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CHAPTER 3. UNCERTAINTY CHARACTERIZATION

This chapter discusses statistical analysis based on available sample data that
characterizes uncertain data in a statistical form. Specifically, it introduces statistical
procedures to determine an appropriate probability distribution for a random variable
based on a limited set of sample data. There are two approaches in the statistical data
analysis techniques: (a) conventional statistical methods (graphical methods and
statistical hypothesis tests) and (b) Bayesian methods.

3.1 Conventional (or Frequentist) Statistical Methods
The conventional statistical methods impose models (both deterministic and
probabilistic) on the data. Deterministic models include, for example, regression
models and analysis of variance (ANOVA) models. The most common probabilistic
models include the graphical methods and quantitative methods.

3.1.1 Graphical Methods

e Histogram (Fig. 3.1)
The purpose of a histogram is to graphically summarize the distribution of a
univariate data set. This histogram graphically shows the following:

1. center (i.e., the location) of the data;

2. spread (i.e., the variation) of the data;
3. skewness of the data;

4. presence of outliers; and

5. presence of multiple modes in the data.

These features provide strong indications of the proper distributional model for

the data. The probability plot or a goodness-of-fit test can be used to verify the
distributional model.
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Normal probability plot

The normal probability plot is a graphical technique for assessing whether or not
a data set can be approximated as a normal distribution. The data are plotted
against a theoretical normal distribution in such a way that the points should
form an approximate straight line. Departures from this straight line indicate
departures from normality. The normal probability plot is a special case of the
probability plot.

Normal Probability Plot
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Probability plot

The uniform distribution has a linear relationship between ordered physical data
and probability. So any probability distribution can be used for approximating a
given data set if a probability distribution is related to the uniform distribution.
The relationship can be defined as

U@) = G(P(x(D))

where P(i) is the probability of the event E = {X | x(i) € Q} and U(i) follows a
uniform distribution.

>> x1 = wblrnd(3,2,100,1);

>> x2 = raylrnd(3,100,1);

>> probplot(‘'weibull',[x1 x2])

>> legend('Weibull Sample','Rayleigh Sample','Location', NW")
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Probability plot for Weibull distribution

* Weibull Sample
©  Rayleigh Sample

Data

Rayleigh distribution is a special case of weibull distribution when a shape
parameter is 2. Therefore both distributions follow the straight lines very closely.

Homework 8: Graphical methods

Use the data set for elastic modulus and yield strength in the excel file named
‘tensile_test.xlex’. Build histograms and plot each data set on the normal
probability plot to determine if they follow a normal distribution. Discuss your

observation.

3.1.2 Quantitative Methods

e Statistical Moments:

First-order moment (e.g., mean, location)

a. Confidence limits (or interval) for the mean (T-test)

N
Yy
X)y===— 1
mean(X) v (19)
X + LNy s/\/N (20)

where X and s are the sampled mean and standard deviation, N is the sample
size, « is the desired significance level (or 1—« = confidence level), and t(/2,n-1)
is the critical value of the t-distribution with N-1.
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TABLE B: 1-DISTRIBUTION CRITICAL VALUES

Tail probability p
afr | 25 20 A5 10 05 025 02 01 nos 003 001 L00E
1] Log0 1376 1963 3078 6314 1271 1589 3182 6366 1273 3133 6366
21 816 1061 12336 1386 2920 4303 4849 60565 9925 14090 2233 3180
3| 765 978 1230 1638 2353 3,182 3482 4.541 S5B41 7453 1021 1292
& T A41 1190 1533 2132 2076 2999 3747 4604 0 5398 7173 8610
51 727 920 1156 L476 2015 2571 2757 3365 4032 4773 5393 4860
6| 712 006 1134|440 1.943 2447 2612 3143 3707 4317, 5208 5950
71 711 ges 1119 1415 1895 2365 2517 2998 3490 4000 4TES 5408
| 706 EEF LI0E 1397 LA6D 2306 2440 2896 3355 3833 4501 5041
91 J03 883 L1000 1383 1833 2262 21398 2831 3230 3690 4297 4781
10 | 700 4700 1093 1372 LB1Z 2228 2359 2784 3169 3581 4144 4587
11 | 697 A76 0 L1082 1363 1796 2201 2328 2718 306 3497 4025 4437
12| 695 873 1083 135 L7E2 2379 2309 2681 3055 3428 3530 4313
13 | 694 A70 1079 1350 1771 2160 2282 . 2550 3012 3372 3852 47221
4 | 692 468 1076 1345 L7el 2145 23264 2624 2997 3326 3787 4140
15 | 691 Be6 1074 1341 LTS3 2131 2249 26020 2947 3286 3733 4073
16 | 690 865 1071 1337 1746 2120 2235 2583 2921 3252 36RS 4.015
17| 689 863  L069 1333 1740 2110 22214 2567 2893 3222 34646 3965
18 | 688 862 L1067 1330 1734 2001 2214 2552 2878 3197 3511 3912
19 | .688 A6l 1Deas 1323 1729 2003 2205 2539 2861 3174 35790 3383
20| .687 460 1064 13235 1735 Z.08 2197 2528 2845 3153 3552 3.850
21| 686 839 1063 1323 1721 2080 2189 2518 2831, 3135 3527 3819
22| 686 258 10461, 1321 1717 2074 2183 2508 2819 3119 3505 3992
23| 4685 838 OG0 1319 1714 2089 2177 2500 2807 2104 3485 3748
24 |- 685  B57 1059 1318 LTIl 2064 2072 2402 2797 3.091 3467 5.745
25 | 6B4  RS6 1053 131§ 1708 2080 2067 2485 2787 3078 3450 3725
26 | 684 B56 1038 1315 1706 2056 0 2182 2479 2779 3067 3435 3707
27 | 684 LBS5  LO5T 1314 1703 2052 2158 2473 2771 3057 3421 3400
2% | 683 B35 L0S6 1313 1700 Z04B 2154 ZAGT 2761 347 3408 3674
29 | 683 B3 L0S5 1311 1899 2045 2150 2462 2756 3038 3395 3650
30 6EF B34 LDSS L3100 1697 2042 2147 2457 2750 3030 3383 1p45
T 451 LOS0 0 1303 1684 2021 2123 2423 2704 2971 3307 21551
30| 679 B4 LT 1299 1476 2009 109 2403 2678 2937 3261 3496
60 679 B48 15 1296 1471 24000 2009 2390 24660 2915 3232 1460
80 | 678 346 143 1292 1664 1990 2088 2374 2639 2887 2195 3416
100 | 677 A45 0 1042 1290 1650 1984 2081 2384 2626 Z8T1 3074 3390
oo | 675 L4200 1037 1282 1846 1062 2036 2330 2531 2E13 30898 3300
e | B74 841 1036 1282 1445 19680 2084 2336 2576 2807 3051 3,291
0% 6% T0% % 906 95% D% SREm W% BOS%m  DOEm  §99%
Confidesca level
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From the formula, it is clear that the width of the interval is controlled by two
factors:

v As N increases, the interval gets narrower from the /» term and t(4/2,n-1).
That is, one way to obtain more precise estimates for the mean is to
increase the sample size.

v The larger the sample standard deviation, the larger the confidence
interval. This simply means that noisy data, i.e., data with a large standard
deviation, are going to generate wider intervals than data with a smaller
standard deviation.

To test whether the population mean has a specific value, uo, against the
two-sided alternative that it does not have a value o, the confidence
interval is converted to hypothesis-test form. The test is a one-sample t-
test, and it is defined as:

Ho: )? = HUo

Hu: X # 1o

Tested statistics: T=(X - u)/(s/IN)

Significance level: a (=0.05 is most commonly used.)

Critical region: Reject the null hypothesis that the mean is a

specified value, po, if
T < _t(a/2,N—1) or T > t(U!/2,N—1)

Let’s say the null hypothesis is rejected. The p-value indicates the probability
that the rejection of the null hypothesis is wrong.

>> x1 = normrnd(0.1,1,1,100); The test fails to reject the
>> [h,p,ci] = ttest(xl,0) null hypothesis at the
b= 0 default a. The 95%
b = confidence interval on the
0.8323 mean contains o.
ci =
-0.1650 0.2045
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>> x2 = normrnd(0.1,1,1,1000);

>> [h,p,ci] = ttest(x2,0) The test rejects the null

h = ) hypothesis at the default .
The p-value has fallen

P 0.0160 below « = 0.05 and 95%
ci = confidence interval on the
0.0142 0.1379 mean does not contain 0.

b. 1-factor ANOVA (Analysis of Variance)
http://www.itl.nist.gov/div898 /handbook/eda/section3/eda354.htm

Second-order moment (e.g., variation)

zj\;(xi _)?)2

(N-1) (21)

variation(s®) =

a. Bartlett’s test: http://www.itL.nist.gov/div898/handbook/eda/section3/eda357.htm

b. Chi-Square test: http://www.itl.nist.gov/div898/handbook/eda/section3/eda358.htm
c. F-test: http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.htm

d. Levene test: http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm

The formula for computing the covariance of the variables X and Y is

COV = Zil(xi_/?)(y,—f)
N-1

(22)

e Maximum Likelihood Estimation (MLE):

The principle behind the MLE method is that for a random variable X if x1, x, ... ,
xn are the N observations or sample values, then the estimated value of the
parameter is the value most likely to produce these observed values. Consider the
density function of X to be fx(x,6), where @ is the unknown parameter(s). In
random sampling, the x/’s are assumed to be independent. If the likelihood of
observing xi’s is proportional to their corresponding density functions, the
likelihood function can be defined as
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L(xl’xza""xn |9):H1Ail fX(xi | 0)
zfX(xl |‘9)fx(x2 |9)"'fx(xn |9)

(23)

The MLE can be formulated as

To determine 6, maximize L(xq,x,,...Xxy)

Homework 9: Quantitative methods

Use the data set for elastic modulus and yield strength in the excel file named
‘tensile_ test.xlex’. Test whether or not the population mean has a specific value,
Lo=200 GPa, for a quality control. Let’s assume the elastic modulus follow a
normal distribution. Determine the optimal mean and standard deviation using
the maximum likelihood method.

>> load gas
>> prices = [price1 price2];
>> normplot(prices)

Normal Probability Plot

098 j - ]
095 5 .
0.90 :

0.75

0.50

Probability

0.25

0.10
0.05 ~ q
002 : q
’I"IO 11I5 1éO ’IéS

Data

>> sample_means = mean(prices)
sample_means =

115.1500 118.5000
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>> [h,pvalue,ci] = ttest(price2/100,1.1515)
h =
1
pvalue =
4.9517€-004
ci=

1.1675 1.2025
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Distributional Measures:

Chi-squared Goodness-of-Fit (GOF) Tests:

The chi-square test is used to test if sampled data come from a population with a
specific distribution. An attractive feature of the chi-square GOF test is that it
can be applied to both continuous and discrete distributions. The chi-square
GOF test is applied to binned data (i.e., data put into classes). So the values of
the chi-square test statistic are dependent on how the data is binned. Another
disadvantage of the chi-square test is that it requires a sufficient sample size in
order for the chi-square approximation to be valid.

Ho:

Hi:

Significance level:
Test statistics:

Critical region:

The data follow a specified distribution.

The data do not follow the specified distribution.
o (=0.05 is most commonly used.)

For the chi-square goodness-of-fit computation,
the data are divided into k bins and the test
statistics is defined as

k
2
12: (Oi_Ei) /Ei (24)
i=1

where O:i is the observed frequency for bin i and Ei is
the expected frequency for bin i. The expected
frequency is calculated by

E=N-(F(X,)-F(X)) =N-f, (25)
where Fis the cumulative distribution function (CDF)
for the distribution being tested, Xu is the upper limit
for bin i, X is the lower limit for a bin 7, and N is the
sample size.

The hypothesis that the data are from a population
with the specified distribution is rejected if

2 2
/1/ > Z (a,k—c)
where ¥ z(a’k,c) is the chi-square percent point

function with k—c degrees of freedom and a
significant level of a. k is the number of non-
empty cells and ¢ = the number of estimated
parameters (including location and scale
parameters and shape parameters) for the
distribution.

Anderson-Darling (A-D) Goodness-of-Fit Test:
http://www.itl.nist.gov/div898 /handbook/eda/section3/eda3se.htm

Kolmogorov-Smirnov (K-S) Goodness-of-Fit Test:
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http://www.itl.nist.gov/div898 /handbook/eda/section3/eda35g.htm

>> price2=normrnd(118,3.8,100,1);
>> [h,p] = chi2gof(price2,'cdf ,{ @normedf,mean(price2),std(price2)})
>> [h,p] = chizgof(price2,'cdf' ,{@normcdf,119,3.5})

>> x = randn(100,1);

>> [h,p,st] = chi2gof(x,'cdf',@normcdf)

h =

chizstat: 7.5909

df: 7

0:[89101918 2110 5]

>> normplot(x)
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Freedom 096 090 080 070 050 030 020 0.10 0.05 001 0.001
1 0.004 0.02 006 015 046 107 184 271 3.84 664 10.83
2 010 021 045 071 139 241 322 460 599 09.21 13.82
a 0.356 068 1.01 142 - 23T 3668  4.64 6.25 7.82 11.34 16.27
4 071 1.06 1.65 220 336 488 599 778 9.49 1828 1847
b 114 161 234 300 435 606 728 924 11.07 15.09 20.52
6 163 220 307 383 5856 723 BH6 1064 | 1259 16.81 22.46
T 217 283 382 467 635 838 980 1202 1407 1B48 24,32
8 278 849 4569 B53 T34 952 11.03 1336 | 1551 20.09 26.12
9 382 417 538 639 B34 1066 1224 1468 | 1692 21.67 27.88
10 394 486 618 727 934 1178 1344 1599 18.31 22.21 . 20.59
edges: [-2.1707 -1.2999 -0.8645 -0.4291 0.0063 0.4416 0.8770 1.3124 2.1832]
E: [9.6817 9.6835 14.0262 16.8581 16.8130 13.9138 9.5546 9.4690]
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Homework 10: Probability Distribution & Statistical Moments
Let us recall the example of fatigue tests. The sample data can be obtained about
the physical quantities in the damage model below.

Ae O , .
78 = %(2Nf )b té&y (2Nf)

Let us consider a 30 data set (Table 3.1) for the fatigue ductility coefficient (&)
and exponent (c) used in the strain-life formula shown above. Answer the
following questions and provide a matlab code:

(1) Construct the covariance matrix and find out the coefficient of correlation
using the data set given in Table 3.1.

(2) Use normal, weibull, and lognormal distributions. Determine the most
suitable parameters of three distributions for the fatigue ductility coefficient
(&') and exponent (c) using the MLE method.

(3) Find out the most suitable distributions for the data set (&, ¢) using a GOF

test.
(4) Verify the results with the graphical methods (histogram and probability
plots).
10
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Figure 3.2: Statistical Correlation

Table 3.1: Data for the fatigue ductility coefficient and exponent

(¢,0) (¢,0) (¢,0) (¢,0) (¢,0)
0.022 | 0.289 | 0.253 | 0.466 | 0.539 | 0.630 | 0.989 | 0.694 | 1.611 | 0.702
0.071 | 0.370 | 0.342 | 0.531 | 0.590 | 0.621 | 1.201 | 0.690 | 1.845 | 0.760
0.146 | 0.450 | 0.353 | 0.553 | 0.622 | 0.653 | 1.304 | 0.715 | 1.995 | 0.759
0.185 | 0.448 | 0.354 | 0.580 | 0.727 | 0.635 | 1.388 | 0.717 | 2.342 | 0.748
0.106 | 0.452 | 0.431 | 0.587 | 0.729 | 0.645 | 1.392 | 0.716 | 3.288 | 0.821
0.215 | 0.460 | 0.519 | 0.655 | 0.906 | 0.703 | 1.426 | 0.703 | 6.241 | 0.894
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3.2 Bayesian

We have discussed methods of statistical inference which view the probability as relative
frequency and exclusively rely on the sample data to estimate the underlying probability
distribution of the population. In addition to these frequentist statistical methods, the
Bayesian approach utilizes some prior information in conjunction with the sample
information. The Bayesian inference is capable of continuously updating the prior
information with evolving sample data to obtain the posterior information.

3.2.1 Bayes’ Theorem

Bayes' theorem (also known as Bayes' rule or Bayes' law) is developed based on
conditional probabilities. If A and B denote two events, P(A|B) denotes the
conditional probability of A occurring, given that B occurs. An important application
of Bayes' theorem is that it gives a rule how to update or revise a prior belief to a
posterior belief. Bayes' theorem relates the conditional and marginal probabilities of
stochastic events A and B:

P4 5)- 2 \P fg)P(A)

Each term in Bayes' theorem has a conventional name:

e P(A) is the prior probability or marginal probability of A. The prior probability
can be treated as the subjective probability which expresses our belief prior to the
occurrence of A. It is “prior” in the sense that it does not take into account any
information about B.

e P(B) is the prior or marginal probability of B, and acts as a normalizing constant.

e P(A|B) is the conditional probability of A, given B. It is also called the posterior
probability of A, given B because it depends upon the specified value of B.

e P(B|A) is the conditional probability of B given prior information of A.

(26)

An important application of Bayes’ theorem is that it gives a rule how to update or
revise a prior belief to a posterior belief. Let us take a look at an interesting example
to get a better understanding.

Example 3.1

There are three doors and behind two of the doors are goats and behind the third door
is a new car with each door equally likely to provide the car. Thus the probability of
selecting the car for each door at the beginning of the game is simply 1/3. After you
have picked a door, say A, before showing you what is behind that door, Monty opens
another door, say B, revealing a goat. At this point, Monty gives you the opportunity to
switch doors from A to C if you want to. What should you do? (Given that Monty is
trying to let you get a goat.)

Solution
The question is whether the probability is 0.5 to get the car since only two doors left,
or mathematically, P(A|Bmonty) = P(C|BMonty) = 0.5. Basically we need to determine the
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probabilities of two event Ei = {ABmonty}, E2 = {CBmonty}. We elaborate the
computation in the following steps:

1. The prior probabilities read P(A) = P(B) = P(C) = 1/3.

2. We also have some useful conditional probabilities P(Bmony|A) = Y2,
P(BMonty|B) = 0, al’ld P(BMonty|C) = 1.

3. We can compute the probabilities of joint events as P(Bmonty, A) = ¥2x1/3
P(BMmonty, B) =0, and P(Bmonty, C) = 1x1/3 = 1/3.

4. Finally, with the denominator computed as P(Bmontyy) = 1/6 + 0 + 1/3 = Y5, we
then get P(A|Bmonty) = 1/3, P(C|BMonty) = 2/3. Thus, it is better to switch to C.

1/6,

3.2.2 Bayesian Inference

Let X and ®@be random variables with a joint probability density function f(x, 6),
6 € Q. When the amount of data for X is small or X is rapidly evolving, its statistical
parameter 6 (e.g., i, o) is considered to be random. From the Bayesian point of view,
6 is interpreted as a realization of a random variable @ with a probability density
fe(6). Based on the Bayes’ theorem, the posterior distribution of @ given a new
observation X can be expressed as

Jro(%0) _ fre(x10) f6(0)

1) 1) =7)

f@\X(9|x):

It can be seen that the Bayesian inference employs both the prior distribution of 6,
fl0), and the conditional probability distribution of the sample (evidence or
likelihood), fxje(x|6), to find a posterior distribution of 8, fe|x(6|x). Let us consider a
normal inference model as one example to illustrate the Bayesian inference process.

Example 3.2: Suppose that we have a set of random samples x = {xi, x2,..., xyr} from a
normal PDF fx(x; u, o) of a random variable X, where x is unknown and o is known.
Assume that the prior distribution of u, fi(u), is a normal distribution with its mean, ,
and variance, 2. Determine the posterior distribution of s, finx(u|x).

Solution
Firstly, we compute the conditional probability of obtaining x given u as

PR, S ES
= (270 )7M/2 exp{— 2;2 f(x,. ‘“)ﬂ

(28)

i=1

Next, we compute the joint probability of x and u as
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Sroar (% 1) = s (X1 22) 1y (1)
S\-M/2 ,\12 1 & 2 1 2
=(27z0 ) (27TT ) CXP[_ 207 & (%, —u) _2_2_2(/1_“) }

—K(x by aur)exp—— M + ! 2+ E+l
LT | (207 277 . o’ 7 “

We then set up a square with u in the exponent as

M)_c+u

(M 1 PR

fX,M(X,/,l):Kz(xl,...,xM,O',Ll,’Z')eXp —E(?‘FTTJ ﬂ_%—_i_i
O-2 T

AN

1(M 1 M5 +0° 2
:KZ (Xlg...,xM,G,u,z')exp __(_24__2] _Mj

Since the denominator fx(xi, x2,..., xp) does not depend on u, we then derive the
posterior distribution of u as

(M1 MX+c%u )
fMX(,u|x)=K3(xl,...,xM,a,u,r)exp{—;(?+7j(,u——j

M7+ 02

Clearly, this is a normal distribution with the mean and variance as

Mt*Xx+0c*u . (M IJI o’r? (29)

‘e M +o® £ 0'2+1'2 C Mtito?
Therefore, the Bayes estimate of u is essentially a weighted-sum of the sample mean
and the prior mean. In contrast, the maximum likelihood estimator is only the sample
mean. As the number of samples M approaches the infinity, the Bayes estimate
becomes equal to the maximum likelihood estimator since the sample data tend to have
a predominant influence over the prior information. However, for the case of a small
sample size, the prior information often plays an important role, especially when the

prior variance 7 is small (or we have very specific prior information).

3.2.3 Conjugate Bayes Models
As can be seen in the Example 3.2, the Bayes inference and the maximum likelihood
estimation essentially provide the same estimator if we have a very large sample size.
In engineering practice, however, we often have very limited sample data possibly
due to the high expense to obtain the data. In such cases, the maximum likelihood
estimation may not give an accurate or even reasonable estimator. In contrast, the
Bayesian inference would give much better estimator if we assume a reasonable prior
assumption. By “reasonable”, we mean that the prior assumption is at least consistent
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with the underlying distribution of the population. If there is no such consistency, the
Bayesian inference may give an erroneous estimator due to the misleading prior
information.

Another important observation we can make from Example 3.2 is that the posterior
distribution shares a similar form (i.e., normal distribution) with the prior. In this
case, we say that the prior is conjugate to the likelihood. If we have a conjugate prior,
the posterior distribution can be obtained in an explicit form. Looking back to
Example 3.2, we note that the normal or Gaussian family is conjugate to itself (or self-
conjugate): if the likelihood function is normal, choosing a normal prior will ensure
that the posterior distribution is also normal. Other conjugate Bayes inference models
include the binomial inference, exponential inference, and Poisson inference. Among
these inferences, the binomial inference is the most widely used. Consider a Bernoulli
sequence of n experimental trials with x occurrences of an outcome whose probability
of occurrence po is unknown. We assume a beta prior B(a,b) for the unknown
binomial probability po, expressed as

T (a,b) N} b1
S S PN
The likelihood function can be expressed according to a binomial distribution as
L(x;n,py)=C(nx)p; (1=po)" " = py (1= 1)

We can easily obtain the posterior distribution of po as a beta distribution, expressed
as

In, (p0)=

n—x

F(x+a,n+b—x) 4 —
x)= x+a 1_

T PN = F e T o 0 17 P0)
The posterior distribution has the same form (beta distribution) as the prior
distribution, leading to the conjugacy condition. Let us take a look at the use of this
inference with a simple reliability analysis problem.

Example 3.3

Suppose that we intend to quantify the reliability of a product by conducting a
sequence of 10 repeated tests. The product passes 8 of these tests and fails at the other
two. We assume a beta prior B(4, 4) for the probability of success (or reliability) po in
each test. Compute the posterior distribution of po with the reliability test data.

Solution

Clearly, the parameters in this example take the following values: a=4,b=4,x=8,n
= 10. Then the posterior distribution can be obtained as B(x+a, n+b—x), or B(12, 6).
The prior and posterior distributions of po are plotted in Figure 3.3, where we can see
the posterior distribution combines the prior information and the testing information
(evidence) and achieves a compromise between the prior distribution and the
maximum likelihood estimator.
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Figure 3.3 Prior and posterior distributions

Homework 11. Matlab coding for Bayesian statistics
Build your own Matlab coding for accomplishing the Example 3.3 (results and
figure) above.

In many engineering problems, the conjugacy condition does not hold and explicit
solutions cannot be readily obtained with simple mathematical manipulations. In
such cases, we can build the posterior distributions by random sampling. A
commonly used simulation method for drawing samples from the posterior
distribution is referred to as Markov chain Monte Carlo (MCMC) in which the two
most common techniques, the Metropolis—Hastings algorithm and Gibbs sampling,
are used. Others include particle filtering, (extended) Karman filtering, etc. An in-
depth theoretical discussion of these techniques is beyond the scope of this book.
Readers are recommended to refer to some Bayesian statistics books for detailed
information.

Updating
Iteration, i=i+1 <

Prior Density
Je(6)
Observed data, X'

Figure 3.4: Process of Bayesian Updating

Likelihood function 5;}:1221[; Posterior Density
Sxe(x|6) Mechanism Jox(€ )
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The Bayesian approach is used for updating information about the parameter 6. First,
a prior distribution of ® must be assigned before any future observation of X is taken.
Then, the prior distribution of ® is updated to the posterior distribution as the new
data for X is employed. The posterior distribution is set to a new prior distribution
and this process can be repeated with an evolution of data sets. This updating process
can be briefly illustrated in Fig. 3.4.

Markov model is widely used in various fields such as word recognition, voice
recognition and gesture recognition in which sequence of the data is very meaningful.
Markov chain which consists of Markov model defines probability of posterior event
given the prior events. For example, 15t Markov chain considers just last event and 2nd
Markov chain take last two events into consideration to calculate probability of the
current event, expressed as

1* Markov chain

:P(Xt :x|XH =x_,X, ,=X

—192 -2 t-20"""

2" Markov chain

P(X, =X, =x_ . X, =x X =x)=P(X,=x[X_ =x_,X_,=x_,)

t=1°“"t— =12 t—

A state diagram for a simple example of the 15t Markov chain is shown in the Figure
3.5.

tll =0

t1,=0.5
1 t31 :0.2

t13 =0.5
tzz =0.1

t33 :04

t23=0.6

Figure 3.5: State diagram of a simple Markov chain
‘a’ represents the observations which can be obtained from the model, and ‘t;’ is

probability that aj occurs when ai is given. For example, probability that the posterior
event X: becomes a- can be defined based on prior events as follows
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P(X,=a,)=P(X,=a)|X,_ =a)xP(X,=a,| X, =a,)xP(X, =a,| X, =a)
=1, X1, xt;, =0.5x0.1x0.4 = 0.02

For more convenient interpretation of the model, transition matrix can be defined as

0 05 05
=03 0.1 0.6
02 04 04

It can be noticed that sum of the probability of all posterior events given one prior
event is 1.

Example 3.4 (Gambler’s ruin)

Suppose that a gambler having $20 is going to gamble at roulette in a Casino. The
gambler bets $10 on odd number, and makes $10 when it occurs. If even number occurs,
he loses the money betting the roulette.

He has to leave the Casino if he loses his entire money or make $20 to have $40 in his
pocket. What is likelihood that the gambler lose his entire money from ten times of the
roulette game given that probability of Winning at each game is 50%?

- |_:'.' II WIS -l'l =Y R @ e @ : SFIN ] REFIE IIII

Solution
First, we have to develop Markov chain to solve the example. 15t Markov chain is used in
this example. Graphical model can be illustrated as
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0.5 0.5 0.5
1
1
0.5 0.5 0.5

Figure 3.6 Markov chain for the Example 3.4

And the corresponding transition matrix is

After ten times of roulette games, multiplication of the transition matrix gives

710

0.734

~10.484

0.234

0
0.016
0
0.016
0

0

0
0.031

0

0

0.016 0.234
0.484
0.016 0.734

0

1

What this result is saying is that probability of losing all initial pocket money ($20) as a
result of 10 times of roulette games is about 48.4% under the given condition.

The idea of Markov Chain Monte Carlo (MCMC) is basically the same as the Markov
model in that it defines posterior position of the sampling point based on the prior
information of the sampled points. Two most important techniques can be employed
in MCMC, the Metropolis-Hastings algorithm and Gibbs sampling.

Metropolis algorithm, which is the most simplified MCMC method can be performed

by the following steps
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Step 1. Set a sample index i to 0 and initial sampling point x,

Step 2. Pick a random value u~U(0,1), where u follows the uniform distribution

Step 3. Define a candidate of the next sampling point x*~P(x*|x;), where P is
‘proposal distribution’ - generate ‘random walk’ using a proposal density

: p(x)
Step 4. If u < min {1, p(xi)}
x*1 =x* - accept a proposal
else
xt = xt - reject a proposal
end

In step 4, decision criterion is defined based on the ratio of probability of the
candidate position and probability of the prior sampling point. Thus, the next
position of the sampling point is defined in most likely direction.

For example, it is possible to design the sampling position for the Gaussian
distribution with mean of zero and standard deviation of one using the Metropolis
algorithm, where ‘proposal function’ P follows Gaussian distribution (norm(x‘, 0.05)).

>> Nn=1000000;

>> x=zeros(n,1);

>> X0=0.5; % Step 1
>> x(1)=x0;

>> for i=1:n-1

>> x_star=normrnd(x(i),0.05); % Step 2
>> u=rand; % Step 3
>>  if u<min(1,normpdf(x_star)/normpdf(x(i))) % Step 4
>> x(i+1)=x_star;

>> else

>> x(i+1)=x(1);

>> end

>> end

>>

>> figure;

>> hist(x,100);
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x 10

3.5

Others include particle filtering, (extended) Karman filtering, etc. An in-depth
theoretical discussion of these techniques is beyond the scope of this book. Readers
are recommended to refer to some Bayesian statistics books for detailed information.

3.2.4 How to Model Prior Distribution?

¢ Informative Prior Distribution
Generally we have two ways to handle known information (x):
1. Histogram
2. Select a prior density function with unknown parameters firstly, and then
estimate the unknown parameters for the data.

¢ Non-informative Prior Distribution
Non-informative prior distribution means determining the prior distribution

when no other information about the parameter @ is available except its feasible
field © .
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