
CHAPTER 10

Nonlinear control
of manipulators

10.1 INTRODUCTION
10.2 NONLINEAR AND TIME-VARYING SYSTEMS
10.3 MULTI-INPUT, MULTI-OUTPUT CONTROL SYSTEMS
10.4 THE CONTROL PROBLEM FOR MANIPULATORS
10.5 PRACTICAL CONSIDERATIONS
10.6 CURRENT INDUSTRIAL-ROBOT CONTROL SYSTEMS
10.7 LYAPUNOV STABILITY ANALYSIS
10.8 CARTESIAN-BASED CONTROL SYSTEMS
10.9 ADAPTIVE CONTROL

10.1 INTRODUCTION

In the previous chapter, we made several approximations to allow a linear analysis of
the manipulator-control problem. Most important among these approximations was
that each joint could be considered independent and that the inertia "seen" by each
joint actuator was constant. In implementations of linear controllers as introduced in
the previous chapter, this approximation results in nonuniform damping throughout
the workspace and other undesirable effects. In this chapter, we wifi introduce a
more advanced control technique for which this assumption wifi not have to be
made.

In Chapter 9, we modeled the manipulator by n independent second-order
differential equations and based our controller on that model. In this chapter, we
will base our controller design directly on the n x 1-nonlinear vector differential
equation of motion, derived in Chapter 6 for a general manipulator.

The field of nonlinear control theory is large; we must therefore restrict our
attention to one or two methods that seem well suited to mechanical manipulators.
Consequently, the major focus of the chapter wifi be one particular method,
apparently first proposed in [1] and named the computed-torque method in [2, 3].
We wifi also introduce one method of stability analysis of nonlinear systems, known
as Lyapimov's method [4].

To begin our discussion of nonlinear techniques for controlling a manipulator,
we return again to a very simple single-degree-of-freedom mass—spring friction
system.

290



Section 10.2 Nonlinear and time-varying systems 291

10.2 NONLINEAR AND TIME-VARYING SYSTEMS

In the preceding development, we dealt with a linear constant-coefficient differential
equation. This mathematical form arose because the mass—spring friction system
of Fig. 9.6 was modeled as a linear time-invariant system. For systems whose
parameters vary in time or systems that by nature are nonlinear, solutions are more
difficult.

When non]inearities are not severe, local linearization can be used to derive
linear models that are approximations of the nonlinear equations in the neighbor-
hood of an operating point. Unfortunately, the manipulator-control problem is not
well suited to this approach, because manipulators constantly move among regions
of their workspaces so widely separated that no linearization valid for all regions
can be found.

Another approach is to move the operating point with the manipulator as it
moves, always linearizing about the desired position of the manipulator. The result
of this sort of moving linearization is a linear, but time-varying, system. Although
this quasi-static linearization of the original system is useful in some analysis and
design techniques, we will not make use of it in our control-law synthesis procedure.
Rather, we will deal with the nonlinear equations of motion directly and will not
resort to linearizations in deriving a controller.

If the spring in Fig. 9.6 were not linear but instead contained a nonlinear
element, we could consider the system quasi-statically and, at each instant, figure
out where the poles of the system are located. We would find that the poles "move"
around in the real—imaginary plane as a function of the position of the block. Hence,
we could not select fixed gains that would keep the poles in a desirable location (for
example, at critical damping). So we may be tempted to consider a more complicated
control law, in which the gains are time-varying (actually, varying as a function of
the block's position) in such a manner that the system is always critically damped.
Essentially, this would be done by computing such that the combination of the
nonlinear effect of the spring would be exactly cancelled by a nonlinear term in
the control law so that the overall stiffness would stay a constant at all times. Such a
control scheme might be called a linearizing control law, because it uses a nonlinear
control term to "cancel" a nonlinearity in the controlled system, so that the overall
closed ioop system is linear.

We wifi now return to our partitioned control law and see that it can perform
this linearizing function. In our partitioned control-law scheme, the servo law remains
the same as always, but the model-based portion now wifi contain a model of the
nonlinearity. Thus, the model-based portion of the control performs a linearization
function. This is best shown in an example.

EXAMPLE 10.1

Consider the nonlinear spring characteristic shown in Fig. 10.1. Rather than the
usual linear spring relationship, f = kx, this spring is described by f = qx3. If this
spring is part of the physical system shown in Fig. 9.6, construct a control law to
keep the system critically damped with a stiffness of kcL.

The open-loop equation is

+ + qx3 = f. (10.1)



292 Chapter 10 Nonlinear control of manipulators

FIG URE 10.1: The force-vs.-distance characteristic of a nonlinear spring.

The model-based portion of the control is f = af' + where now we use

the servo portion is, as always

a = in,

= + qx3; (10.2)

(10.3)f' =xd+kVe+kPe,
where the values of the gains are calculated from some desired performance
specification. Figure 10.2 shows a block diagram of this control system. The resulting
closed-loop system maintains poles in fixed locations.

FIGURE 10.2: A nonlinear control system for a system with a nonlinear spring.

f = qx3

System



Section 10.2 Nonlinear and time-varying systems 293

f

f=

FIGURE 10.3: The force-vs.-velocity characteristic of Coulomb friction.

EXAMPLE 10.2

Consider the nonlinear friction characteristic shown in Fig. 10.3. Whereas linear
friction is described by f = this Coulomb friction is described by f =
For most of today's manipulators, the friction of the joint in its bearing (be it
rotational or linear) is modeled more accurately by this nonlinear characteristic
than by the simpler, linear model. If this type of friction is present in the system of
Fig. 9.6, design a control system that uses a nonlinear model-based portion to damp
the system critically at all times.

The open-loop equation is

+ + kx = f. (10.4)

The partitioned control law is f = af' + where

a = in,

= + kx, (10.5)

where the values of the gains are calculated from some desired performance
specification.

EXAMPLE 10.3

Consider the single-link manipulator shown in Fig. 10.4. It has one rotational joint.
The mass is considered to be located at a point at the distal end of the link, and so
the moment of inertia is mi2. There is Coulomb and viscous friction acting at the
joint, and there is a load due to gravity.



294 Chapter 10 Nonlinear control of manipulators

FIGURE 10.4: An inverted pendulum or a one-link manipulator.

The model of the manipulator is

= + v9 + csgn(9) + inlgcos(9). (10.6)

As always, the control system has two parts, the linearizing model-based portion
and the servo-law portion.

The model-based portion of the control is f = af' + where

the servo portion is, as always,

a = mi2,

= + csgn(9) + mnigcos(O); (10.7)

f' (10.8)

where the values of the gains are calculated from some desired performance
specification.

We have seen that, in certain simple cases, it is not difficult to design a nonlinear
controller. The general method used in the foregoing simple examples is the same
method we wifi use for the problem of manipulator control:

1. Compute a nonlinear model-based control law that "cancels" the nonlinearities
of the system to be controlled.

2. Reduce the system to a linear system that can be controlled with the simple
linear servo law developed for the unit mass.

In some sense, the linearizing control law implements an inverse model of the
system being controlled. The nonlinearities in the system cancel those in the inverse
model; this, together with the servo law, results in a linear closed-loop system.
Obviously, to do this cancelling, we must know the parameters and the structure of
the nonlinear system. This is often a problem in practical application of this method.

g

T



Section 10.4 The control problem for manipulators 295

10.3 MULTI-INPUT, MULTI-OUTPUT CONTROL SYSTEMS

Unlike the simple examples we have discussed in this chapter so far, the problem
of controlling a manipulator is a multi-input, multi-output (MIMO) problem. That
is, we have a vector of desired joint positions, velocities, and accelerations, and
the control law must compute a vector of joint-actuator signals. Our basic scheme,
partitioning the control law into a model-based portion and a servo portion, is stifi
applicable, but it now appears in a matrix—vector form. The control law takes the
form

F = aF' + (10.9)

where, for a system of n degrees of freedom, F, F', and are n xl vectors anda is an
n x ii matrix. Note that the matrix a is not necessarily diagonal, but rather is chosen
to decouple the ii equations of motion. If a and are correctly chosen, then, from
the F' input, the system appears to be n independent unit masses. For this reason,
in the multidimensional case, the model-based portion of the control law is called a
lineaTizing and decoupling control law. The servo law for a multidimensional system
becomes

F' = Xd + + (10.10)

where and are now n x n matrices, which are generally chosen to be diagonal
with constant gains on the diagonal. E and E are n x 1 vectors of the errors in
position and velocity, respectively.

10.4 THE CONTROL PROBLEM FOR MANIPULATORS

In the case of manipulator control, we developed a model and the corresponding
equations of motion in Chapter 6. As we saw, these equations are quite complicated.
The rigid-body dynamics have the form

= M(e)e + V(O, 0) + G(e), (10.11)

where M(O) is the ii x n inertia matrix of the manipulator, V(O, is an n x 1
vector of centrifugal and Coriolis terms, and G(O) is an ii x 1 vector of gravity
terms. Each element of M(®) and G(O) is a complicated function that depends on
0, the position of all the joints of the manipulator. Each element of V(0, 0) is a
complicated function of both 0 and 0.

Additionally, we could incorporate a model of friction (or other non-rigid-
body effects). Assuming that our model of friction is a function of joint positions
and velocities, we add the term F(0, 0) to (10.11), to yield the model

= M(0)e + v(e, 0) + G(0) + F(0, 0). (10.12)

The problem of controlling a complicated system like (10.12) can be handled
by the partitioned controller scheme we have introduced in this chapter. In this case,
we have

= at' + (10.13)

where t is the ii x 1 vector of joint torques. We choose

a = M(0),

= V(0, 0) + G(0) + F(0, 0), (10.14)



296 Chapter 10 Nonlinear control of manipulators

with the servo law

= °d + + (10.15)

where
E = ed — 0. (10.16)

The resulting control system is shown in Fig. 10.5.
Using (10.12) through (10.15), it is quite easy to show that the closed-loop

system is characterized by the error equation

E + + =0. (10.17)

Note that this vector equation is decoupled: The matrices and are diagonal,
so that (10.17) could just as well be written on a joint-by-joint basis as

ë, + + = 0. (10.18)

The ideal performance represented by (10.17) is unattainable in practice, for many
reasons, the most important two being

1. The discrete nature of a digital-computer implementation, as opposed to the
ideal continuous-time control law implied by (10.14) and (10.15).

2. Inaccuracy in the manipulator model (needed to compute (10.14)).

In the next section, we will (at least partially) address these two issues.

10.5 PRACTICAL CONSIDERATIONS

In developing the decoupling and linearizing control in the last few sections, we
have implicitly made a few assumptions that rarely are true in practice.

Time required to compute the model

In all our considerations of the partitioned-control-law strategy, we have implicitly
assumed that the entire system was running in continuous time and that the computa-
tions in the control law require zero time for their computation. Given any amount of
computation, with a large enough computer we can do the computations sufficiently

FIGURE 10.5: A model-based manipulator-control system.



Section 10.5 Practical considerations 297

fast that this is a reasonable approximation; however, the expense of the computer
could make the scheme economically unfeasible. In the manipulator-control case,
the entire dynamic equation of the manipulator, (10.14), must be computed in the
control law. These computations are quite involved; consequently, as was discussed
in Chapter 6, there has been a great deal of interest in developing fast computational
schemes to compute them in an efficient way. As computer power becomes more and
more affordable, control laws that require a great deal of computation will become
more practical. Several experimental implementations of nonlinear-model-based
control laws have been reported [5—9], and partial implementations are begirming
to appear in industrial controllers.

As was discussed in Chapter 9, almost all manipulator-control systems are
now performed in digital circuitry and are run at a certain sampling rate. This
means that the position (and possibly other) sensors are read at discrete points
in time. From the values read, an actuator command is computed and sent to
the actuator. Thus, reading sensors and sending actuator commands are not done
continuously, but rather at a finite sampling rate. To analyze the effect of delay
due to computation and finite sample rate, we must use tools from the field of
discrete-time control. In discrete time, differential equations turn into difference
equations, and a complete set of tools has been developed to answer questions
about stability and pole placement for these systems. Discrete-time control theory
is beyond the scope of this book, although, for researchers working in the area of
manipulator control, many of the concepts from discrete-time systems are essential.
(See [10].)

Although important, ideas and methods from discrete-time control theory
are often difficult to apply to the case of nonlinear systems. Whereas we have
managed to write a complicated differential equation of motion for the manipulator
dynamic equation, a discrete-time equivalent is impossible to obtain in general
because, for a general manipulator, the only way to solve for the motion of the
manipulator for a given set of initial conditions, an input, and a finite interval is by
numerical integration (as we saw in Chapter 6). Discrete-time models are possible
if we are willing to use series solutions to the differential equations, or if we make
approximations. However, if we need to make approximations to develop a discrete
model, then it is not clear whether we have a better model than we have when just
using the continuous model and making the continuous-time approximation. Suffice
it to say that analysis of the discrete-time manipulator-control problem is difficult,
and usually simulation is resorted to in order to judge the effect that a certain sample
rate wifi have on performance.

We wifi generally assume that the computations can be performed quickly
enough and often enough that the continuous-time approximation is valid.

Feedforward nonlinear control

The use of feedforward control has been proposed as a method of using a nonlinear
dynamic model in a control law without the need for complex and time-consuming
computations to be performed at servo rates [11]. In Fig. 10.5, the model-based
control portion of the control law is "in the servo loop" in that signals "flow"
through that black box with each tick of the servo clock. If we wish to select a sample



298 Chapter 10 Nonlinear control of manipulators

Od

0d

FIGURE 10.6: Control scheme with the model-based portion "outside" the servo
loop.

rate of 200 Hz, then the dynamic model of the manipulator must be computed at this
rate. Another possible control system is shown in Fig. 10.6. Here, the model-based
control is "outside" the servo loop. Hence, it is possible to have a fast inner servo
loop, consisting simply of multiplying errors by gains, with the model-based torques
added at a slower rate.

Unfortunately, the feedforward scheme of Fig. 10.6 does not provide complete
decoupling. If we write the system equations,' we wifi ftnd that the error equation
of this system is

E + + =0. (10.19)

Clearly, as the configuration of the arm changes, the effective closed-loop gain
changes, and the quasi-static poles move around in the real—imaginary plane.
However, equation (10.19) could be used as a starting point for designing a robust
controller—one that finds a good set of constant gains such that, despite the
"motion" of the poles, they are guaranteed to remain in reasonably favorable
locations. Alternatively, one might consider schemes in which variable gains are
precomputed which change with configuration of the robot, so that the system's
quasi-static poles remain in fixed positions.

Note that, in the system of Fig. 10.6, the dynamic model is computed as a
function of the desired path only, so when the desired path is known in advance,
values could be computed "off-line" before motion begins. At run time, the
precomputed torque histories would then be read out of memory. Likewise, if time-
varying gains are computed, they too could be computed beforehand and stored.
Hence, such a scheme could be quite inexpensive computationally at run time and
thus achieve a high servo rate.

Dual-rate computed-torque implementation

Figure 10.7 shows the block diagram of a possible practical implementation of the
decoupling and linearizing position-control system. The dynamic model is expressed
in its configuration space form so that the dynamic parameters of the manipulator
will appear as functions of manipulator position only. These functions might then

1We have used the simplifying assumptions M(Od) M(O), V(Od, ed) (V(O, e), G(ed) G(O),
and F(Od, ed) F(e, 0).



Section 10.5 Practical considerations 299

be computed by a background process or by a second control computer [8] or be
looked up in a precomputed table [12]. In this architecture, the dynamic parameters
can be updated at a rate slower than the rate of the closed-loop servo. For example,
the background computation might proceed at 60 Hz while the closed-loop servo
was running at 250 Hz.

Lack of knowledge of parameters

The second potential difficulty encountered in employing the computed-torque
control algorithm is that the manipulator dynamic model is often not known
accurately. This is particularly true of certain components of the dynamics, such
as friction effects. In fact, it is usually extremely difficult to know the structure of
the friction model, let alone the parameter values [13]. Finally, if the manipulator
has some portion of its dynamics that is not repeatable—because, for example, it
changes as the robot ages—it is difficult to have good parameter values in the model
at all times.

By nature, most robots wifi be picking up various parts and tools. When a
robot is holding a tool, the inertia and the weight of the tool change the dynamics
of the manipulator. In an industrial situation, the mass properties of the tools might
be known—in this case, they can be accounted for in the modeled portion of the
control law. When a tool is grasped, the inertia matrix, total mass, and center of
mass of the last link of the manipulator can be updated to new values that represent
the combined effect of the last link plus tool. However, in many applications, the
mass properties of objects that the manipulator picks up are not generally known,
so maintenance of an accurate dynamic model is difficult.

The simplest possible nonideal situation is one in which we stifi assume a
perfect model implemented in continuous time, but with external noise acting to
disturb the system. In Fig. 10.8, we indicate a vector of disturbance torques acting
at the joints. Writing the system error equation With inclusion of these unknown
disturbances, we arrive at

E + + = M1(O)rd, (10.20)

FIGURE 10.7: An implementation of the model-based manipulator-control system.



300 Chapter 10 Nonlinear control of manipulators

FIG U RE 10.8: The model-based controller with an external disturbance acting.

where rd is the vector of disturbance torques at the joints. The left-hand side of
(10.20) is uncoupled, but, from the right-hand side, we see that a disturbance on any
particular joint will introduce errors at all the other joints, because M (0) is not, in
general, diagonal.

Some simple analyses might be performed on the basis of (10.20). For example,
it is easy to compute the steady-state servo error due to a constant disturbance as

E = K1M1(0)rd. (10.21)

When our model of the manipulator dynamics is not perfect, analysis of
the resulting closed-loop system becomes more difficult. We define the following
notation: M(0) is our model of the manipulator inertia matrix, M (0). Likewise,
V(0, 0), G(0), and F(0, are our models of the velocity terms, gravity terms,
and friction terms of the actual mechanism. Perfect knowledge of the model
would mean that

M(e) =

V(0, e) = V(0, (10.22)

G(0) = G(0),

F(o,e)=F(o,e).
Therefore, although the manipulator dynamics are given by

= M(0)ë + V(0, e) + G(0) + F(0, e), (10.23)

our control law computes

= at' +
a = M(0), (10.24)

18=v(0,e)+O(o)+fr(o,è).



Section 10.6 Current industrial-robot control systems 301

Decoupling and linearizing wifi not, therefore, be perfectly accomplished when
parameters are not known exactly. Writing the closed-loop equation for the system,
we have

E+KUE+KPE

= M1[(M — M)e + (V V) + (G — G) + (F — P)], (10.25)

where the arguments of the dynamic functions are not shown for brevity. Note that,
if the model were exact, so that (10.22) were true, then the right-hand side of (10.25)
would be zero and the errors would disappear. When the parameters are not known
exactly, the mismatch between actual and modeled parameters wifi cause servo
errors to be excited (possibly even resulting in an unstable system [21]) according to
the rather complicated equation (10.25).

Discussion of stability analysis of a nonlinear closed-loop system is deferred
until Section 10.7.

10.6 CURRENT INDUSTRIAL-ROBOT CONTROL SYSTEMS

Because of the problems with having good knowledge of parameters, it is not clear
whether it makes sense to go to the trouble of computing a complicated model-based
control law for manipulator control. The expense of the computer power needed to
compute the model of the manipulator at a sufficient rate might not be worthwhile,
especially when lack of knowledge of parameters could nullify the benefits of such an
approach. Manufacturers of industrial robots have decided, probably for economic
reasons, that attempting to use a complete manipulator model in the controller is
not worthwhile. Instead, present-day manipulators are controlled with very simple
control laws that generally are completely error driven and are implemented in
architectures such as those studied in Section 9.10. An industrial robot with a
high-performance servo system is shown in Fig. 10.9.

Individual-joint PID control

Most industrial robots nowadays have a control scheme that, in our notation, would
be described by

a = I,

= 0, (10.26)

where I is the n x n identity matrix. The servo portion is

= + + + f Edt, (10.27)

where and are constant diagonal matrices. In many cases, ed is not
available, and this term is simply set to zero. That is, most simple robot controllers
do not use a model-based component at all in their control law. This type of PID
control scheme is simple because each joint is controlled as a separate control
system. Often, one microprocessor per joint is used to implement (10.27), as was
discussed in Section 9.10.



302 Chapter 10 Nonlinear control of manipulators

FIGURE 10.9: The Adept One, a direct-drive robot by Adept Technology, Inc.

The performance of a manipulator controlled in this way is not simple to
describe. No decoupling is being done, so the motion of each joint affects the other
joints. These interactions cause errors, which are suppressed by the error-driven
control law. It is impossible to select fixed gains that wifi critically damp the response
to disturbances for all configurations. Therefore, "average" gains are chosen, which
approximate critical damping in the center of the robot's workspace. In various
extreme configurations of the arm, the system becomes either underdamped or
overdamped. Depending on the details of the mechanical design of the robot, these
effects could be fairly small; then control would be good. In such systems, it is
important to keep the gains as high as possible, so that the inevitable disturbances
wifi be suppressed quickly.

Addition of gravity compensation

The gravity terms will tend to cause static positioning errors, so some robot
manufacturers include a gravity model, G(8), in the control law (that is, fi =
in our notation). The complete control law takes the form

(10.28)



Section 10.7 Lyapunovstabilityanalysis 303

Such a control law is perhaps the simplest example of a model-based controller.
Because (10.28) can no longer be implemented on a strict joint-by-joint basis, the
controller architecture must allow communication between the joint controllers or
must make use of a central processor rather than individual-joint processors.

Various approximations of decoupling control

There are various ways to simplify the dynamic equations of a particular manipulator
[3,14]. After the simplification, an approximate decoupling and linearizing law can
be derived. A usual simplification might be to disregard components of torque
due to the velocity terms—that is, to model only the inertial and gravity terms.
Often, friction models are not included in the controller, because friction is so hard
to model correctly. Sometimes, the inertia matrix is simplified so that it accounts
for the major coupling between axes but not for minor cross-coupling effects. For
example, [14] presents a simplified version of the PUMA 560's mass matrix that
requires only about 10% of the calculations needed to compute the complete mass
matrix, yet is accurate to within 1 %.

10.7 LYAPU NOV STABILITY ANALYSIS

In Chapter 9, we examined linear control systems analytically to evaluate stability
and also performance of the dynamic response in terms of damping and closed-
loop bandwidth. The same analyses are valid for a nonlinear system that has been
decoupled and linearized by means of a perfect model-based nonlinear controller,
because the overall resulting system is again linear. However, when decoupling and
linearizing are not performed by the controller, or are incomplete or inaccurate,
the overall closed-loop system remains nonlinear. For nonlinear systems, stability
and performance analysis is much more difficult. In this section, we introduce one
method of stability analysis that is applicable to both linear and nonlinear systems.

Consider the simple mass—spring friction system originally introduced in
Chapter 9, whose equation of motion is

jul + hi + kx = 0. (10.29)

The total energy of the system is given by

= + (10.30)

where the first term gives the kinetic energy of the mass and the second term gives
the potential energy stored in the spring. Note that the value, v, of the system energy
is always nonnegative (i.e., it is positive or zero). Let's find out the rate of change of
the total energy by differentiating (10.30) with respect to time, to obtain

= mil + kxi. (10.31)

Substituting (10.29) for ml in (10.31) yields

= —hi2, (10.32)

which we note is always nonpositive (because b> 0). Thus, energy is always leaving
the system, unless i = 0. This implies that, however initially perturbed, the system



304 Chapter 10 Nonlinear control of manipulators

will lose energy until it comes to rest. Investigating possible resting positions by
means of a steady-state analysis of (10.29) yields

kx = 0, (10.33)

or
x = 0. (10.34)

Hence, by means of an energy analysis, we have shown that the system of (10.29)
with any initial conditions (i.e., any initial energy) wifi eventually come to rest
at the equilibrium point. This stability proof by means of an energy analysis is a
simple example of a more general technique called Lyapunov stability analysis or
Lyapunov's second (or direct) method, after a Russian mathematician of the 19th
century [15].

An interesting feature of this method of stability analysis is that we can conclude
stability without solving for the solution of the differential equation governing
the system. However, while Lyapunov's method is useful for examining stability,
it generally does not provide any information about the transient response or
performance of the system. Note that our energy analysis yielded no information on
whether the system was overdamped or underdamped or on how long it would take
the system to suppress a disturbance. It is important to distinguish between stability
and performance: A stable system might nonetheless exhibit control performance
unsatisfactory for its intended use.

Lyapunov's method is somewhat more general than our example indicated.
It is one of the few techniques that can be applied directly to nonlinear systems
to investigate their stability. As a means of quickly getting an idea of Lyapunov's
method (in sufficient detail for our needs), we wifi look at an extremely brief
introduction to the theory and then proceed directly to several examples. A more
complete treatment of Lyapunov theory can be found in [16, 17].

Lyapunov's method is concerned with determining the stability of a differential
equation

X = f(X), (10.35)

where X is in x 1 and f(.) could be nonlinear. Note that higher order differential
equations can always be written as a set of first-order equations in the form (10.35).
To prove a system stable by Lyapunov's method, one is required to propose a
generalized energy function u(X) that has the following properties:

1. v (X) has continuous first partial derivatives, and u (X) > 0 for all X except
u(0) = 0.

2. (X) <0. Here, (X) means the change in v (X) along all system trajectories.

These properties might hold only in a certain region, or they might be global,
with correspondingly weaker or stronger stability results. The intuitive idea is that
a positive definite "energy-like" function of state is shown to always decrease or
remain constant—hence, the system is stable in the sense that the size of the state
vector is bounded.

When (X) is strictly less than zero, asymptotic convergence of the state to
the zero vector can be concluded. Lyapunov's original work was extended in an



Section 10.7 Lyapunov stability analysis 305

important way by LaSalle and Lefschetz [4], who showed that, in certain situations,
even when O(X) 0 (note equality included), asymptotic stability can be shown.
For our purposes, we can deal with the case = 0 by performing a steady-state
analysis in order to learn whether the stability is asymptotic or the system under
study can "get stuck" somewhere other than v (X) = 0.

A system described by (10.35) is said to be autonomous because the func-
tion f(.) is not an explicit function of time. Lyapunov's method also extends to
nonautonomous systems, in which time is an argument of the nonlinear function.
See [4, 17] for details.

EXAMPLE 10.4

Consider the linear system
X = —AX, (10.36)

where A is in x in and positive definite. Propose the candidate Lyapunov function

u(X) = (10.37)

which is continuous and everywhere nonnegative. Differentiating yields

ii(X)=XTX

= XT(_AX) (10.38)

= _XTAX,

which is everywhere nonpositive because A is a positive definite matrix. Hence,
(10.37) is indeed a Lyapunov function for the system of (10.36). The system is
asymptotically stable because i)(X) can be zero only at X = 0; everywhere else, X
must decrease.

EXAMPLE 10.5

Consider a mechanical spring—damper system in which both the spring and damper
are nonlinear:

(10.39)

The functions b(.) and k(.) are first- and third-quadrant continuous functions
such that

> 0 for x 0,

xk(x) > 0 for x 0. (10.40)

Once having proposed the Lyapunov function

v(x, = + f k(X)dA, (10.41)



306 Chapter 10 Nonlinear control of manipulators

we are led to

= — + k(x)i, (10.42)

=

Hence, (.) is nonpositive but is only semidefinite, because it is not a function of x
but only of In order to conclude asymptotic stability, we have to ensure that it is
not possible for the system to "get stuck" with nonzero x. To study all trajectories
for which = 0, we must consider

I = —k(x), (10.43)

for which x = 0 is the only solution. Hence, the system will come to rest only if
x = =1 =0.

EXAMPLE 10.6

Consider a manipulator with dynamics given by

r=M(e)e+v(o,e)+G(o) (10.44)

and controlled with the control law

= — KdO + G(e), (10.45)

where and Kd are diagonal gain matrices. Note that this controller does not force
the manipulator to follow a trajectory, but moves the manipulator to a goal point
along a path specified by the manipulator dynamics and then regulates the position
there. The resulting closed-loop system obtained by equating (10.44) and (10.45) is

M(e)e + V(O, e) + Kde + = (10.46)

it can be proven globally asymptotically stable by Lyapunov's method [18, 19].
Consider the candidate Lyapunov function

= + (10.47)

The function (10.47) is always positive or zero, because the manipulator mass
matrix, M(O), and the position gain matrix, are positive definite matrices.
Differentiating (10.47) yields

= + éTM(9)e —

= — — éTv(e (10.48)

=



Section 10.8 Cartesian-based control systems 307

which is nonpositive as long as Kd is positive definite. In taking the last step in
(10.48), we have made use of the interesting identity

= OTV(O, é), (10.49)

which can be shown by investigation of the structure of Lagrange's equations of
motion [18—20]. (See also Exercise 6.17.)

Next, we investigate whether the system can get "stuck" with nonzero error.
Because i) can remain zero only along trajectories that have 0 = 0 and 0 = 0, we
see from (10.46) that, in this case,

= 0, (10.50)

and because is nonsingular, we have

E = 0. (10.51)

Hence, control law (10.45) applied to the system (10.44) achieves global asymptotic
stability.

This proof is important in that it explains, to some extent, why today's industrial
robots work. Most industrial robots use a simple error-driven servo, occasionally
with gravity models, and so are quite similar to (10.45).

See Exercises 10.11 through 10.16 for more examples of nonlinear manipulator-
control laws that can be proven stable by Lyapunov's method. Recently, Lyapunov
theory has become increasingly prevalent in robotics research publications [18—25].

10.8 CARTESIAN-BASED CONTROL SYSTEMS

In this section, we introduce the notion of Cartesian-based control. Although such
approaches are not currently used in industrial robots, there is activity at several
research institutions on such schemes.

Comparison with joint-based schemes

In all the control schemes for manipulators we have discussed so far, we assumed
that the desired trajectory was available in terms of time histories of joint position,
velocity, and acceleration. Given that these desired inputs were available, we
designedjoint-based control schemes, that is, schemes in which we develop trajectory
errors by finding the difference between desired and actual quantities expressed in
joint space. Very often, we wish the manipulator end-effector to follow straight lines
or other path shapes described in Cartesian coordinates. As we saw in Chapter 7, it
is possible to compute the time histories of the joint-space trajectory that correspond
to Cartesian straight-line paths. Figure 10.10 shows this approach to manipulator-
trajectory control. A basic feature of the approach is the trajectory-conversion
process, which is used to compute the joint trajectories. This is then followed by
some kind of joint-based servo scheme such as we have been studying.



308 Chapter 10 Nonlinear control of manipulators

FIGURE 10.10: A joint-based control scheme with Cartesian-path input.

The trajectory-conversion process is quite difficult (in terms of computational
expense) if it is to be done analytically. The computations that would be required are

= INVKIN(xd),

= (10.52)

ed = + J-'(e)5?d.

To the extent that such a computation is done at all in present-day systems, usually
just the solution for 0d is performed, by using the inverse kinematics, and then
the joint velocities and accelerations are computed numerically by first and second
differences. However, such numerical differentiation tends to amplify noise and
introduces a lag unless it can be done with a noncausal fflter.2 Therefore, we are
interested in either finding a less computationally expensive way of computing
(10.52) or suggesting a control scheme in which this informatiOn is not needed.

An alternative approach is shown in Fig. 10.11. Here, the sensed position of
the manipulator is immediately transformed by means of the kinematic equations
into a Cartesian description of position. This Cartesian description is then compared
to the desired Cartesian position in order to form errors in Cartesian space. Control
schemes based on forming errors in Cartesian space are called Cartesian-based
control schemes. For simplicity, velocity feedback is not shown in Fig. 10.11, but it
would be present in any implementation.

The trajectory-conversion process is replaced by some kind of coordinate
conversion inside the servo loop. Note that Cartesian-based controllers must perform
many computations in the loop; the kinematics and other transformations are now
"inside the loop." This can be a drawback of the Cartesian-based methods; the
resulting system could run at a lower sampling frequency compared to joint-based

FIGURE 10.11: The concept of a Cartesian-based control scheme.

2Numerical differentiation introduces a lag unless it can be based on past, present, and future values.
When the entire path is preplanned, this kind of noncausal numerical differentiation can be done.



Section 10.8 Cartesian-based control systems 309

systems (given the same size of computer). This would, in general, degrade the
stability and disturbance-rejection capabilities of the system.

Intuitive schemes of Cartesian control

One possible control scheme that comes to mind rather intuitively is shown in
Fig. 10.12. Here, Cartesian position is compared to the desired position to form
an error, 8X, in Cartesian space. This error, which may be presumed small if the
control system is doing its job, may be mapped into a small displacement in joint
space by means of the inverse Jacobian. The resulting errors in joint space, 88, are
then multiplied by gains to compute torques that will tend to reduce these errors.
Note that Fig. 10.12 shows a simplified controller in which, for clarity, the velocity
feedback has not been shown. It could be added in a straightforward manner. We
will call this scheme the inverse-Jacobian controller.

Another scheme which could come to mind is shown in Fig. 10.13. Here, the
Cartesian error vector is multiplied by a gain to compute a Cartesian force vector.
This can be thought of as a Cartesian force which, if applied to the end-effector
of the robot, would push the end-effector in a direction that would tend to reduce
the Cartesian error. This Cartesian force vector (actually a force—moment vector)
is then mapped through the Jacobian transpose in order to compute the equivalent
joint torques that would tend to reduce the observed errors. We wifi call this scheme
the transpose-Jacobian controller.

The inverse-Jacobian controller and the transpose-Jacobian controller have
both been arrived at intuitively. We cannot be sure that such arrangements would
be stable, let alone perform well. It is also curious that the schemes are extremely
similar, except that the one contains the Jacobian's inverse, the other its transpose.
Remember, the inverse is not equal to the transpose in general (only in the case of
a strictly Cartesian manipulator does jT = J1). The exact dynamic performance

FIGURE 10.12: The inverse-Jacobian Cartesian-control scheme.

Xd

FIGURE 10.13: The transpose-Jacobian Cartesian-control scheme.



310 Chapter 10 Nonlinear control of manipulators

of such systems (if expressed in a second-order error-space equation, for example)
is very complicated. It turns out that both schemes will work (i.e., can be made
stable), but not well (i.e., performance is not good over the entire workspace). Both
can be made stable by appropriate gain selection, including some form of velocity
feedback (which was not shown in Figs. 10.12 and 10.13). While both wifi work,
neither is correct, in the sense that we cannot choose fixed gains that wifi result in
fixed closed-loop poles. The dynamic response of such controllers will vary with arm
configuration.

Cartesian decoupling scheme

For Cartesian-based controllers, like joint-based controllers, good performance
would be characterized by constant error dynamics over all configurations of the
manipulator. Errors are expressed in Cartesian space in Cartesian-based schemes,
so this means that we would like to design a system which, over all possible
configurations, would suppress Cartesian errors in a critically damped fashion.

Just as we achieved good control with a joint-based controller that was based
on a linearizing and decoupling model of the arm, we can do the same for the
Cartesian case. However, we must now write the dynamic equations of motion of
the manipulator in terms of Cartesian variables. This can be done, as was discussed
in Chapter 6. The resulting form of the equations of motion is quite analogous to
the joint-space version. The rigid-body dynamics can be written as

F = + e) + (10.53)

where F is a fictitious force—moment vector acting on the end-effector of the robot
and x is an appropriate Cartesian vector representing position and orientation of
the end-effector Analogous to the joint-space quantities, (0) is the mass
matrix in Cartesian space, (0, 0) is a vector of velocity terms in Cartesian space,
and is a vector of gravity terms in Cartesian space.

Just as we did in the joint-based case, we can use the dynamic equations in
a decoupling and linearizing controller. Because (10.53) computes F, a fictitious
Cartesian force vector which should be applied to the hand, we will also need to use
the transpose of the Jacobian in order to implement the control—that is, after F is
calculated by (10.53), we cannot actually cause a Cartesian force to be applied to
the end-effector; we instead compute the joint torques needed to effectively balance
the system if we were to apply this force:

= JT(O)F (10.54)

Figure 10.14 shows a Cartesian arm-control system using complete dynamic
decoupling. Note that the arm is preceded by the Jacobian transpose. Notice that
the controller of Fig. 10.14 allows Cartesian paths to be described directly, with no
need for trajectory conversion.

As in the joint-space case, a practical implementation might best be achieved
through use of a dual-rate control system. Figure 10.15 shows a block diagram
of a Cartesian-based decoupling and linearizing controller in which the dynamic
parameters are written as functions of manipulator position only. These dynamic
parameters are updated at a rate slower than the servo rate by a background



Section 10.9 Adaptive control 311

process or a second control computer. This is appropriate, because we desire a fast
servo (perhaps running at 500 Hz or even higher) to maximize disturbance rejection
and stability. The dynamic parameters are functions of manipulator position only,
so they need be updated at a rate related only to how fast the manipulator is
changing configuration. The parameter-update rate probably need not be higher
than 100 Hz [8].

10.9 ADAPTIVE CONTROL

In the discussion of model-based control, it was noted that, often, parameters of
the manipulator are not known exactly. When the parameters in the model do not

FIGURE 10.14: The Cartesian model-based control scheme.

FIGURE 10.15: An implementation of the Cartesian model-based control scheme.



312 Chapter 10 Nonlinear control of manipulators

match the parameters of the real device, servo errors wifi result, as is made explicit
in (10.25). These servo errors could be used to drive some adaptation scheme that
attempts to update the values of the model parameters until the errors disappear.
Several such adaptive schemes have been proposed.

An ideal adaptive scheme might be like the one in Fig. 10.16. Here, we are
using a model-based control law as developed in this chapter. There is an adaptation
process that, given observations of manipulator state and servo errors, readjusts the
parameters in the nonlinear model until the errors disappear. Such a system would
learn its own dynamic properties. The design and analysis of adaptive schemes are
beyond the scope of this book. A method that possesses exactly the structure shown
in Fig. 10.16 and has been proven globally stable is presented in [20, 21]. A related
technique is that of [221.

BIBLIOGRAPHY

[1] R.P. Paul, "Modeling, Trajectory Calculation, and Servoing of a Computer Con-
trolled Ann," Technical Report AIM-177, Stanford University Artificial Inteffigence
Laboratory, 1972.

[2] B. Markiewicz, "Analysis of the Computed Torque Drive Method and Comparison
with Conventional Position Servo for a Computer-Controlled Manipulator," Jet
Propulsion Laboratory Technical Memo 33—601, March 1973.

[3] A. Bejczy, "Robot Arm Dynamics and Control," Jet Propulsion LaboratoryTechnical

Memo 33—669, February 1974.

[4] J. LaSalle and S. Lefschetz, Stability by Liapunov's Direct Method with Applications,
Academic Press, New York, 1961.

[5] P.K. Khosla, "Some Experimental Results on Model-Based Control Schemes," IEEE
Conference on Robotics and Automation, Philadelphia, April 1988.

[6] M. Leahy, K. Valavanis, and G. Saridis, "The Effects of Dynamic Models on Robot
Control," IEEE Conference on Robotics and Automation, San Francisco, April 1986.

FIGURE 10.16: The concept of an adaptive manipulator controller.



Bibliography 313

[7] L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manipulators, 2nd
Edition, Springer-Verlag, London, 2000.

[8] 0. Khatib, "A Unified Approach for Motion and Force Control of Robot Manipula-
tors: The Operational Space Formulation," IEEE Journal ofRobotics andAutomation,
Vol. RA-3, No. 1, 1987.

[9] C. An, C. Atkeson, and J. Hollerbach, "Model-Based Control of a Direct Drive Arm,
Part II: Control," IEEE Conference on Robotics and Automation, Philadelphia,April
1988.

[10] G. Franklin, J. Powell, and M. Workman, Digital Control of Dynamic Systems, 2nd
edition, Addison-Wesley, Reading, MA, 1989.

[11] A. Liegeois, A. Fournier, and M. Aldon, "Model Reference Control of High Velocity
Industrial Robots," Proceedings of the Joint Automatic Control Conference, San
Francisco, 1980.

[12] M. Raibert, "Mechanical Arm Control Using a State Space Memory," SME paper
MS77-750, 1977.

[13] B. Armstrong, "Friction: Experimental Determination, Modeling and Compensa-
tion," IEEE Conference on Robotics and Automation, Philadelphia, April 1988.

[14] B. Armstrong, 0. Khatib, and J. Burdick, "The Explicit Dynamic Model and Inertial
Parameters of the PUMA 560 Arm," IEEE Conference on Robotics and Automation,
San Francisco, April 1986.

[15] A.M. Lyapunov, "On the General Problem of Stability of Motion," (in Russian),
Kharkov Mathematical Society, Soviet Union, 1892.

[16] C. Desoer and M. Vidyasagar, Feedback Systems: Input— Output Properties, Academic
Press, New York, 1975.

[171 M. Vidyasagar, Nonlinear Systems Analysis, Prentice-Hail, Englewood Cliffs, NJ, 1978.

[18] 5. Arimoto and F. Miyazaki, "Stability and Robustness of PID Feedback Control
for Robot Manipulators of Sensory Capability," Third International Symposium of
Robotics Research, Gouvieux, France, July 1985.

[19] D. Koditschek, "Adaptive Strategies for the Control of Natural Motion," Proceedings
of the 24th Conference on Decision and Control, Ft. Lauderdale, FL, December 1985.

[201 J. Craig, P. Hsu, and S. Sastry, "Adaptive Control of Mechanical Manipulators," IEEE
Conference on Robotics and Automation, San Francisco, April 1986.

[21] J. Craig, Adaptive Control of Mechanical Manipulators, Addison-Wesley, Reading,
MA, 1988.

[22] J.J. Slotine and W. Li, "On the Adaptive Control of Mechanical Manipulators," The
International Journal of Robotics Research, Vol. 6, No. 3, 1987.

[23] R. Kelly and R. Ortega, "Adaptive Control of Robot Manipulators: An Input—Output
Approach," IEEE Conference on Robotics and Automation, Philadelphia, 1988.

[24] H. Das, J.J. Slotine, and T. Sheridan, "Inverse Kinematic Algorithms for Redundant
Systems," IEEE Conference on Robotics and Automation, Philadelphia, 1988.

[25] T. Yabuta, A. Chona, and G. Beni, "On the Asymptotic Stability of the Hybrid
PositionfForce Control Scheme for Robot Manipulators," IEEE Conference on
Robotics and Automation, Philadelphia, 1988.



314 Chapter 10 Nonlinear control of manipulators

EXERCISES

10.1 [15] Give the nonlinear control equations for an controller for
the system

-r =

Choose gains so that this system is always critically damped with kcL = 10.

10.2 [15] Give the nonlinear control equations for an controller for
the system

-r

Choose gains so that this system is always critically damped with kcL = 10.

10.3 [1911 Draw a block diagram showing a joint-space controller for the two-link arm
from Section 6.7, such that the arm is critically damped over its entire workspace.
Show the equations inside the blocks of a block diagram.

10.4 [2011 Draw a block diagram showing a Cartesian-space controller for the two-
link arm from Section 6.7, such that the arm is critically damped over its entire
workspace. (See Example 6.6.) Show the equations inside the blocks of a block
diagram.

10.5 [18] Design a trajectory-following control system for the system whose dynamics
are given by

= + in111129197,

= + + v202.

Do you think these equations could represent a real system?
10.6 [17] For the control system designed for the one-link manipulator in Example

10.3, give an expression for the steady-state position error as a function of error
in the mass parameter. Let = in — The result should be a function of
1, g, 9, and For what position of the manipulator is this at a maximum?

10.7 [26] For the two-degree-of-freedom mechanical system of Fig. 10.17, design a
controller that can cause x1 and x2 to follow trajectories and suppress disturbances
in a critically damped fashion.

10.8 [30] Consider the dynamic equations of the two-link manipulator from Section 6.7
in configuration-space form. Derive expressions for the sensitivity of the computed

A X1

IC

_____________

xxxx

X XXX XXXXXXXXb1/////////////////////////////////
FIGURE 10.17: Mechanical system with two degrees of freedom.



Exercises 315

torque value versus small deviations in CE). Can you say something about how
often the dynamics should be recomputed in a controller like that of Fig. 10.7 as
a function of average joint velocities expected during normal operations?

10.9 [32] Consider the dynamic equations of the two-liuk manipulator from Example
6.6 in Cartesian configuration-space form. Derive expressions for the sensitivity of
the computed torque value versus small deviations in 0. Can you say something
about how often the dynamics should be recomputed in a controller like that
of Fig. 10.15 as a function of average joint velocities expected during normal
operations?

10.10 [15] Design a control system for the system

f
Choose gains so that this system is always critically damped with a closed-loop
stiffness of 20.

10.11 [20] Consider a position-regulation system that (without loss of generality)
attempts to maintain °d = 0. Prove that the control law

r - + G(0)

yields an asymptotically stable nonlinear system. You may take to be of the
form = where is a scalar and is the n x ii identity matrix. Hint: This
is similar to example 10.6.

10.12 [20] Consider a position-regulation system that (without loss of generality)
attempts to maintain 0d = 0. Prove that the control law

r = -K,O - + G(0)

yields an asymptotically stable nonlinear system. You may take to be of the
form = where is a scalar and is the 11 x n identity matrix. The matrix

is a positive definite estimate of the manipulator mass matrix. Hint: This is
similar to example 10.6.

10.13 [25] Consider a position-regulation system that (without loss of generality)
attempts to maintain °d = 0. Prove that the control law

r = + + G(0)

yields an asymptotically stable nonlinear system. You may take to be of the
form = k0 j/I where is a scalar and is the ii x n identity matrix. Hint: This
is similar to example 10.6.

10.14 [25] Consider a position-regulation system that (without loss of generality)
attempts to maintain 0d = 0. Prove that the control law

= + + G(0)

yields an asymptotically stable nonlinear system. You may take to be of the
form = where is a scalar and is the n x ii identity matrix. The
matrix is a positive definite estimate of the manipulator mass matrix. Hint:
This is similar to example 10.6.

10.15 [28] Consider a position-regulation system that (without loss of generality)
attempts to maintain °d = 0. Prove that the control law

= —



316 Chapter 10 Nonlinear control of manipulators

yields a stable nonlinear system. Show that stability is not asymptotic and give an
expression for the steady-state error. Hint: This is similar to Example 10.6.

10.16 [30] Prove the global stability of the Jacobian-transpose Cartesian controller
introduced in Section 10.8. Use an appropriate form of velocity feedback to
stabilize the system. Hint: See [18].

10.17 [15] Design a trajectory-following controller for a system with dynamics given by

f = ax2 + + csin(x),

such that errors are suppressed in a critically damped fashion over all configura-
tions.

10.18 [15] A system with open-loop dynamics given by

r =,nG+b82+c9

is controlled with the control law

= + + + sin(O).

Give the differential equation that characterizes the closed-loop action of the
system.

PROGRAMMING EXERCISE (PART 10)

Repeat Programming Exercise Part 9, and use the same tests, but with a new controller
that uses a complete dynamic model of the 3-link to decouple and linearize the system.
For this case, use

[100.0 0.0 0.0

= I
0.0 100.0 0.0

L 0.0 0.0 100.0

Choose a diagonal that guarantees critical damping over all conñgurations of the
arm. Compare the results with those obtained with the simpler controller used in
Programming Exercise Part 9.




