmission system, and actuators. The load placed on actuators
and drive system is a function of the configuration of the robot, the percentage of
time supporting a load, and dynamic loading due to inertial- and velocity-related
forces. ’

Speed

An obvious goal in design has been for faster and faster manipulators. High
speed offers advantages in many applications when a proposed robotic solution
must compete on economic terms with hard automation or human workers.
For some applications, however, the process itself limits the speed rather than
the manipulator. This is the case with many welding and spray-painting applica-
tions.

An important distinction is that between the maximum end-effector speed
and the overall cycle time for a particular task. For pick-and-place applications, the
manipulator must accelerate and decelerate to and from the pick and place locations
within some positional accuracy bounds. Often, the acceleration and deceleration
phases take up most of the cycle time. Hence, acceleration capability, not just peak
speed, is very important.

Repeatability and accuracy

High repeatability and accuracy, although desirable in any manipulator design, are
expensive to achieve. For example, it would be absurd to design a paint-spraying
robot to be accurate to within 0.001 inches when the spray spot diameter is 8 inches
+2 inches. To a large extent, accuracy of a particular model of industrial robot
depends upon the details of its manufacture rather than on its design. High accuracy
is achieved by having good knowledge of the link (and other) parameters. Making
it possible are accurate measurements after manufacture or careful attention to
tolerances during manufacturing. :
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8.3 KINEMATIC CONFIGURATION

Once the required number of degrees of freedom has been decided upon, a
particular configuration of joints must be chosen to realize those freedoms. For
serial kinematic linkages, the number of joints equals the required number of
degrees of freedom. Most manipulators are designed so that the last n — 3 joints
orient the end-effector and have axes that intersect at the wrist point, and the first
three joints position this wrist point. Manipulators with this design could be said to
be composed of a positioning structure followed by an orienting structure or wrist.
As we saw in Chapter 4, these manipulators always have closed-form kinematic
solutions. Although other configurations exist that possess closed-form kinematic
solutions, almost every industrial manipulator belongs to this wrist-partitioned class
of mechanisms. Furthermore, the positioning structure is almost without exception
designed to be kinematically simple, having link twists equal to 0° or £90° and
having many of the link lengths and offsets equal to zero.

It has become customary to classify manipulators of the wrist-partitioned,
kinematically simple class according to the design of their first three joints (the
positioning structure). The following paragraphs briefly describe the most common
of these classifications.

Cartesian

A Cartesian manipulator has perhaps the most straightforward configuration. As
shown in Fig. 8.3, joints 1 through 3 are prismatic, mutually orthogonal, and
correspond to the X, 7, and Z Cartesian directions. The inverse kinematic solution
for this configuration is trivial.

This configuration produces robots with very stiff structures. As a consequence,
very large robots can be built. These large robots, often called gantry robots, resemble
overhead gantry cranes. Gantry robots sometimes manipulate entire automobiles
or inspect entire aircraft.

The other advantages of Cartesian manipulators stem from the fact that the
first three joints are decoupled. This makes them simpler to design and prevents
kinematic singularities due to the first three joints.

d

Side view Top view

FIGURE 8.3: A Cartesian manipulator. .
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Their primary disadvantage is that all-of the feeders and fixtures associated with
an application must lie “inside” the robot. Consequently, application workcells for
Cartesian robots become very machine dependent. The size of the robot’s support
structure limits the size and placement of fixtures and sensors. These limitations
make retrofitting Cartesian robots into existing workcells extremely difficult.

Articulated

Figure 8.4 shows an articulated manipulator, sometimes also called a jointed, elbow,
or anthropomorphic manipulator. A manipulator of this kind typically consists of
two “shoulder” joints (one for rotation about a vertical axis and one for elevation
out of the horizontal plane), an “elbow” joint (whose axis is usually parallel to the
shoulder elevation joint), and two or three wrist joints at the end of the manipulator.
Both the PUMA 560 and the Motoman L-3, which we studied in earlier chapters,
fall into this class.

Articulated robots minimize the intrusion of the manipulator structure into
the workspace, making them capable of reaching into confined spaces. They require
much less overall structure than Cartesian robots, making them less expensive for
applications needing smaller workspaces.

SCARA

The SCARA! configuration, shown in Fig. 8.5, has three parallel revolute joints
(allowing it to move and orient in a plane), with a fourth prismatic joint for moving
the end-effector normal to the plane. The chief advantage is that the first three
joints don’t have to support any of the weight of the manipulator or the load. In
addition, link 0 can easily house the actuators for the first two joints. The actuators
can be made very large, so the robot can move very fast. For example, the Adept

Side view Top view

FIGURE 8.4: An articulated manipulator.

1SCARA stands for “selectively compliant assembly robot arm.”
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Side view Top view

FIGURE 8.5: A. SCARA manipulator.

One SCARA manipulator can move at up to 30 feet per second, about 10 times
faster than most articulated industrial robots [1]. This configuration is best suited to
planar tasks.

Spherical

The spherical configuration in Fig. 8.6 has many similarities to the articulated
manipulator, but with the elbow joint replaced by a prismatic joint. This design is
better suited to some applications than is the elbow design. The link that moves
prismatically might telescope—or even “‘stick out the back™ when retracted.

Cylindrical

Cylindrical manipulators (Fig. 8.7) consist of a prismatic joint for translating the arm
vertically, a revolute joint with a vertical axis, another prismatic joint orthogonal to
the revolute joint axis, and, finally, a wrist of some sort.

)

Side view

Top view

FIGURE 8.6: A spherical manipulator. .
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Side view To}) view

FIGURE 8.7: A cylindrical manipulator.

Wrists

The most common wrist configurations consist of either two or three revolute joints
with orthogonal, intersecting axes. The first of the wrist joints usually forms joint 4
of the manipulator.

A configuration of three orthogonal axes will guarantee that any orientation
can be achieved (assuming no joint-angle limits) [2]. As was stated in Chapter 4,
any manipulator with three consecutive intersecting axes will possess a closed-form
kinematic solution. Therefore, a three-orthogonal-axis wrist can be located at the
end of the manipulator in any desired orientation with no penalty. Figure 8.8 is a
schematic of one possible design of such a wrist, which uses several sets of bevel
gears to drive the mechanism from remotely located actuators.

In practice, it is difficult to build a three-orthogonal-axis wrist not subject to
rather severe joint-angle limitations. An interesting design used in several robots
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FIGURE 8.8: An orthogonal-axis wrist driven by remotely located actuators via three
concentric shafts.
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manufactured by Cincinatti Milacron (Fig. 1.4) employs a wrist that has three
intersecting but nonorthogonal axes. In this design (called the “‘three roll wrist™), all
three joints of the wrist can rotate continuously without limits. The nonorthogonality
of the axes creates, however, a set of orientations that are impossible to reach with
this wrist. This set of unattainable orientations is described by a cone within which
the third axis of the wrist cannot lie. (See Exercise 8.11.) However, the wrist can be
mounted to link 3 of the manipulator in such a way that the link structure occupies
this cone and so would be block access anyway. Figure 8.9 shows two drawings of
such a wrist [24]. -

Some industrial robots have wrists that do not have intersecting axes. This
implies that a closed-form kinematic solution might not exist. If, however, the wrist is
mounted on an articulated manipulator in such a way that the joint-4 axis is parallel
to the joint-2 and -3 axes, as in Fig. 8.10, there will be a closed-form kinematic
solution. Likewise, a nonintersecting-axis wrist mounted on a Cartesian robot yields
a closed-form-solvable manipulator.

Typically, 5-DOF welding robots use two-axis wrists oriented as shown in
Fig. 8.11. Note that, if the robot has a symmetric tool, this “fictitious joint”’ must
follow the rules of wrist design. That is, in order to reach all orientations, the tool
must be mounted with its axis of symmetry orthogonal to the joint-5 axis. In the
worst case, when the axis of symmetry is parallel to the joint-5 axis, the fictitious
sixth axis is in a permanently singular configuration.

g
g =

(b)

FIGURE 8.9: Two views of a nonorthogonal-axis wrist [24]. From International Ency-
clopedia of Robotics, by R. Dorfand S. Nof (editors). From “Wrists” by M. Rosheim,
John C. Wiley and Sons, Inc., New York, NY ©1988. Reprinted by permission.
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FIGURE 8.10: A manipulator with a wrist whose axes do not intersect. However, this
robot does possess a closed-form kinematic solution.

FIGURE 8.11: Typical wrist design of a 5-DOF welding robot.

8.4 QUANTITATIVE MEASURES OF WORKSPACE ATTRIBUTES

Manipulator designers have proposed several interesting quantitative measures of
various workspace attributes.
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Efficiency of design in terms of generating workspace

Some designers noticed that it seemed to take more material to build a Cartesian
manipulator than to build an articulated manipulator of similar workspace volume.
To get a quantitative handle on this, we first define the length sum of a manipulator as

N
L=) (a1 +d), (8.1)

i=1

where a;_; and d; are the link length and joint offset as defined in Chapter 3. Thus,
the length sum of a manipulator gives a rough measure of the “length” of the
complete linkage. Note that, for prismatic joints, d; must here be interpreted as a
constant equal to the length of travel between the joint-travel limits.

In [3], the structural length index, O, is defined as the ratio of the manipula-
tor’s length sum to the cube root of the workspace volume—that is,

0 =L/Jw, (82)

where L is given in (8.1) and W is the volume of the manipulator’s workspace.
Hence, Q; attempts to index the relative amount of structure (linkage length)
required by different configurations to generate a given work volume. Thus, a good
design would be one in which a manipulator with a small length sum nonetheless
possessed a large workspace volume. Good designs have alow Q; .

Considering just the positioning structure of a Cartesian manipulator (and
therefore the workspace of the wrist point), the value of Q; is minimized when
all three joints have the same length of travel. This minimal value is Q; = 3.0.
On the other hand, an ideal articulated manipulator, such as the one in Fig. 8.4,
has Q; = %71’/3 = 0.62. This helps quantify our earlier statement that articulated

manipulators are superior to other configurations in that they have minimal intrusion
into their own workspace. Of course, in any real manipulator structure, the figure
just given would be made somewhat larger by the effect of joint limits in reducing
the workspace volume.

EXAMPLE 8.1

A SCARA manipulator like that of Fig. 8.5 has links 1 and 2 of equal length /2, and
the range of motion of the prismatic joint 3 is given by d3. Assume for simplicity that
the joint limits are absent, and find Q;. What value of d; minimizes Q; and what is
this minimal value?

The length sum of this manipulator is L = [/2 +1/2 + d3 = | + d3, and the
workspace volume is that of a right cylinder of radius / and height ds; therefore,

0, = == 83)

Minimizing Q; as a function of the ratio dy/I gives dy = [/2 as optimal [3]. The
corresponding minimal value of Q; is 1.29.
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Designing well-conditioned workspaces

At singular points, a manipulator effectively loses one or more degrees of free-
dom, so certain tasks may not be able to be performed at that point. In fact, in
the neighborhood of singular points (including workspace-boundary singularities),
actions of the manipulator could fail to be well-conditioned. In some sense, the
farther the manipulator is away from singularities, the better able it is to move
uniformly and apply forces uniformly in all directions. Several measures have been
suggested for quantifying this effect. The use of such measures at design time might
yield a manipulator design with a maximally large well-conditioned subspace of the
workspace.
Singular configurations are given by

det(J (®)) = 0, (8.4)

80 it is natural to use the determinant of the Jacobian in a measure of manipulator
dexterity. In [4], the manipulability measure, w, is defined as

w = /det(J(®)JT (®)), (8.5)

which, for a nonredundant manipulator, reduces to
w = |det(J(®))|. (8.6)

A good manipulator design has large areas of its workspace characterized by high
values of w.

Whereas velocity analysis motivated (8.6), other researchers have proposed
manipulability measures based on acceleration analysis or force-application capa-
bility. Asada [5] suggested an examination of the eigenvalues of the Cartesian mass

matrix
M, (@) =TT (@)M@®)I 1 (®) (8.7)

as a measure of how well the manipulator can accelerate in various Cartesian
directions. He suggests a graphic representation of this measure as an inertia
ellipsoid, given by

XTM_ (@)X =1, (8.8)

the equation of an n-dimensional ellipse, where n is the dimension of X. The axes of
the ellipsoid given in (8.8) lie in the directions of the eigenvectors of M, (®), and the
reciprocals of the square roots of the corresponding eigenvalues provide the lengths
of the axes of the ellipsoid. Well-conditioned points in the manipulator workspace
are characterized by inertia ellipsoids that are spherical (or nearly so).

Figure 8.12 shows graphically the properties of a planar two-link manipulator.
In the center of the workspace, the manipulator is well conditioned, as is indicated
by nearly circular ellipsoids. At workspace boundaries, the ellipses flatten, indicating
the manipulator’s difficulty in accelerating in certain directions.

Other measures of workspace conditioning have been proposed in [6-8, 25].

8.5 REDUNDANT AND CLOSED-CHAIN STRUCTURES

In general, the scope of this book is limited to manipulators that are serial-
chain linkages of six or fewer joints. In this section, however, we briefly discuss
manipulators outside of this class.
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FIGURE 8.12: Workspace of a 2-DOF planar arm, showing inertia ellipsoids, from [5]
(©1984IEEE). The dashed line indicates a locus of isotropic points in the workspace.
Reprinted by permission.

Micromanipulators and other redundancies

General spatial positioning capability requires only six degrees of freedom, but there
are advantages to having even more controllable joints.

One use for these extra freedoms is already finding some practical applica-
tion [9,10] and is of growing interest in the research community: a micromanipulator.
A micromanipulator is generally formed by several fast, precise degrees of freedom
located near the distal end of a “conventional” manipulator. The conventional
manipulator takes care of large motions, while the micromanipulator, whose joints
generally have a small range of motion, accomplishes fine motion and force control.

Additional joints can also help a mechanism avoid singular configurations,
as is suggested in [11, 12]. For example, any three-degree-of-freedom wrist will
suffer from singular configurations (when all three axes lie in a plane), but a
four-degree-of-freedom wrist can effectively avoid such configurations [13—15].

Figure 8.13 shows two configurations suggested [11, 12] for seven-degree-of-
freedom manipulators.

A major potential use of redundant robots is in avoiding collisions while
operating in cluttered work environments. As we have seen, a six-degree-of-freedom
manipulator can reach a given position and orientation in only a finite number of
ways. The addition of a seventh joint allows an infinity of ways, permitting the desire
to avoid obstacles to influence the choice.

Closed-loop structures

Although we have considered only serial-chain manipulators in our analysis, some
manipulators contain closed-loop structures. For example, the Motoman L-3 robot
described in Chapters 3 and 4 possesses closed-loop structures in the drive mecha-
nism of joints 2 and 3. Closed-loop structures offer a benefit: increased stiffness of
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FIGURE 8.13: Two suggested seven-degree-of-freedom manipulator designs [3].

the mechanism [16]. On the other hand, closed-loop structures generally reduce the
allowable range of motion of the joints and thus decrease the workspace size.

Figure 8.14 depicts a Stewart mechanism, a closed-loop alternative to the serial
6-DOF manipulator. The position and orientation of the “end-effector’ is controlled
by the lengths of the six linear actuators which connect it to the base. At the base end,
each actuator is connected by a two-degree-of-freedom universal joint. At the end-
effector, each actuator is attached with a three-degree-of-freedom ball-and-socket
joint. It exhibits characteristics common to most closed-loop mechanisms: it can be
made very stiff, but the links have a much more limited range of motion than do
serial linkages. The Stewart mechanism, in particular, demonstrates an interesting
reversal in the nature of the forward and inverse kinematic solutions: the inverse
solution is quite simple, whereas the forward solution is typically quite complex,
sometimes lacking a closed-form formulation. (See Exercises 8.7 and 8.12.)

In general, the number of degrees of freedom of a closed-loop mechanism is
not obvious. The total number of degrees of freedom can be computed by means of
Griibler’s formula [17],

F=6(l-n-1)+)Y f, (8.9)

i=1

where F is the total number of degrees of freedom in the mechanism, / is the
number of links (including the base), n is the total number of joints, and f; is the
number of degrees of freedom associated with the ith joint. A planar version of
Griibler’s formula (when all objects are considered to have three degrees of freedom
if unconstrained) is obtained by replacing the 6 in (8.9) with a 3.
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“End-effector”

FIGURE 8.14: The Stewart mechanism is a six-degree-of-freedom fully parallel manip-
ulator. g

EXAMPLE 8.2

Use Griibler’s formula to verify that the Stewart mechanism (Fig. 8.14) indeed has
six degrees of freedom.

The number of joints is 18 (6 universal, 6 ball and socket, and 6 prismatic in
the actuators). The number of links is 14 (2 parts for each actuator, the end-effector,
and the base). The sum of all the joint freedoms is 36. Using Griibler’s formula, we
can verify that the total number of degrees of freedom is six:

F=6(14—18—1)+36=6. (8.10)

8.6 ACTUATION SCHEMES

Once the general kinematic structure of a manipulator has been chosen, the next
most important matter of concern is the actuation of the joints. Typically, the
actuator, reduction, and transmission are closely coupled and must be designed
together.

Actuator location

The most straightforward choice of actuator location is at or near the joint it drives.
If the actuator can produce enough torque or force, its output can attach directly
to the joint. This arrangement, known as a direct-drive configuration [18], offers
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the advantages of simplicity in design and superior controllability—that is, with no
transmission or reduction elements between the actuator and the joint, the joint
motions can be controlled with the same fidelity as the actuator itself.

Unfortunately, many actuators are best suited to relatively high speeds and
low torques and therefore require a speed-reduction system. Furthermore, actuators
tend to be rather heavy. If they can be located remotely from the joint and toward
the base of the manipulator, the overall inertia of the manipulator can be reduced
considerably. This, in turn, reduces the size needed for the actuators. To realize
these benefits, a transmission system is needed to transfer the motion from the
actuator to the joint.

In a joint-drive system with a remotely mounted actuator, the reduction system
could be placed either at the actuator or at the joint. Some arrangements combine
the functions of transmission and reduction. Aside from added complexity, the
major disadvantage of reduction and transmission systems is that they introduce
additional friction and flexibility into the mechanism. When the reduction is at the
joint, the transmission will be working at higher speeds and lower torques. Lower
torque means that flexibility will be less of a problem. However, if the weight of the
reducer is significant, some of the advantage of remotely mounted actuators is lost.

In Chapter 3, details were given for the actuation scheme of the Yasukawa
Motoman L-3, which is typical of a design in which actuators are mounted remotely
and resulting joint motions are coupled. Equations (3.16) show explicitly how
actuator motions cause joint motions. Note, for example, that mot10n of actuator 2
causes motion of joints 2, 3, and 4.

The optimal distribution of reduction stages throughout the transmission
will depend ultimately on the flexibility of the transmission, the weight of the
reduction system, the friction associated with the reduction system, and the ease of
incorporating these components into the overall manipulator design.

Reduction and transmission systems

Gears are the most common element used for reduction. They can provide for
large reductions in relatively compact configurations. Gear pairs come in various
configurations for parallel shafts (spur gears), orthogonal intersecting shafts (bevel
gears), skew shafts (worm gears or cross helical gears), and other configurations.
Different types of gears have different load ratings, wear characteristics, and
frictional properties.

The major disadvantages of using gearing are added backlash and friction.
Backlash, which arises from the imperfect meshing of gears, can be defined as the
maximum angular motion of the output gear when the input gear remains fixed.
If the gear teeth are meshed tightly to eliminate backlash, there can be excessive
amounts of friction. Very precise gears and very precise mounting minimize these
problems, but also increase cost.

The gear ratio, 77, describes the speed-reducing and torque-increasing effects of
a gear pair. For speed-reduction systems, we will define > 1; then the relationships
between input and output speeds and torques are given by

% = (L/mb; (811)

TO = 77-[1',
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where 6, and §; are output and input speeds, respectively, and 7, and 7; are output
and input torques, respectively.

The second broad class of reduction elements includes flexible bands, cables,
and belts. Because all of these elements must be flexible enough to bend around
pulleys, they also tend to be flexible in the longitudinal direction. The flexibility of
these elements is proportional to their length. Because these systems are flexible,
there must be some mechanism for preloading the loop to ensure that the belt
or cable stays engaged on the pulley. Large preloads can add undue strain to the
flexible element and introduce excessive friction.

Cables or flexible bands can be used either in a closed loop or as single-
ended elements that are always kept in tension by some sort of preload. In a joint
that is spring loaded in one direction, a single-ended cable could be used to pull
against it. Alternately, two active single-ended systems can oppose each other.
This arrangement eliminates the problem of excessive preloads but adds more
actuators.

Roller chains are similar to flexible bands but can bend around relatively small
pulleys while retaining a high stiffness. As a result of wear and high loads on the
pins connecting the links, toothed-belt systems are more compact than roller chains
for certain applications.

Band, cable, belt, and chain drives have the ability to combine transmission
with reduction. As is shown in Fig. 8.15, when the input pulley has radius r; and the
output pulley has radius r,, the “gear” ratio of the transmission system is

n=-=. (8.12)

Lead screws or ball-bearing screws provide another popular method of getting
alarge reduction in a compact package (Fig. 8.16). Lead screws are very stiff and can
support very large loads, and have the property that they transform rotary motion
into linear motion. Ball-bearing screws are similar to lead screws, but instead of
having the nut threads riding directly on the screw threads, a recirculating circuit of
ball bearings rolls between the sets of threads. Ball-bearings screws have very low
friction and are usually backdrivable.

Input Output

FIGURE 8.15: Band, cable, belt, and chain drives have the ability to combine trans-
mission with reduction.
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FIGURE 8.16: Lead screws (a) and ball-bearing screws (b) combine a large reduction
and transformation from rotary to linear motion.

8.7 STIFFNESS AND DEFLECTIONS

An important goal for the design of most manipulators is overall stiffness of the
structure and the drive system. Stiff systems provide two main benefits. First,
because typical manipulators do not have sensors to measure the tool frame
location directly, it is calculated by using the forward kinematics based on sensed
joint positions. For an accurate calculation, the links cannot sag under gravity or
other loads. In other words, we wish our Denavit-Hartenberg description of the
linkages to remain fixed under various loading conditions. Second, flexibilities in
the structure or drive train will lead to resonances, which have an undesirable effect
on manipulator performance. In this section, we consider issues of stiffness and
the resulting deflections under loads. We postpone further discussion of resonances
until Chapter 9.

Flexible elements in parallel and in series

As can be easily shown (see Exercise 8.21), the combination of two flexible members
of stiffness k; and k, “connected in parallel” produces the net stiffness

kparantel = k1 + k; (8.13)
“connected in series,” the combination produces the net stiffness
1 1 1
= —+4 —. (8.14)
kseries k1 Ky

In considering transmission systems, we often have the case of one stage
of reduction or transmission in series with a following stage of reduction or
transmission; hence, (8.14) becomes useful.

Shafts

A common method for transmitting rotary motion is through shafts. The torsional
stiffness of a round shaft can be calculated [19] as

_ Gnd*
T3

(8.15)
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where d is the shaft diameter, / is the shaft length, and G is the shear modulus of
elasticity (about 7.5 x 10'® Nit/m? for steel, and about a third as much for aluminum).

Gears

Gears, although typically quite stiff, introduce compliance into the drive system. An
approximate formula to estimate the stiffness of the output gear (assuming the input
gear is fixed) is given in [20] as

k= Cgbr?, (8.16)

where b is the face width of the gears, r is the radius of the output gear, and
C, = 1.34 x 10 Nt/m? for steel.

Gearing also has the effect of changing the effective stiffness of the drive
system by a factor of 5. If the stiffness of the transmission system prior to the
reduction (i.e., on the input side) is %;, so that

T = k;80;, (8.17)
and the stiffness of the output side of the reduction is &, so that
7, = k,80,, (8.18)

then we can compute the relationship between k; and k, (under the assumption of a
perfectly rigid gear pair) as
T, _ nkidg; 4

o

k= -2 = — k..
o= %6, (A/mog,

(8.19)

Hence, a gear reduction has the effect of increasing the stiffness by the square of the
gear ratio.

EXAMPLE 8.3

A shaft with torsional stiffness equal to 500.0 Nt-m/radian is connected to the
input side of a gear set with n = 10, whose output gear (when the input gear is
fixed) exhibits a stiffness of 5000.0 Nt m/radian. What is the output stiffness of the
combined drive system?

Using (8.14) and (8.19), we have

1 1 1
= , 820
ks 5000.0 | 102(500.0) (820)
or
50000 .
series — 1 = 4545.4 Nt m/radian. (8.21)

When a relatively large speed reduction is the last element of a multiclement
transmission system, the stiffnesses of the preceding elements can generally be
ignored.
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FIGURE 8.17: Simple cantilever beam used to model the stiffness of a link to an end
load.

Belts
In such a belt drive as that of Fig. 8.15, stiffness is given by

k=22 (8.22)

where A is the cross-sectional area of the belt, E is the modulus of elasticity of the
belt, and [ is the length of the free belt between pulleys plus one-third of the length
of the belt in contact with the pulleys [19].

Links

As a rough approximation of the stiffness of a link, we might model a single link as
a cantilever beam and calculate the stiffness at the end point, as in Fig. 8.17. For a
round hollow beam, this stiffness is given by [19]

3nEd} - dY)
e’
where d; and d, are the inner and outer diameters of the tubular beam, [ is the
length, and E is the modulus of elasticity (about 2 x 10!t Nt/m? for steel, and about

a third as much for aluminum). For a square-cross-section hollow beam, this stiffness
is given by

(8.23)

4_ 4
_ E (wo wl.)
413 ’
where w; and w,, are the outer and inner widths of the beam (i.e., the wall thickness
is w, — w;).

(8.24)

EXAMPLE 8.4

A square-cross-section link of dimensions 5 x 5 x 50 cm with a wall thickness of
1 cm is driven by a set of rigid gears with # = 10, and the input of the gears is driven
by a shaft having diameter 0.5 cm and length 30 cm. What deflection is caused by a
force of 100 Nt at the end of the link?
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Using (8.24), we calculate the stiffness of the link as

2 x 1011)(0.05* — 0.04%

ke = ~3.69 x 10°. 8.25
link 4(0.5) * (825)
Hence, for a load of 100 Nt, there is a deflection in the link itself of
100
§x = —— =27x107* m, (8.26)
Ky

or 0.027 cm.
Additionally, 100 Nt at the end of a 50-cm link is placing a torque of 50 Nt-m
on the output gear. The gears are rigid, but the flexibility of the input shaft is

(7.5 x1019(3.14)(5 x 1073)*

kgpape = =~ 15. i .
shaft GD03) 15.3 Nt m/radian, (8.27)
which, viewed from the output gear, is
k;haﬁ = (15.3)(10%) = 1530.0 Nt-m/radian. (8.28)
Loading with 50 Nt-m causes an angular deflection of
50.0

so the total linear deflection at the tip of the link is

8x = 0.027 4 (0.0326)(50) = 0.027 4+ 1.630 = 1.657 cm. (8.30)

In our solution, we have assumed that the shaft and link are made of steel. The
stiffness of both members is linear in E, the modulus of elasticity, so, for aluminum
elements, we can multiply our result by about 3.

In this section, we have examined some simple formulas for estimating the
stiffness of gears, shafts, belts, and links. They are meant to give some guidance
in sizing structural members and transmission elements. However, in practical
applications, many sources of flexibility are very difficult to model. Often, the
drive train introduces significantly more flexibility than the link of a manipulator.
Furthermore, many sources of flexibility in the drive system have not been considered
here (bearing flexibility, flexibility of the actuator mounting, etc.). Generally, any
attempt to predict stiffness analytically results in an overly high prediction, because
many sources are not considered.

Finite-element techniques can be used to predict the stiffness (and other
properties) of more realistic structural elements more accurately. This is an entire
field in itself [21] and is beyond the scope of this book.

Actuators

Among various actuators, hydraulic cylinders or vane actuators were originally
the most popular for use in manipulators. In a relatively compact package, they
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can produce enough force to drive joints without a reduction system. The speed of
operation depends upon the pump and accumulator system, usually located remotely
from the manipulator. The position control of hydraulic systems is well understood
and relatively straightforward. All of the early industrial robots and many modern
large industrial robots use hydraulic actuators.

Unfortunately, hydraulics require a great deal of equipment, such as pumps,
accumulators, hoses, and servo valves. Hydraulic systems also tend to be inherently
messy, making them unsuitable for some applications. With the advent of more
advanced robot-control strategies, in which actuator forces must be applied accu-
rately, hydraulics proved disadvantageous, because of the friction contributed by
their seals.

Pneuwmatic cylinders possess all the favorable attributes of hydraulics, and
they are cleaner than hydraulics—air seeps out instead of hydraulic fluid. However,
pneumatic actuators have proven difficult to control accurately, because of the
compressibility of air and the high friction of the seals.

Electric motors are the most popular actuator for manipulators. Although
they don’t have the power-to-weight ratio of hydraulics or pneumatics, their con-
trollability and ease of interface makes them attractive for small-to-medium-sized
manipulators.

Direct current (DC) brush motors (Fig. 8.18) are the most straightforward
to interface and control. The current is conducted to the windings of the rotor
via brushes, which make contact with the revolving commutator. Brush wear and
friction can be problems. New magnetic materials have made high peak torques
possible. The limiting factor on the torque output of these motors is the overheating

Stator magnet

Rotor windings

Stator magnet

Commutator

FIGURE 8.18: DC brush motors are among the actuators occurring most frequently in
manipulator design. Franklin, Powell, Emami-Naeini, Feedback Control of Dynamic
Systems, © 1988, Addison-Wesley, Reading, MA. Reprinted with permission.
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of the windings. For short duty cycles, high torques can be achieved, but only much
lower torques can be sustained over long periods of time.

Brushless motors solve brush wear and friction problems. Here, the windings
remain stationary and the magnetic field piece rotates. A sensor on the rotor detects
the shaft angle and is then used by external electronics to perform the commutation.
Another advantage of brushless motors is that the winding is on the outside, attached
to the motor case, affording it much better cooling. Sustained torque ratings tend to
be somewhat higher than for similar-sized brush motors.

Alternating current (AC) motors and stepper motors have been used infre-
quently in industrial robotics. Difficulty of control of the former and low torque
ability of the latter have limited their use.

8.8 POSITION SENSING

Virtually all manipulators are servo-controlled mechanisms—that is, the force or
torque command to an actuator is based on the error between the sensed position
of the joint and the desired position. This requires that each joint have some sort of
position-sensing device.

The most common approach is to locate a position sensor directly on the shaft
of the actuator. If the drive train is stiff and has no backlash, the true joint angles can
be calculated from the actuator shaft positions. Such co-located sensor and actuator
pairs are easiest to control. .

The most popular position-feedback device is the rotary optical encoder.
As the encoder shaft turns, a disk containing a pattern of fine lines interrupts
a light beam. A photodetector turns these light pulses into a binary waveform.
Typically, there are two such channels, with wave pulse trains 90 degrees out
of phase. The shaft angle is determined by counting the number of pulses, and
the direction of rotation is determined by the relative phase of the two square
waves. Additionally, encoders generally emit an index pulse at one location, which
can be used to set a home position in order to compute an absolute angular
position.

Resolvers are devices that output two analog signals—one the sine of the shaft
angle, the other the cosine. The shaft angle is computed from the relative magnitude
of the two signals. The resolution is a function of the quality of the resolver and the
amount of noise picked up in the electronics and cabling. Resolvers are often more
reliable than optical encoders, but their resolution is lower. Typically, resolvers
cannot be placed directly at the joint without additional gearing to improve the
resolution.

Potentiometers provide the most straightforward form of position sensing.
Connected in a bridge configuration, they produce a voltage proportional to the
shaft position. Difficulties with resolution, linearity, and noise susceptibility limit
their use.

Tachometers are sometimes used to provide an analog signal proportional to
the shaft velocity. In the absence of such velocity sensors, the velocity feedback
is derived by taking differences of sensed position over time. This numerical
differentiation can introduce both noise and a time lag. Despite these potential
problems, most manipulators are without direct velocity sensing,.
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8.9 FORCE SENSING

A variety of devices have been designed to measure forces of contact between a
manipulator’s end-effector and the environment that it touches. Most such sensors
make use of sensing elements called strain ganges, of either the semiconductor or the
metal-foil variety. These strain gauges are bonded to a metal structure and produce
an output proportional to the strain in the metal. In this type of force-sensor design,
the issues the designer must address include the following:

1. How many sensors are needed to resolve the desired information?

2. How are the sensors mounted relative to each other on the structure?

3. What structure allows good sensitivity while maintaining stiffness?

4. How can protection against mechanical overload be built into the device?

There are three places where such sensors are usually placed on a manipulator:

1. At the joint actuators. These sensors measure the torque or force output of
the actuator/reduction itself. These are useful for some control schemes, but
usually do not provide good sensing of contact between the end-effector and
the environment.

2. Between the end-effector and last joint of the manipulator. These sensors
are usually referred to as wrist semsors. They are mechanical structures
instrumented with strain gauges, which can measure the forces and torques
acting on the end-effector. Typically, these sensors are capable of measuring
from three to six components of the force/torque vector acting on the end-
effector.

3. At the “fingertips” of the end-effector. Usually, these force-sensing fingers
have built-in strain gauges to measure from one to four components of force
acting at each fingertip.

As an example, Fig. 8.19 is a drawing of the internal structure of a popular style
of wrist-force sensor designed by Scheinman [22]. Bonded to the cross-bar structure
of the device are eight pairs of semiconductor strain gauges. Each pair is wired in a
voltage-divider arrangement. Fach time the wrist is queried, eight analog voltages
are digitized and read into the computer. Calibration schemes have been designed
with which to arrive at a constant 6 x 8 calibration matrix that maps these eight
strain measurements into the force—torque vector, 7, acting on the end-effector.
The sensed force —torque vector can be transformed to a reference frame of interest,
as we saw in Example 5.8.

Force-sensor design issues

Use of strain gauges to measure force relies on measuring the deflection of a stressed
flexure. Therefore, one of the primary design trade-offs is between the stiffness and
the sensitivity of the sensor. A stiffer sensor is inherently less sensitive.

The stiffness of the sensor also affects the construction of overload protection.
Strain gauges can be damaged by impact loading and therefore must be protected
against such overloads. Transducer damage can be prevented by having limit stops,
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Instrumented
with strain
gauges

FIGURE 8.19: The internal structure of a typical force-sensing wrist.

which prevent the flexures from deflecting past a certain point. Unfortunately, a
very stiff sensor might deflect only a few ten-thousandths of an inch. Manufacturing
limit stops with such small clearances is very difficult. Consequently, for many types
of transducers, a certain amount of flexibility must be built-in in order to make
possible effective limit stops.

Eliminating hysteresis is one of the most cumbersome restrictions in the sensor
design. Most metals used as flexures, if not overstrained, have very little hysteresis.
However, bolted, press-fit, or welded joints near the flexure introduce hysteresis.
Ideally, the flexure and the material near it are made from a single piece of metal.

It is also important to use differential measurements to increase the linearity
and disturbance rejection of torque sensors. Different physical configurations of
transducers can eliminate influences due to temperature effects and off-axis forces.

Foil gauges are relatively durable, but they produce a very small resistance
change at full strain. Eliminating noise in the strain-gauge cabling and amplification
electronics is of crucial importance for a good dynamic range.

Semiconductor strain gauges are much more susceptible to damage through
overload. In their favor, they produce a resistance change about seventy times that
of foil gauges for a given strain. This makes the task of signal processing much
simpler for a given dynamic range.
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EXERCISES

8.1 [15] A robot is to be used for positioning a laser cutting device. The laser produces
a pinpoint, nondivergent beam. For general cutting tasks, how many degrees of
freedom does the positioning robot need? Justify your answer.

8.2 [15] Sketch a possible joint configuration for the laser-positioning robot of
Exercise 8.1, assuming that it will be used primarily for cutting at odd angles
through 1-inch-thick, 8 x 8-foot plates.

8.3 [17] For a spherical robot like that of Fig. 8.6, if joints 1 and 2 have no limits and
joint 3 has lower limit / and upper limit u, find the structural length index, Q 1. for
the wrist point of this robot.

8.4 [25] A steel shaft of length 30 cm and diameter 0.2 cm drives the input gear of a
reduction having 5 = 8. The output gear drives a steel shaft having length 30 cm
and diameter 0.3 cm. If the gears introduce no compliance of their own, what is
the overall stiffness of the transmission system?

8.5 [20] In Fig. 8.20, a link is driven through a shaft after a gear reduction. Model
the link as rigid with mass of 10 Kg located at a point 30 cm from the shaft axis.
Assume that the gears are rigid and that the reduction, n, is large. The shaft is
steel and must be 30 cm long. If the design specifications call for the center of link
mass to undergo accelerations of 2.0 g, what should the shaft diameter be to limit
dynamic deflections to 0.1 radian at the joint angle?

FIGURE 8.20: A link actuated through a shaft after a gear reduction.
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Electric motor

#1 Coupling

Connecting rod

#2 Coupling

#2 Gear

FIGURE 8.21: Simplified version of the drive train of joint 4 of the PUMA 560
manipulator (from [23]). From International Encyclopedia of Robotics, by R. Dorf
and S. Nof, editors. From “Testing,” by K. Law, N. Dagalakis, and D. Myers.

8.6 [15] If the output gear exhibits a stiffness of 1000 Nt-m/radian with input gear
locked and the shaft has stiffness of 300 Nt-m/radian, what is the combined
stiffness of the drive system in Fig. 8.20?

8.7 [43] Pieper’s criteria for serial-link manipulators state that the manipulator will
be solvable if three consecutive axes intersect at a single point or are parallel.
This is based on the idea that inverse kinematics can be decoupled by looking
at the position of the wrist point independently from the orientation of the wrist
frame. Propose a similar result for the Stewart mechanism in Fig. 8.14, to allow
the forward kinematic solution to be similarly decoupled.

8.8 [20] In the Stewart mechanism of Fig. 8.14, if the 2-DOF universal joints at the
base were replaced with 3-DOF ball-and-socket joints, what would the total
number of degrees of freedom of the mechanism be? Use Griibler’s formula.

8.9 [22] Figure 8.21 shows a simplified schematic of the drive system of joint 4 of the
PUMA. 560 [23]. The torsional stiffness of the couplings is 100 Nt-m/radian each,
that of the shaft is 400 Nt-m/radian, and each of the reduction pairs has been
measured to have output stiffness of 2000 Nt-m/radian with its input gears fixed.
Both the first and second reductions have n = 6.2 Assuming the structure and
bearing are perfectly rigid, what is the stiffness of the joint (i.e., when the motor’s
shaft is locked)?

8.10 [25] What is the error if one approximates the answer to Exercise 8.9 by comnsid-
ering just the stiffness of the final speed-reduction gearing?

8.11 [20] Figure 4.14 shows an orthogonal-axis wrist and a nonorthogonal wrist. The
orthogonal-axis wrist has link twists of magnitude 90°; the nonorthogonal wrist
has link twists of ¢ and 180° — ¢ in magnitude. Describe the set of orientations that
are unatiainable with the nonorthogonal mechanism. Assume that all axes can
turn 360° and that links can pass through one another if need be (i.e., workspace
is not limited by self-collision).

2None of the numerical values in this exercise is meant to be realistic!
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FIGURE 8.22: Stewart mechanism of Exercise 8.12.

8.12 [18] Write down a general inverse-kinematic solution for the Stewart mechanism
shown in Fig. 8.22. Given the location of {T'} relative to the base frame {B}, solve
for the joint-position variables d; through dg. The Zp; are 3 x 1 vectors which
locate the base connections of the linear actuators relative to frame {B}. The
Tg; are 3 x 1 vectors which locate the upper connections of the linear actuators
relative to the frame {T'}.

8.13 [20] The planar two-link of example 5.3 has the determinant of its Jacobian given
by

det(J(®)) = Li155,. (8.31)

If the sum of the two link lengths, /; + I, is constrained to be equal to a constant,
what should the relative lengths be in order to maximize the manipulator’s
manipulability as defined by (8.6)?

8.14 [28] For a SCARA robot, given that the sum of the link lengths of link 1 and link
2 must be constant, what is the optimal choice of relative length in terms of the
manipulability index given in (8.6)? Solving Exercise 8.13 first could be helpful.

8.15 [35] Show that the manipulability measure defined in (8.6) is also equal to the
product of the eigenvalues of J(©®).

8.16 [15] What is the torsional stiffness of a 40-cm aluminum rod with radius 0.1 cm?

8.17 [5] What is the effective “gear’” reduction, 7, of a belt system having an input
pulley of radius 2.0 cm and an output pulley of radius 12.0 cm?

8.18 [10] How many degrees of freedom are required in a manipulator used to
place cylindrical-shaped parts on a flat plane? The cylindrical parts are perfectly
symmetrical about their main axes.

8.19 [25] Figure 8.23 shows a three-fingered hand grasping an object. Each finger has
three single-degree-of-freedom joints. The contact points between fingertips and
the object are modeled as “point contact”’—that is, the position is fixed, but the
relative orientation is free in all three degrees of freedom. Hence, these point
contacts can be replaced by 3-DOF ball-and-socket joints for the purposes of
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analysis. Apply Griibler’s formula to compute how many degrees of freedom the
overall system possesses.

8.20 [23] Figure 8.24 shows an object connected to the ground with three rods. Each
rod is connected to the object with a 2-DOF universal joint and to the ground with
a 3-DOF ball-and-socket joint. How many degrees of freedom does the system
possess?

FIGURE 8.23: A three-fingered hand in which each finger has three degrees of freedom
grasps an object with “‘point contact.”

9
sy

FIGURE 8.24: Closed loop mechanism of Exercise 8.20.

8.21 [18] Verify that, if two transmission systems are connected serially, then the
equivalent stiffness of the overall system is given by (8.14). It is perhaps simplest
to think of the serial connection of two linear springs having stiffness coefficients
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k; and k, and of the resulting equations:
f = k15x1,
f =kybxy, (8.32)
[ = kgum(8xy + 8x5).

8.22 [20] Derive a formula for the stiffness of a belt-drive system in terms of the pulley
radii (r; and r,) and the center-to-center distance between the pulleys, d,. Start
from (8.22).

PROGRAMMING EXERCISE (PART 8)

1. Write a program to compute the determinant of a 3 x 3 matrix.

2. Write a program to move the simulated three-link robot in 20 steps in a straight
line and constant orientation from

0257
07 — | 0.0
| 0.0

to B _
0.95

07 = | 0.0
| 0.0

in increments of 0.05 meter. At each location, compute the manipulability measure
for the robot at that configuration (i.e., the determinant of the Jacobian). List, or,
better yet, make a plot of the values as a function of the position along the X axis.

Generate the preceding data for two cases:

(a) Iy =, = 0.5 meter, and
(b) [, = 0.625 meter, I, = 0.375 meter.

Which manipulator design do you think is better? Explain your answer.

MATLAB EXERCISE 8

Section 8.5 introduced the concept of kinematically redundant robots. This exercise
deals with the resolved-rate control simulation for a kinematically redundant robot. We
will focus on the planar 4-DOF 4R robot with one degree of kinematic redundancy (four
joints to provide three Cartesian motions: two transiations and one rotation). This robot
is obtained by adding a fourth R-joint and a fourth moving link L, to the planar 3-DOF,
3R robot (of Figures 3.6 and 3.7, the DH parameters can be extended by adding one row
to Figure 3.8).

For the planar 4R robot, derive analytical expressions for the 3 x 4 Jacobian
matrix; then, perform resolved-rate control simulation in MATLAB (as in MATLAB
Exercise 5). The form of the velocity equation is again kX =*J©; however, this equation
cannot be inverted by means of the normal matrix inverse, because the Jacobian matrix
is nonsquare (three equations, four unknowns, infinite solutions to ©). Therefore, let us
use the Moore—Penrose pseudoinverse J* of the Jacobian matrix: J* = JT(JJT)~1. For
the resulting commanded relative joint rates for the resolved-rate algorithm, O =kykx,
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choose the minimum-norm solution from the infinite possibilities (i.e., this specific ® is
as small as possible to satisfy the commanded Cartesian velocities F X).

This solution represents the particular solution only—that is, there exists a homo-
geneous solution to optimize performance (such as avoiding manipulator singularities
or avoiding joint limits) in addition to satisfying the commanded Cartesian motion.
Performance optimization is beyond the scope of this exercise.

Given: Ly =1.0m, Ly =1.0m, Ly = 0.2m, L, = 0.2 m.

The initial angles are:

o

o -30
_Jel ) o
©=16(=1 30°
Oy 40°

The (constant) commanded Cartesian velocity is

‘ #] ’f-02
x=0151- ! 02 (m/s, rad/s).
w, 0.2

Simulate resolved-rate motion, for the particular solution only, for 3 sec, with a
control time step of 0.1 sec. Also, in the same loop, animate the robot to the screen
during each time step, so that you can watch the simulated motion to verify that it is
correct.

a) Present four plots (each set on a separate graph, please):

the four joint angles (degrees) ® = {6; 6, 65 6,}7 vs. time;
the four joint rates (rad/s) © = {91 92 93 94}T vs. time;
the joint-rate Euclidean norm ” 2] H (vector magnitude) vs. time;

el N

the three Cartesian components of %T, X =1{x y ¢}7 (radis fine for ¢ so
that it will fit) vs. time.

Carefully label (by hand is fine!) each component on each plot. Also, label the axis
names and units.

b) Check your Jacobian matrix results for the initial and final joint-angle sets by
means of the Corke MATLAB Robotics Toolbox. Try function jacob0(). Caution:
The toolbox Jacobian functions are for motion of {4} with respect to {0}, not for { 7}
with respect to {0} as in the problem assignment. The preceding function gives the
Jacobian result in {0} coordinates; jacobn() would give results in {4} coordinates.





