13.1

CHAPTER 13

Off-line programming systems

13.1 INTRODUCTION

13.2 CENTRAL ISSUES IN OLP SYSTEMS

13.3 THE ‘PILOT" SIMULATOR

13.4 AUTOMATING SUBTASKS IN OLP SYSTEMS

INTRODUCTION

We define an off-line programming (OLP) system as a robot programming language
that has been sufficiently extended, generally by means of computer graphics, that
the development of robot programs can take place without access to the robot itself.!
Off-line programming systems are important both as aids in programming present-
day industrial automation and as platforms for robotics research. Numerous issues
must be considered in the design of such systems. In this chapter, first a discussion
of these issues is presented [1] and then a closer look at one such system [2].

Over the past 20 years, the growth of the industrial robot market has not
been as rapid as once was predicted. One primary reason for this is that robots are
still too difficult to use. A great deal of time and expertise is required to install a
robot in a particular application and bring the system to production readiness. For
various reasons, this problem is more severe in some applications than in others;
hence, we see certain application areas (e.g., spot welding and spray painting)
being automated with robots much sooner than other application domains (e.g.,
assembly). It seems that lack of sufficiently trained robot-system implementors is
limiting growth in some, if not all, areas of application. At some manufacturing
companies, management encourages the use of robots to an extent greater than that
realizable by applications engineers. Also, a large percentage of the robots delivered
are being used in ways that do not take full advantage of their capabilities. These
symptoms indicate that current industrial robots are not easy enough to use to allow
successful installation and programming in a timely manner.

There are many factors that make robot programming a difficult task. First,
it is intrinsically related to general computer programming and so shares in many
of the problems encountered in that field; but the programming of robots, or of
any programmable machine, has particular problems that make the development
of production-ready software even more difficult. As we saw in the last chapter,

!Chapter 13 is an edited version of two papers: one reprinted with permission from International
Symposium of Robotics Research, R. Bolles and B. Roth (editors), 1988 (ref [1]); the other from Robotics:
The Algorithmic Perspective, P. Agarwal et al. (editors), 1998 (ref [2]). i

353

354 Chapter 13 Off-line programming systems

most of these special problems arise from the fact that a robot manipulator interacts
with its physical environment [3]. Even simple programming systems maintain a
“world model” of this physical environment in the form of locations of objects
and have “knowledge” about presence and absence of various objects encoded
in the program strategies. During the development of a robot program (and
especially later during production use), it is necessary to keep the internal model
maintained by the programming system in correspondence with the actual state
of the robot’s environment. Interactive debugging of programs with a manipulator
requires frequent manual resetting of the state of the robot’s environment—parts,
tools, and so forth must be moved back to their initial locations. Such state resetting
becomes especially difficult (and sometimes costly) when the robot performs a
irreversible operation on one or more parts (e.g., drilling or routing). The most
spectacular effect of the presence of the physical environment is when a program
bug manifests itself in some unintended irreversible operation on parts, on tools, or
even on the manipulator itself.

Although difficulties exist in maintaining an accurate internal model of the
manipulator’s environment, there seems no question that great benefits result from
doing so. Whole areas of sensor research, perhaps most notably computer vision,
focus on developing techniques by which world models can be verified, corrected,
or discovered. Clearly, in order to apply any computational algorithm to the robot
command-generation problem, the algorithm needs access to a model of the robot
and its surroundings. g

In the development of programming systems for robots, advances in the
power of programming techniques seem directly tied to the sophistication of the
internal model referenced by the programming language. Early joint-space “‘teach
by showing” robot systems employed a limited world model, and there were very
limited ways in which the system could aid the programmer in accomplishing a
task. Slightly more sophisticated robot controllers included kinematic models, so
that the system could at least aid the user in moving the joints so as to accomplish
Cartesian motions. Robot programming languages (RPLs) evolved to support many
different data types and operations, which the programmer may use as needed to
model attributes of the environment and compute actions for the robot. Some RPLs
support such world-modeling primitives as affixments, data types for forces and
moments, and other features [4].

The robot programming languages of today might be called “explicit program-
ming languages,” in that every action that the system takes must be programmed
by the application engineer. At the other end of the spectrum are the so-called
task-level-programming (TLP) systems, in which the programmer may state such
high-level goals as “insert the bolt” or perhaps even ‘‘build the toaster oven.” These
systems use techniques from artificial-intelligence research to generate motion and
strategy plans automatically. However, task-level languages this sophisticated do
not yet exist; various pieces of such systems are currently under development by
researchers [5]. Task-level-programming systems will require a very complete model
of the robot and its environment to perform automated planning operations.

Although this chapter focuses to some extent on the particular problem of
robot programming, the notion of an OLP system extends to any programmable
device on the factory floor. An argument commonly raised in favor is that an OLP

Section 13.2 Central issues in OLP systems 355

system will not tie up production equipment when it needs to be reprogrammed,;
hence, automated factories can stay in production mode a greater percentage of
the time. They also serve as a natural vehicle to tie computer-aided design (CAD)
data bases used in the design phase of a product’s development to the actual
manufacturing of the product. In some applications, this direct use of CAD design
data can dramatically reduce the programming time required for the manufacturing
machinery.

Off-line programming of robots offers other potential benefits, ones just
beginning to be appreciated by industrial robot users. We have discussed some of
the problems associated with robot programming, and most have to do with the
fact that an external, physical workcell is being manipulated by the robot program.
This makes backing up to try different strategies tedious. Programming of robots in
simulation offers a way of keeping the bulk of the programming work strictly internal
to a computer—until the application is nearly complete. Under this approach, many
of the problems peculiar to robot programming tend to diminish.

Off-line programming systems should serve as the natural growth path from
explicit programming systems to task-level-programming systems. The simplest
OLP system is merely a graphical extension to a robot programming language, but
from there it can be extended into a task-level-programming system. This gradual
extension is accomplished by providing automated solutions to various subtasks (as
these solutions become available) and letting the programmer use them to explore
options in the simulated environment. Until we discover how'to build task-level
systems, the user must remain in the loop to evaluate automatically planned subtasks
and guide the development of the application program. If we take this view, an
OLP system serves as an important basis for research and development of task-
level-planning systems, and, indeed, in support of their work, many researchers have
developed various components of an OLP system (e.g., 3-D models and graphic
display, language postprocessors). Hence, OLP systems should be a useful tool in
research as well as an aid in current industrial practice.

13.2 CENTRAL ISSUES IN OLP SYSTEMS

This section raises many of the issues that must be considered in the design of an
OLP system. The collection of topics discussed will help to set the scope of the
definition of an OLP system.

User interface

A major motivation for developing an OLP system is to create an environment
that makes programming manipulators easier, so the user interface is of crucial
importance. However, another major motivation is to remove reliance on use of
the physical equipment during programming. Upon initial consideration, these two
goals seem to conflict—robots are hard enough to program when you can see them,
s0 how can it be easier without the presence of physical device? This question
touches upon the essence of the OLP design problem.

Manufacturers of industrial robots have learned that the RPLs they provide
with their robots cannot be utilized successfully by a large percentage of manufac-
turing personnel. For this and other historical reasons, many industrial robots are

356 Chapter 13 Off-line programming systems

provided with a two-level interface [6], one for programmers and one for nonpro-
grammers. Nonprogrammers utilize a teach pendant and interact directly with the
robot to develop robot programs. Programmers write code in the RPL and interact
with the robot in order to teach robot work points and to debug program flow. In
general, these two approaches to program development trade off ease of use against
flexibility.

When viewed as an extension of a RPL, an OLP system by nature contains an
RPL as a subset of its user interface. This RPL should provide features that have
already been discovered to be valuable in robot programming systems. For example,
for use as an RPL, interactive languages are much more productive than compiled
languages, which force the user to go through the ‘“‘edit—compile-run” cycle for
each program modification.

The language portion of the user interface inherits much from “traditional”
RPLs; it is the lower-level (ie., easier-to-use) interface that must be carefully
considered in an OLP system. A central component of this interface is a computer-
graphic view of the robot being programmed and of its environment. Using a
pointing device such as a mouse, the user can indicate various locations or objects on
the graphics screen. The design of the user interface addresses exactly how the user
interacts with the screen to specify a robot program. The same pointing device can
indicate items in a “menu” in order to specify modes or invoke various functions.

A central primitive is that for teaching a robot a work point or “frame’’ that
has six degrees of freedom by means of interaction with the graphics screen. The
availability of 3-D models of fixtures and workpieces in the OLP system often makes
this task quite easy. The interface provides the user with the means to indicate
locations on surfaces, allowing the orientation of the frame to take on a local
surface normal, and then provides methods for offsetting, reorienting, and so on.
Depending on the specifics of the application, such tasks are quite easily specified
via the graphics window into the simulated world.

A well-designed user interface should enable nonprogrammers to accomplish
many applications from start to finish. In addition, frames and motion sequences
“taught’ by nonprogrammers should be able to be translated by the OLP system into
textual RPL statements. These simple programs can be maintained and embellished
in RPL form by more experienced programmers. For programmers, the RPL
availability allows arbitrary code development for more complex applications.

3-D modeling

A central element in OLP systems is the use of graphic depictions of the simulated
robot and its workcell. This requires the robot and all fixtures, parts, and tools in
the workeell to be modeled as three-dimensional objects. To speed up program
development, it is desirable to use any CAD models of parts or tooling that are
directly available from the CAD system on which the original design was done. As
CAD systems become more and more prevalent in industry, it becomes more and
more likely that this kind of geometric data will be readily available. Because of the
strong desire for this kind of CAD integration from design to production, it makes
sense for an OLP system either to contain a CAD modeling subsystem or to be,
itself, a part of a CAD design system. If an OLP system s to be a stand-alone system,
it must have appropriate interfaces to transfer models to and from external CAD

Section 13.2 Central issues in OLP systems 357

systems; however, even a stand-alone OLP system should have at least a simple
local CAD facility for quickly creating models of noncritical workcell items or for
adding robot-specific data to imported CAD models.

OLP systems generally require multiple representations of spatial shapes. For
many operations, an exact analytic description of the surface or volume is generally
present; yet, in order to benefit from display technology, another representation is
often needed. Current technology is well suited to systems in which the underlying
display primitive is a planar polygon; hence, although an object shape might be
well represented by a smooth surface, practical display (especially for animation)
requires a faceted representation. User-interface graphical actions, such as pointing
to a spot on a surface, should internally act so as to specify a point on the true
surface, even if, graphically, the user sees a depiction of the faceted model.

An important use of the three-dimensional geometry of the object models is
in automatic collision detection—that is, when any collisions occur between objects
in the simulated environment, the OLP system should automatically warn the user
and indicate exactly where the collision takes place. Applications such as assembly
may involve many desired “collisions,” so it is necessary to be able to inform the
system that collisions between certain objects are acceptable. It is also valuable to be
able to generate a collision warning when objects pass within a specified tolerance
of a true collision. Currently, the exact collision-detection problem for general 3-D
solids is difficult, but collision detection for faceted models is quite practical.

Kinematic emulation

A central component in maintaining the validity of the simulated world is the faithful
emulation of the geometrical aspects of each simulated manipulator. With regard
to inverse kinematics, the OLP system can interface to the robot controller in two
distinct ways. First, the OLP system could replace the inverse kinematics of the
robot controller and always communicate robot positions in mechanism joint space.
The second choice is to communicate Cartesian locations to the robot controller and
let the controller use the inverse kinematics supplied by the manufacturer to solve
for robot configurations. The second choice is almost always preferable, especially as
manufacturers begin to build arm signature style calibration into their robots. These
calibration techniques customize the inverse kinematics for each individual robot.
In this case, it becomes desirable to communicate information at the Cartesian level
to robot controllers.

These considerations generally mean that the forward and inverse kinematic
functions used by the simulator must reflect the nominal functions used in the robot
controller supplied by the manufacturer of the robot. There are several details of
the inverse-kinematic function specified by the manufacturer that must be emulated
by the simulator software. Any inverse-kinematic algorithm must make arbitrary
choices in order to resolve singularities. For example, when joint 5 of a PUMA
560 robot is at its zero location, axes 4 and 6 line up, and a singular condition
exists. The inverse-kinematic function in the robot controller can solve for the sum
of joint angles 4 and 6, but then must use an arbitrary rule to choose individual
values for joints 4 and 6. The OLP system must emulate whatever algorithm is
used. Choosing the nearest solution when many alternate solutions exist provides
another example. The simulator must use the same algorithm as the controller in

358 Chapter 13 Off-line programming systems

order to avoid potentially catastrophic errors in simulating the actual manipulator. '
A helpful feature occasionally found in robot controllers is the ability to command
a Cartesian goal and specify which of the possible solutions the manipulator should
use. The existence of this feature eliminates the requirement that the simulator
emulate the solution-choice algorithm; the OLP system can simply force its choice
on the controller.

Path-planning emulation

In addition to kinematic emulation for static positioning of the manipulator, an
OLP system should accurately emulate the path taken by the manipulator in moving
through space. Again, the central problem is that the OLP system needs to simulate
the algorithms in the employed robot controller, and such path-planning and
-execution algorithms vary considerably from one robot manufacturer to another.
Simulation of the spatial shape of the path taken is important for detection of
collisions between the robot and its environment. Simulation of the temporal
aspects of the trajectory are important for predicting the cycle times of applications.
When a robot is operating in a moving environment (e.g., near another robot),
accurate simulation of the temporal attributes of motion is necessary to predict
collisions accurately and, in some cases, to predict communication or synchronization
problems, such as deadlock.

Dynamic emulation

Simulated motion of manipulators can neglect dynamic attributes if the OLP system
does a good job of emulating the trajectory-planning algorithm of the controller
and if the actual robot follows desired trajectories with negligible errors. However,
at high speed or under heavy loading conditions, trajectory-tracking errors can
become important. Simulation of these tracking errors necessitates both modeling
the dynamics of the manipulator and of the objects that it moves and emulating the
control algorithm used in the manipulator controller. Currently, practical problems
exist in obtaining sufficient information from the robot vendors to make this kind of
dynamic simulation of practical value, but, in some cases, dynamic simulation can
be pursued fruitfully.

Multiprocess simulation

Some industrial applications involve two or more robots cooperating in the same
environment. Even single-robot workcells often contain a conveyor belt, a transfer
line, a vision system, or some other active device with which the robot must interact.
For this reason, it is important that an OLP system be able to simulate multiple
moving devices and other activities that involve parallelism. As a basis for this
capability, the underlying language in which the system is implemented should
be a multiprocessing language. Such an environment makes it possible to write
independent robot-control programs for each of two or more robots in a single cell
and then simulate the action of the cell with the programs running concurrently.
Adding signal and wait primitives to the language enables the robots to interact with
each other just as they might in the application being simulated.

Section 13.2 Central issues in OLP systems 359

Simulation of sensors

Studies have shown that a large component of robot programs consists not of
motion statements, but rather of initialization, error-checking, I/O, and other kinds
of statements [7]. Hence, the ability of the OLP system to provide an environ-
ment that allows simulation of complete applications, including interaction with
sensors, various /0, and communication with other devices, becomes important.
An OLP system that supports simulation of sensors and multiprocessing not only
can check robot motions for feasibility, but also can verify the communication and
synchronization portion of the robot program.

Language translation to target system

An annoyance for current users of industrial robots (and of other programmable
automation) is that almost every supplier of such systems has invented a unique
language for programming its product. If an OLP system aspires to be universal in
the equipment it can handle, it must deal with the problem of translating to and from
several different languages. One choice for dealing with this problem is to choose
a single language to be used by the OLP system and then postprocess the language
in order to convert it into the format required by the target machine. An ability to
upload programs that already exist on the target machines and bring them into the
OLP system is also desirable.

Two potential benefits of OLP systems relate directly to the language-
translation topic. Most proponents of OLP systems note that having a single,
universal interface, one that enables users to program a variety of robots, solves
the problem of learning and dealing with several automation languages. A second
benefit stems from economic considerations in future scenarios in which hundreds or
perhaps thousands of robots fill factories. The cost associated with a powerful pro-
gramming environment (such as a language and graphical interface) might prohibit
placing it at the site of each robot installation. Rather, it seems to make economic
sense to place a very simple, ““dumb,” and cheap controller with each robot and have
it downloaded from a powerful, ““intelligent” OLP system that is located in an office
environment. Hence, the general problem of translating an application program
from a powerful universal language to a simple language designed to execute in a
cheap processor becomes an important issue in OLP systems.

Workcell calibration

An inevitable reality of a computer model of any real-world situation is that of
inaccuracy in the model. In order to make programs developed on an OLP system
usable, methods for workeell calibration must be an integral part of the system.
The magnitude of this problem varies greatly with the application; this variability
makes off-line programming of some tasks much more feasible that of others. If
the majority of the robot work points for an application must be retaught with the
actual robot to solve inaccuracy problems, OLP systems lose their effectiveness.
Many applications involve the frequent performance of actions relative to a
rigid object. Consider, for example, the task of drilling several hundred holes in a
bulkhead. The actual location of the bulkhead relative to the robot can be taught by
using the actual robot to take three measurements. From those data, the locations

360 Chapter 13 Off-line programming systems

of all the holes can be updated automatically if they are available in part coordinates
from a CAD system. In this situation, only these three points need be taught with
the robot, rather than hundreds. Most tasks involve this sort of “‘many operations
relative to a rigid object” paradigm—for example, PC-board component insertion,
routing, spot welding, arc welding, palletizing, painting, and deburring.

13.3 THE 'PILOT" SIMULATOR

In this section, we consider one such off-line simulator system: the ‘Pilot’ system
developed by Adept Technology [8]. The Pilot system is actually a suite of three
closely related simulation systems; here, we look at the portion of Pilot (known
as “Pilot/Cell”’) that is used to simulate an individual workcell in a factory. In
particular, this system is unusual in that it attempts to model several aspects of the
physical world, as a means of unburdening the programmer of the simulator. In this
section, we will discuss the “‘geometric algorithms” that are used to empower the
simulator to emulate certain aspects of physical reality.

The need for ease of use drives the need for the simulation system to behave
like the actual physical world. The more the simulator acts like the real world,
the simpler the user-interface paradigm becomes for the user, because the physical
world is the one we are all familiar with. At the same time, trade-offs of ease against
computational speed and other factors have driven a design in which a particular
“slice” of reality is simulated while many details are not.

Pilot is well-suited as a host for a variety of geometric algorithms. The need
to model various portions of the real world, together with the need to unburden
the user by automating frequent geometric computations, drives the need for such
algorithms. Pilot provides the environment in which some advanced algorithms can
be brought to bear on real problems occurring in industry.

One decision made very early on in the design of the Pilot simulation system
was that the programming paradigm should be as close as possible to the way
the actual robot system would be programmed. Certain higher level planning and
optimization tools are provided, but it was deemed important to have the basic
programming interaction be similar to actual hardware systems. This decision has
led the product’s development down a path along which we find a genuine need for
various geometric algorithms. The algorithms needed range widely from extremely
simple to quite complex.

If a simulator is to be programmed as the physical system would be, then the
actions and reactions of the physical world must be modeled “automatically” by
the simulator. The goal is to free the user of the system from having to write any
“simulation-specific code.”” As a simple example, if the robot gripper is commanded
to open, a grasped part should fall in response to gravity and possibly should even
bounce and settle into a certain stable state. Forcing the user of the system to
specify these real-world actions would make the simulator fall short of its goal:
being programmed just as the actual system is. Ultimate ease of use can be achieved
only when the simulated world “knows how” to behave like the real world without
burdening the user.

Most, if not all, commercial systems for simulating robots or other mechanisms
do not attempt to deal directly with this problem. Rather, they typically “allow” the
user (actually, force the user) to embed simulation-specific commands within the

Section 13.3 The ‘Pilot’ simulator 361

program written to control the simulated device. A simple example would be the
following code sequence:

MOVE TO pick_part

CLOSE gripper
affix(gripper,part[il);
MOVE TO place_part

OPEN gripper
unaffix(gripper,part[i]);

Here, the user has been forced to insert ““affix”” and “unaffix’’ commands, which
(respectlvely) cause the part to move with the gripper when grasped and to stop
moving with it when released. If the simulator allows the robot to be programmed
in its native language, generally that language is not rich enough to support these
required “simulation-specific’’ commands. Hence, there is a need for a second set of
commands, possibly even with a different syntax, for dealing with interactions with
the real world. Such a scheme is inherently not programmed “just as the physical
system is” and must inherently cause an increased programming burden for the
user.

From the preceding example, we see the first geometric algorithm that one
finds a need for: From the geometry of the gripper and the relative placements of
parts, figure out which part (if any) will be grasped when the gripper closes and
possibly how the part will self-align within the gripper. In the case of Pilot, we solve
the first part of this problem with a simple algorithm. In limited cases, the “alignment
action” of the part in the gripper is computed, but, in general, such alignments need
to be pretaught by the system’s user. Hence, Pilot has not reached the ultimate goal
yet, but has taken some steps in that direction.

Physical Modeling and Interactive Systems

In a simulation system, one always trades off complexity of the model in terms
of computation time against accuracy of the simulation. In the case of Pilot and
its intended goals, it is particularly important to keep the system fully interactive.
This has led to designing Pilot so that it can use various approximate models—for
example, the use of quasi-static approximations where a full dynamic model might
be more accurate. Although there appears to be a possibility that “full dynamic”
models might soon be applicable [9], given the current state of computer hardware,
of dynamic algorithms, and of the complexity of the CAD models that industrial
users wish to employ, we feel these trade-offs still need to be made.

Geometric Algorithms for Part Tumbling

In some feeding systems employed in industrial practice, parts tumble from some
form of infeed conveyor onto a presentation surface; then computer vision is used
to locate parts to be acquired by the robot. Designing such automation systems with
the aid of a simulator means that the simulator must be able to predlct how parts
fall, bounce, and take on a stable orientation, or stable state.

362 Chapter 13 Off-line programming systems

FIGURE 13.1: The eight stable states of the part.

Stable-state probabilities

As reported in [10], an algorithm has been implemented that takes as input any
geometric shape (represented by a CAD model) and, for that shape, can compute
the N possible ways that it can rest stably on a horizontal surface. These are called
the stable states of the part. Further, the algorithm uses a perturbed quasi-static
approach to estimate the probability associated with each of the N stable states.
We have performed physical experiments with sample parts in order to assess the
resulting accuracy of stable-state prediction.

Figure 13.1 shows the eight stable states of a particular test part. Using an
Adept robot and vision system, we dropped this part more than 26,000 times and
recorded the resulting stable state, in order to compare our stable-state prediction
algorithm to reality. Table 13.1 shows the results for the test part. These results
are characteristic of our current algorithm —stable-state likelihood prediction error
typically ranges from 5% to 10%.

Adjusting probabilities as a function of drop height

Clearly, if a part is dropped from a gripper from a very small height (e.g., 1 mm)
above a surface, the probabilities of the various stable states differ from those which
occur when the part is dropped from higher than some critical height. In Pilot, we
use probabilities from the stable-state estimator algorithm when parts are dropped
from heights equal to or greater than the largest dimension of the part. For drop

Section 13.3 The ‘Pilot simulatqr 363

TABLE 13.1: Predicted versus Actual Stable-State
Probabilities for the Test Part

Stable State Actual # % Actual % Predicted

FU 1871 7.03% 8.91%
¥D 10,600 39.80% 44.29%
TP 648 2.43% 7.42%
BT 33 0.12% 8.19%
SR 6467 24.28% 15.90%
SL 6583 24.72% 15.29%
AR/AL 428 1.61% 0.00%
Total 26,630 100% 100%

heights below that value, probabilities are adjusted to take into account the initial
orientation of the part and the height of the drop. The adjustment is such that, as
an infinitesimal drop height is approached, the part remains in its initial orientation
(assuming it is a stable orientation). This is an important addition to the overall
probability algorithm, because it is typical for parts to be released a small distance
above a support surface.

Simulation of bounce

Parts in Pilot are tagged with their coefficient of restitution; so are all surfaces
on which parts may be placed. The product of these two factors is used in a
formula for predicting how far the part will bounce when dropped. These details
are important, because they affect how parts scatter or clump in the simulation of
some feeding systems. When bouncing, parts are scattered radially according to a
uniform distribution. The distance of bounce (away from the initial contact point) is
a certain distribution function out to a maximum distance, which is computed as a
function of drop height (energy input) and the coefficients of restitution that apply.

Parts in Pilot can bounce recursively from surface to surface in certain
arrangements. It is also possible to mark certain surfaces such that parts are not able
to bounce off them, but can only bounce within them. Entities known as bins in Pilot
have this property —parts can fall into them, but never bounce out.

Simulation of stacking and tangling

As a simplification, parts in Pilot always rest on planar support surfaces. If parts are
tangled or stacked on one another, this is displayed as parts that are intersecting
each other (that is, the boolean intersection of their volumes would be non-empty).
This saves the enormous amount of computation that would be needed to compute
the various ways a part might be stacked or tangled with another part’s geometry.
Parts in Pilot are tagged with a tangle factor. For example, something like a
marble would have a tangle factor of 0.0 because, when tumbled onto a support
surface, marbles tend never to stack or tangle, but rather tend to spread out on the

364 Chapter 13 Off-line programming systems

surface. On the other hand, parts like coiled springs might have a tangle factor near -
1.0; they quite readily become entangled with one another. When a part falls and
bounces, a findspace algorithm runs, in which the part tries to bounce into an open
space on the surface. However, exactly “how hard it tries” to find an open space is a
function of its tangle factor. By adjustment of this coefficient, Pilot can simulate parts
that tumble and become entangled more or less. Currently, there is no algorithm
for automatically computing the tangle factor from the part geometry—this is an
interesting open problem. Through the user interface, the Pilot user can set the
tangle factor to what seems appropriate.

Geometric Algorithms for Part Grasping

Much of the difficulty in programming and using actual robots has to do with the
details of teaching grasp locations on parts and with the detailed design of grippers.
This is an area in which additional planning algorithms in a simulator system could
have a large impact. In this section, we discuss the algorithms currently in place in
Pilot. The current approaches are quite simple, so this is an area of ongoing work.

Computing which part to grasp

When a tool closes, or a suction end-effector actuates, Pilot applies a simple
algorithm to compute which part (if any) should become grasped by the robot. First,
the system figures out which support surface is immediately beneath the gripper.
Then, for all parts on that surface, it searches for each whose bounding box (for the
current stable state) contains the TCP (tool center point) of the gripper. If more than
one part satisfies this criterion, then it chooses the nearest among those which do.

Computation of default grasp location

Pilot automatically assigns a grasp location for each stable orientation predicted by
the stable-state estimator previously described. The current algorithm is simplistic,
so a graphical user interface is also provided so that the user can edit and redefine
these grasp points. The current grasp algorithm is a function of the part’s bounding
box and the geometry of the gripper, which is assumed to be either a parallel-
jaw gripper or a suction cup. Along with computing a default grasp location for
each stable state, a default approach and depart height are also automatically
computed.

Computation of alignment of the part during grasp

In some important cases in industrial practice, the system designer counts on the
fact that, when the robot end-effector actuates, the captured part will align itself in
some way with surfaces of the end-effector. This effect can be important in removing
small misalignments in the presentation of parts to the robot.

A very real effect which needs to be simulated is that, with suction cup grippers,
it can be the case that, when suction is applied, the part is “lifted” up against the
suction cup in a way which significantly alters its orientation relative to the end-
effector. Pilot simulates this effect by piercing the part geometry with a vertical line
aligned with the center line of the suction cup. Whichever facet of the polygonal
part model is pierced is used in computing the orientation at grasp—the normal of

Section 13.3 The ‘Pilot’ simulator 365

this facet becomes anti-aligned with the normal of the bottom of the suction cup. In
altering the part orientation, rotation about this piercing line is minimized (the part
does not spin about the axis of the suction cup when picked). Without simulation of
this effect, the simulator would be unable to depict realistically some pick-and-place
strategies employing suction grippers.

We have also implemented a planner that allows parts to rotate about the Z
axis when a parallel jaw gripper closes on them. This case is automatic only for a
simple case—in other situations, the user must teach the resulting alignment (i.e.,
we are still waiting for a more nearly complete algorithm).

Geometric Algorithms for Part Pushing

One style of part pushing occurs between the jaws of a gripper, as mentioned in
the previous section. In current industrial practice, parts sometimes get pushed by
simple mechanisms. For example, after a part is presented by a bowl feeder, it might
be pushed by a linear actuator right into an assembly that has been brought into the
cell by a tray-conveyor system.

Pilot has support for simulating the pushing of parts: an entity called a push-
bar, which can be attached to a pneumatic cylinder or a leadscrew actuator in the
simulator. When the actuator moves the push-bar along a linear path, the leading
surface of the push-bar will move parts. In the future, it is planned, push-bars will
also be able to be added as guides along conveyors or placed anywhere that requires
that parts motion be affected by their presence. The current pushing is still very
simple, but it suffices for many real-world tasks.

Geometric Algorithms for Tray Conveyors

Pilot supports the simulation of tray-conveyor systems in which trays move along
tracks composed of straight-line and circular-section components. Placed along the
tracks at key locations can be gates, which pop up temporarily to block a tray when
so commanded. Additionally, sensors that detect a passing tray can be placed in
the track at user-specified locations. Such conveyor systems are typical in many
automation schemes.

Connecting tray conveyors and sources and sinks

Tray conveyors can be connected together to allow various styles of branching,
Where two conveyors “flow together,” a simple collision-avoidance scheme is
provided to cause trays from the spur conveyor to be subordinate to trays on the
main conveyor. Trays on the spur conveyor will wait whenever a collision would
occur. At “flow apart” connections, a device called a director is added to the main
conveyor, which can be used to control which direction a tray will take at the
intersection. Digital I/O lines connected to the simulated robot controller are used
to read sensors, activate gates, and activate directors.

At the ends of a tray conveyor are a source and a sink. Sources are set up by
the user to generate trays at certain statistical intervals. The trays generated could
either be empty or be preloaded with parts or fixtures. At the end of a tray conveyor,
trays (and their contents) disappear into sinks. Each time a tray enters a sink, its
arrival time and contents are recorded. These so-called sink records can then be

366 Chapter 13 Off-line programming systems

replayed through a source elsewhere in the system. Hence, a line of cells can be
studied in the simulator one cell at a time, by setting the source of cell N + 1 to the
sink record from cell N.

Pushing of trays

Pushing is also implemented for trays: A push-bar can be used to push a tray off a
tray conveyor system and into a particular work cell. Likewise, trays can be pushed
onto a tray conveyor. The updating of various data structures when trays come off a
conveyor or onto one is an automatic part of the pushing code.

Geometric Algorithms for Sensors

Simulation of various sensor systems is required, so that the user will not be burdened
with the writing of code to emulate their behavior in the cell.

Proximity sensors

Pilot supports the simulation of proximity sensors and other sensors. In the case of
proximity sensors, the user tags the device with its minimum and maximum range
and with a threshold. If an object is within range and closer than the threshold,
then the sensor will detect it. To perform this computation in the simulated world,
a line segment is temporarily added to the world, one that stretches from minimum
to maximum sensor range. Using a collision algorithm, the system computes the
locations at which this line segment intersects other CAD geometry. The intersection
point nearest the sensor corresponds to the real-world item that would have stopped
the beam. A comparison of the distance to this point and the threshold gives the
output of the sensor. At present, we do not make use of the angle of the encountered
surface or of its reflectance properties, although those features might be added in
the future.

2-D vision systems

Pilot simulates the performance of the Adept 2-D vision system. The way the
simulated vision system works is closely related to the way the real vision system
works, even to how it is programmed in the AIM language [11] used by Adept
robots. The following elements of this vision system are simulated:

o The shape and extent of the field of view.
o The stand-off distance and a simple model of focus.
¢ The time required to perform vision processing (approximate).

e The spatial ordering of results in the queue in the case of many parts being
found in one image.

¢ The ability to distinguish parts according to which stable state they are in.
e The inability to recognize parts that are touching or overlapping.

e Within the context of AIM, the ability to update robot goals based on vision
results.

Section 13.4 Automating subtasks in OLP systems 367

The use of a vision system is well integrated with the AIM robot programming
system, so implementation of the AIM language in the simulator implies implemen-
tation of vision system emulation. AIM supports several constructs that make the
use of vision easy for robot guidance. Picking parts that are identified visually from
both indexing and tracking conveyors is easily accomplished.

A data structure keeps track of which support surface the vision system is
looking at. For all parts supported on that surface, we compute which are within the
vision system’s field of view. We prune out any parts that are too near or too far from
the camera (e.g., out of focus). We prune out any parts that are touching neighboring
parts. From the remaining parts, we choose those which are in the sought-after stable
state and put them in a list. Finally, this list is sorted to emulate the ordering the
Adept vision system uses when multiple parts are found in one scene.

Inspector sensors

A special class of sensor is provided, called an inspector. The inspector is used to
give a binary output for each part placed in front of it. Parts in Pilot can be tagged
with a defect rate, and inspectors can ferret out the defective parts. Inspectors play
the role of several real-world sensor systems.

Conclusion

Asis mentioned throughout this section, although some simple geometric algorithms
are currently in place in the simulator, there is a need for more and better
algorithms. In particular, we would like to investigate the possibility of adding a
quasi-static simulation capability for predicting the motion of objects in situations
in which friction effects dominate any inertial effects. This could be used to simulate
parts being pushed or tipped by various actions of end-effectors or other pushing
mechanisms.

13.4 AUTOMATING SUBTASKS IN OLP SYSTEMS

In this section, we briefly mention some advanced features that could be integrated
into the “baseline” OLP-system concept already presented. Most of these features
accomplish automated planning of some small portion of an industrial application.

Automatic robot placement

One of the most basic tasks that can be accomplished by means of an OLP system
is the determination of the workcell layout so that the manipulator(s) can reach all
of the required workpoints. Determining correct robot or workpiece placement by
trial and error is more quickly completed in a simulated world than in the physical
cell. An advanced feature that automates the search for feasible robot or workpiece
location(s) goes one step further in reducing burden on the user.

Automatic placement can be computed by direct search or (sometimes) by
heuristic-guided search techniques. Most robots are mounted flat on the floor (or
ceiling) and have the first rotary joint perpendicular to the floor, so no more is
generally necessary than to search by tessellation of the three-dimensional space
of robot-base placement. The search might optimize some criterion or might halt
upon location of the first feasible robot or part placement.. Feasibility can be

368 Chapter 13 Off-line programming systems

defined as collision-free ability to reach all workpoints (or perhaps be given an even
stronger definition). A reasonable criterion to maximize might be some form of a
measure of manipulability, as was discussed in Chapter 8. An implementation using
a similar measure of manipulability has been discussed in [12]. The result of such an
automatic placement is a cell in which the robot can reach all of its workpoints in
well-conditioned configurations.

Collision avoidance and path optimization

Research on the planning of collision-free paths [13,14] and the planning of time-
optimal paths [15,16] generates natural candidates for inclusion in an OLP system.
Some related problems that have a smaller scope and a smaller search space are
also of interest. For example, consider the problem of using a six-degree-of-freedom
robot for an arc-welding task whose geometry specifies only five degrees of freedom.
Automatic planning of the redundant degree of freedom can be used to avoid
collisions and singularities of the robot [17].

Automatic planning of coordinated motion

In many arc-welding situations, details of the process require that a certain relation-
ship between the workpiece and the gravity vector be maintained during the weld.
This results in a two- or three-degree-of-freedom-orienting system on which the part
is mounted, operating simultaneously with the robot and in a coordinated fashion. In
such a system, there could be nine or more degrees of freedom to coordinate. Such
systems are generally programmed today by using teaching-pendant techniques. A
planning system that could automatically synthesize the coordinated motions for
such a system might be quite valuable [17,18].

Force-control simulation

In a simulated world in which objects are represented by their surfaces, it is possible to
investigate the simulation of manipulator force-control strategies. This task involves
the difficult problem of modeling some surface properties and expanding the dynamic
simulator to deal with the constraints imposed by various contacting situations. In
such an environment, it might be possible to assess various force-controlled assembly
operations for feasibility [19].

Automatic scheduling

Along with the geometric problems found in robot programming, there are often
difficult scheduling and communication problems. This is particularly the case if
we expand the simulation beyond a single workeell to a group of workcells. Some
discrete-time simulation systems offer abstract simulation of such systems [20], but
few offer planning algorithms. Planning schedules for interacting processes is a
difficult problem and an area of research [21,22]. An OLP system would serve as an
ideal test bed for such research and would be immediately enhanced by any useful
algorithms in this area.

Bibliography 369
Automatic assessment of errors and tolerances

An OLP system might be given some of the capabilities discussed in recent work
in modeling positioning-error sources and the effect of data from imperfect sensors
[23,24]. The world model could be made to include various error bounds and
tolerancing information, and the system could assess the likelihood of success
of various positioning or assembly tasks. The system might suggest the use and
placement of sensors so as to correct potential problems.

Off-line programming systems are useful in present-day industrial applications
and can serve as a basis for continuing robotics research and development. A large
motivation in developing OLP systems is to fill the gap between the explicitly
programmed systems available today and the task-level systems of tomorrow.

BIBLIOGRAPHY

[1] J. Craig, ““Issues in the Design of Off-Line Programming Systems,” International
Symposium of Robotics Research, R. Bolles and B. Roth, Eds., MIT Press, Cambridge,
MA, 1988.

[2] J. Craig, “Geometric Algorithms in AdeptRAPID,” Robotics: The Algorithniic Per-
spective: 1998 WAFR, P. Agarwal, L. Kavraki, and M. Mason, Eds., AK Peters, Natick,
MA, 1998.

[3] R. Goldman, Design of an Interactive Manipulator Py ogrammmg Environment, UMI
Research Press, Ann Arbor, MI, 1985.

[4] S.Mujtaba and R. Goldman, “AL User’s Manual,’’ 3rd edition, Stanford Department
of Computer Science, Report No. STAN-CS-81-889, December 1981.

[5] T.Lozano-Perez, “Spatial Planning: A Configuration Space Approach,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Vol. SMC-11, 1983.

[6] B. Shimano, C. Geschke, and C. Spalding, “VAL - II: A Robot Programming Lan-
guage and Control System,” SME Robots VIII Conference, Detroit, June 1984.

[7]1 R. Taylor, P. Summers, and J. Meyer, “AML: A Manufacturing Language,” Interna-
tional Journal of Robotics Research, Vol. 1, No. 3, Fall 1982.

[8] AdeptTechnology Inc., “The Pilot User’s Manual,” Available from Adept Technology
Inc., Livermore, CA, 2001.

[91 B. Mirtich and J. Canny, “Impulse Based Dynamic Simulation of Rigid Bodies,”
Symposium on Interactive 3D Graphics, ACM Press, New York, 1995.

[10] B. Mirtich, Y. Zhuang, K. Goldberg, et al., “Estimating Pose Statistics for Robotic
Part Feeders,” Proceedings of the IEEE Robotics and Automation Conference,
Minneapolis, April, 1996.

[11] Adept Technology Inc., “AIM Manual,” Available from Adept Technology Inc., San
Jose, CA, 2002.

[12] B. Nelson, K. Pedersen, and M. Donath, *“Locating Assembly Tasks in a Manipulator’s
Workspace,” IEEE Conference on Robotics and Automation, Raleigh, NC, April
1987.

[13] plus 1.67pt minus 1.11pt T. Lozano-Perez, “A Simple Motion Planning Algorithm for
General Robot Manipulators,” IEEE Journal of Robotics and Automation, Vol. RA-3,
No. 3, June 1987.

370
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

EXERCISES
131

13.2
13.3

13.4
13.5

13.6

13.7

13.8

Chapter 13 Off-line programming systems

R. Brooks, “Solving the Find-Path Problem by Good Representation of Free Space,”
IEEE Transaction on Systems, Man, and Cybernetics, SMC-13:190-197, 1983.

1. Bobrow, S. Dubowsky, and J. Gibson, “On the Optimal Control of Robotic Manip-
ulators with Actuator Constraints,”” Proceedings of the American Control Conference,
June 1983.

K. Shin and N. McKay, ‘““Minimum-Time Control of Robotic Manipulators with Geo-
metric Path Constraints,”” IEEE Transactions on Automatic Control, June 1985.

1.J. Craig, “Coordinated Motion of Industrial Robots and 2-DOF Orienting Tables,”
Proceedings of the 17th International Symposium on Industrial Robots, Chicago,
April 1987.

S. Ahmad and S. Luo, “Coordinated Motion Control of Multiple Robotic Devices
for Welding and Redundancy Coordination through Constrained Optimization in
Cartesian Space,” Proceedings of the IEEE Conference on Robotics and Automation,
Philadelphia, 1988.

M. Peshkin and A. Sanderson, ‘“Planning Robotic Manipulation Strategies for Sliding
Objects,” IEEE Conference on Robotics and Automation, Raleigh, NC, April 1987.

E. Russel, ‘“Building Simulation Models with Simcript 115, C.A.CI,, Los Angeles,
1983.

A.Kusiak and A. Villa, “Architectures of Expert Systems for Scheduling Flexible
Manufacturing Systems,” IEEE Conference on Robotics and Automation, Raleigh,
NC, April 1987. ‘

R. Akella and B.Krogh, “Hierarchical Control Structures for Multicell Flexible
Assembly System Coordination,” IEEE Conference on Robotics and Automation,
Raleigh, NC, April 1987.

R. Smith, M. Self, and P. Cheeseman, ‘‘Estimating Uncertain Spatial Relationships in
Robotics,” TEEE Conference on Robotics and Automation, Raleigh, NC, April 1987.

H. Durrant-Whyte, “Uncertain Geometry in Robotics,” IEEE Conference on
Robotics and Automation, Raleigh, NC, April 1987.

[10] In a sentence or two, define collision detection, collision avoidance, and
collision-free path planning.

[10] In a sentence or two, define world model, path planning emulation, and
dynamic emulation.

[10] In a sentence or two, define automatic robot placement, time-optimal paths,
and error-propagation analysis.

[10] In a sentence or two, define RPL, TLP, and OLP.

[10] In a sentence or two, define calibration, coordinated motion, and automatic
scheduling.

[20] Make a chart indicating how the graphic ability of computers has increased
over the past ten years (perhaps in terms of the number of vectors drawn per
second per $10,000 of hardware).

[20] Make a list of tasks that are characterized by “many operations relative to a
rigid object” and so are candidates for off-line programming.

[20] Discuss the advantages and disadvantages of using a programming system
that maintains a detailed world model internally.

Programming exercise (Part 13) 371
PROGRAMMING EXERCISE (PART 13) .

1. Consider the planar shape of a bar with semicircular end caps. We will call this
shape a “‘capsule.” Write a routine that, given the location of two such capsules,
computes whether they are touching. Note that all surface points of a capsule are
equidistant from a single line segment that might be called its “‘spine.”

2, Introduce a capsule-shaped object near your simulated manipulator and test for
collisions as you move the manipulator along a path. Use capsule-shaped links for
the manipulator. Report any collisions detected.

3. If time and computer facilities permit, write routines to depict graphically the
capsules that make up your manipulator and the obstacles in the workspace.

