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Chapter 6  Virtual Work Principles 

 

 Principle of virtual Displacement = stiffness method = Displacement method 

 Principle of virtual force = flexibility method = force method 

 

The principle of virtual displacements finds its most powerful application in the 
development of approximate solutions. 

 

Advantages:  

Without the force-equilibrium, the governing equation ( )Ku P= can be 
obtained, assuming a displacement function.  

 

Even a displacement function not satisfying the equilibrium can be used to 
obtain an approximate solution. 

 

 

Principle of Virtual Displacement 

 

int   (  )
virtual external work
 virtual internal work (virtual strain energy)

extW U or W W
W
U

δ δ δ δ
δ
δ

= =

=
=

 



2 

 

 

W u Pδ δ= ⋅  

 

 

          
     =   
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∫ ⋅
 

 

 

 

6.1  Principle of virtual Displacements – Rigid Bodies 

 

0W Uδ δ= =  

 

For a particle subjected to a system of force in equilibrium, the work due to a 
virtual displacement is zero. 

 

 

 

 

 

 

1 2  and   does not induce internal  work because of the rigid body motion.v vdd   
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A particle is in equilibrium under the action of a system of forces if the virtual 
work is zero for every independent virtual displacement. 
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Example 6.1 

 

 

 

 

 

 

 

After releasing member force 3 6F − , lateral displacement 5uδ  cause a rigid 
body motion which does not cause internal deformation and energy. 
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6.2  Principle of virtual Displacements – Deformable bodies 

 

Principle of virtual displacement for deformable bodies 

W Uδ δ=  

 

 

 

 

 

 

For a deformable structure in equilibrium under the action of a system of 
applied force, the external virtual work due to an admissible virtual displaced 
state is equal to the internal virtual work due to the same virtual displacements. 

 

                    W U Ku Pδ δ= ⇒ =
 

 

 

General Mechanics                 Energy Principle 

force – equilibrium                  principle of virtual displacement  

Displacement – compatibility      ⇒  Displacement - compatibility 

force – Displ. Relationship             force – Displ. Relationship 

 

Since energy is expressed as displacement ｘ force, in order to satisfy 

W Uδ δ= , at least internal force ≈ external force in average sense if the 
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displacement-compatibility is satisfied.  

Internal force is defined as the function of the assumed displacement. 

 

 

6.3 Virtual Displacement analysis procedure and Detailed Expressions 

 

6.3.1 General procedure 

The principle of virtual displacements finds its most powerful application in 
the development of approximate solutions. 

Only displacement functions, which satisfy b/c, are required while force-
equilibrium is assumed to be satisfied by using the condition of energy 
conservation. 

 

6.3.2 Internal virtual work 

 

1) Axial force member 

( )virtual energy de
       

nsity
= x x

Ud
des

 

 

Internal work is defined as the function of 

displacement. 
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2) Torsional Member (pure torsion) 
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3) flexural member 
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6.3.3 External virtual work 

 

                      (or  )

i iW u P u b dV

u b dx

ddd 

d

= ∑ + ⋅

⋅
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Example 6.2 
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6.4  Construction of Analytical Solutions by the principle of virtual 
displacements 

 

6.4.1 Exact solutions 

 

 

 

 

2select  u= x u
L

   which satisfy the B/C’s:    
2

at  0     0
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x u
x L u u
= =
= =
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∫
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2 2

2 2=              

x

x

W u F
EAU W F u
L

Ld
EA

dd

dd

=

⇒ =

=

 

 

Why  is 2= xu u
L

  exact displacement function? 

The exact displacement function is the one that satisfies the force-
equilibrium. 

 

 

 

 

By equilibrium, 0xdF b dx+ =  

x
dFb
dx

= −  

When 0,     0x
dFb
dx

= =  

( ) 0

duF A EA EA
dx

d duEA
dx dx

σ ε= ⋅ = =

⇒ =
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When E and A are constant, 

2

2

2

2 2

0           the condition for the exact displacement function

u=        satisfies ( 0)

d u
dx

x d uu
L dx

= ⇒

=
 

 

 

Virtual displacement with different     B/C 

                                 displacement shape 

yields the same equilibrium equation   

 

 U dVdd εσ= ∫  

 

 

 

 

For virtual displacement 
1 2(1 )v

x xu u u
L L

δ δ δ= − +            Eq. 1 

- Virtual displacement is applied to the equilibrium system and is not 
related to the actual displ. B/C.   Thus vuδ  in Eq. 1 is valid. 

- 1 2 2   Reaction can be calculatedEAF F u
L

= − = − ⇒  

- 2v
xu u
L

δ δ=   is a special case of Eq. 1 
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If we use for both real displacement and virtual displacement, 

1 2

1 2

1 2 1 2

(1 )

(1 )
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=
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∫
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1 1 2 2

1 1 2

2 2 1

1 1
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                         ( )

 1   -1
-1   1

W u F u F
EAU W F u u
L

EAF u u
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F uEA
F uL
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δ δ

= +

= = -

= -

    
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Different displacement shape for virtual displacement 

2
2

2

( )

sin
2

v

v

xu u
L

xu u
L

δ δ

πδ δ

 = 
→ 

 =  

 satisfy displacement boundary condition.  

but not satisfy the force-equilibrium. 

Real displacement 2r
xu u
L

=  

 v rd u duU EA dx
dx dx
dd = ∫  

Integration by part 
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d

=
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 

∫

∫ ∫
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This result indicates that Uδ  is affected by the values at the starting and last 
points, regardless of the shape of the vu  

 

Thus if virtual displacement vuδ  satisfies the displacement B/C, any form of 
virtual displacement can be used. 

(Here, 20     0  ,         v vx u x L u uδ δ δ= = = = ) 

However, the real displacement 2u   ( )r
x u
L

=  should satisfy 

2

2 0  (when  0)r
x

d u b
dx

= = , which is the force-equilibrium condition. 

 

2

2

2

2

v

r

xu u
L

xu u
L

δ δ
  =  

 
   =    

            
2

2

sin( )
2

sin( )
2

v

r

xu u
L

xu u
L

πδ δ

π

 =

 =


 

⇒ cannot get the exact solution, because 
2

2 0rd u
dx

≠  

 

If the chosen read displacements corresponds to stresses that satisfy identically 
the conditions of equilibrium, any form of admissible virtual displacement will 
suffice to produce the exact solution. 
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6.4.2 Approximate solutions and the significance of the chosen virtual 
displacements 

 

Principle of virtual work is applicable to seeking approximate solutions for 

 Frame work Analysis: tapered section, nonlinearity, instability, dynamics 

 All finite element analysis 

 

For example, tapered truss element. 

 

 

 

 

Equilibrium condition 

 

x
dF b
dx

= −  

If 0xb = , 0dF
dx

=  

 

If 2
xu u
L

=  is used, 

2
x

du uE E E
dx L

σ ε= = =  
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But,  2
1 1(1 ) /   = E (1 ) / 0

2 2
x

x
dF x u xd A dx d A dx
dx L L L

σ   = − − ≠      
 

⇒ violate the force-equilibrium condition 

Nevertheless, we can use the approximate displacement function  

2
xu u
L

=  which is exact only for prismatic elements. 

2 2
1

1
2 2

2 2

1
2 2

2
1

2 2 2

2

     = (1 )
2

3     = 
4

3        
4

2for         
3

L

o

L

o

x

x

x

d u duU EA dx
dx dx
u u xEA dx
L L L

EAu u
L

W u F

EAU W F u
L

xu u
L EAF u

Lxu u
L

dd

d

d

dd

dd

dd

=

   −  
  

= ⋅

= ⇒ =

 = 
  ⇒ =
  =     

∫

∫
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1

2 2

2

0.6817for        
sin

2

x

xu u
L EAF u

x Lu u
L

πδ δ

 = 
  ⇒ =

  =     

 

Exact solution  =  1
20.721 EA u

L
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Discussions 

1) Although u  is not exact displacement function, 

W Uδ δ=  (energy conservation) force to provide a basis for the calculation of 
the undetermined parameter 2u  

2) Although the approximate real displacement cannot satisfy the equilibrium 
conditions at every locations, the enforcement of the condition W Uδ δ=  
results in average satisfaction of the equilibrium throughout the structure. 

3) The standard procedure for choosing the form of virtual displacement is to 
adopt the same form as the real displacement for convenience and to make the 
stiffness matrix symmetric. 

 

Requirement of displacement function (real displacement) 

1) Displacement Boundary condition should be satisfied. 

 

 

 

In case of 2-node truss element, there are two nodes. Thus, only two terms can 
be used when a polynomial equation is used. 

For example 0 1u a a x= +  

2 1
1 2 0 1  10,  ,    ,           u ux u u x L u u a u a

L
−

= = = = ⇒ = =  

 

2) Rigid body motion (no strain) and constant strain should be described. 

1 2

(nodal displacements)
   = ( , )
u f

f u u
=
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0 1

0 1

   (O.K)

= sin    (Not OK)
2

u a a x

u a a x
L
π

= +

+
 

 

3) Force-equilibrium should be satisfied. 

 

For axial force member 

       ( )x x
dF d dub EA b
dx dx dx

= ⇒ =  

 

1) is the essential condition to get at least an approximate solution 

2) is the convergence condition to get a reasonably accurate solution by 
increasing the number of elements. 

3) is the condition to obtain the exact solution. 

Generally, virtual displacement function is the same as the real displacement 
Function.  

    ⇒ symmetric matrix 

Example 6.5 

Rayleigh-Ritz method 

1 2

1 2

2sin sin

, generalized displacements

solve approximate solution

x xa a
L L

a a

W U

pp u

dd

= +

=

= ⇒
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6.5 Principle of Virtual Force 

 

Principle of Virtual Force 

≡ flexibility method 

≡ Force method 

 

6.5.1 Equations of Equilibrium 

The fundamental requirement on virtual force systems is that they meet the 
relevant conditions of equilibrium. 

For axial force member,  

 

    

/

x

x A

dF b
dx

F Aσ

= −

=
 

 

For torsional member, 

 

    x
x

dM m
dx

= −  

= xM r
J

τ  
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For flexural member, 

 

2

2

0

       

0

          

               

y y y

y
y

z z y

z
y

z
y

F dF b dx
dF

b
dx

M dM F dx
dM F
dx

d M b
dx

∑ = − + =

⇒ =

∑ = − ⋅ =

⇒ =

=

 

 

6.5.2 Characteristics of virtual force systems 

External Equilibrium Equation. 0F∑ =  

Internal Equilibrium Equation. 

    and    =   

x
x

x
x

y z
y y

dF b
dx
dM m
dx

dF dMb F
dx dx

 = −

 = −

 =

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Virtual complementary Strain energy 

 

* *

1

        

        

U U dv

dv

E dv

dd

dσ ε

dσ σ−

=

= ⋅

=

∫
∫
∫


 

 

* *W Uδ δ=  gives the conditions of compatibility. 

 

The strains and displacements in a deformable system are compatible and 
consistent with the constraints if and only if the external complementary 
virtual work is equal to the internal complementary virtual work for every 
system of virtual force and stresses that satisfy the conditions of equilibrium. 

 

Even if the real force state does not correspond to a deformational state that 
exactly satisfies compatibility, * *W Uδ δ=  can be used to enforce an 
approximate satisfaction of the conditions of compatibility. 
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For axial force member,  

 

* 1  

1        

       

(        = )

1         d

x x

x x

U E dV

dV
E
A dx
E

F F
E E

F F x
EA

dd σ σ

dσ σ

dσ σ

dσ dσ

d

−=

=

=

=

=

∫

∫

∫

∫

 

 

For torsional member 

* 1

2
2

 

1               

1        

1        d

x

x x

x x

U E dV

M rdV
G J

M r M dA dx
GJ

M M x
GJ

dd σ σ

dτ τ τ

d

d

−=

= =

= ⋅

=

∫

∫

∫ ∫

∫

 

 

 

For flexural member 

* 1  

1               

1        

U E dV

MydV
E I

M M dx
EI

dd σ σ

dσ σ σ

d

−=

= = −

= ⋅

∫

∫

∫

 
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6.5.4 Construction of Analytical Solutions by virtual force principle 

 

Axial force member 

 

*
2

2 2

*
2 2

* *
2 2

          

       

          

x
x x x

x x

x

x

FU F dx F F
EA
LF F

EA
W F u

LW U U F
EA

dd

d

dd

dd

= ⋅ =

=

= ⋅

= ⇒ =

∫

 

 

Flexural member 

2

2

PM x

xM Pδ δ

=

= ⋅
 

 

*

2/2

0

3

2       
4

       
48

MU M dx
EI

xP P dx
EI

P P
EI

dd

d

d

=

= ⋅ ⋅

= ⋅

∫

∫




 

 

By using equilibrium equation with low orders, the solution can be found 
conveniently. 

 



24 

 

*

3
* *           

48

W P v
PW U v

EI

δ δ

δ δ

= ⋅

= ⇒ =
  

If we set 1Pδ = , 

The principle of virtual force ≡ unit load method. 
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Discussion on virtual force system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* * * *U U U Uδ δ δ δ= = =① ② ③ ④
 

The force-equilibrium cause a relative displacement (deformation). 

On the other hand, with different support conditions, the relative displacement 
could be the same when the force-equilibrium is the same. 
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Discussion on stiffness method vs flexibility method 

 

For principle of virtual displacement 

4

4

 

                ( 0)

W U

W dV

d vvEIv dx
dx

dd

dd εσ

d

=

=

= =

∫

∫

 

v ⇒ 3rd order equation to satisfy the force-equilibrium 

If the cross-section is variable along the length, v function becomes more 
complicated. 

 

On the other hand, for principle of virtual force, 

* *

*  

         

W U

U dV

MM dV
EI

dd

dd σ ε

d

=

= ⋅

=

∫

∫

 

M ⇒ 1st order equation for the determinate system. 

 

As the element properties become more complicate, the flexibility method is 
easier in the derivation of the flexibility matrix and stiffness matrix. 

 


