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CHAPTER 3. UNCERTAINTY CHARACTERIZATION 
 
This chapter discusses statistical analysis based on available sample data that 
characterizes uncertain data in a statistical form. Specifically, it introduces statistical 
procedures to determine an appropriate probability distribution for a random variable 
based on a limited set of sample data. There are two approaches in the statistical data 
analysis techniques: (a) conventional statistical methods (graphical methods and 
statistical hypothesis tests) and (b) Bayesian methods. 
 
3.1 Conventional (or Frequentist) Statistical Methods 

The conventional statistical methods impose models (both deterministic and 
probabilistic) on the data.  Deterministic models include, for example, regression 
models and analysis of variance (ANOVA) models.  The most common probabilistic 
models include the graphical methods and quantitative methods. 
 
3.1.1 Graphical Methods 

 
· Histogram (Fig. 3.1) 

The purpose of a histogram is to graphically summarize the distribution of a 
univariate data set.  This histogram graphically shows the following: 
 
1. center (i.e., the location) of the data; 
2. spread (i.e., the variation) of the data; 
3. skewness of the data;  
4. presence of outliers; and  
5. presence of multiple modes in the data.  
 
These features provide strong indications of the proper distributional model for 
the data. The probability plot or a goodness-of-fit test can be used to verify the 
distributional model. 
 

 
Figure 3.1: Histogram 
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· Normal probability plot 

 
The normal probability plot is a graphical technique for assessing whether or not 
a data set can be approximated as a normal distribution.  The data are plotted 
against a theoretical normal distribution in such a way that the points should 
form an approximate straight line.  Departures from this straight line indicate 
departures from normality.  The normal probability plot is a special case of the 
probability plot.  
 

 

>> x = normrnd(10,1,25,1); 

>> normplot(x); 

 
 
 

· Probability plot 
 
The uniform distribution has a linear relationship between ordered physical data 
and probability.  So any probability distribution can be used for approximating a 
given data set if a probability distribution is related to the uniform distribution.  
The relationship can be defined as 
  

U(i) = G(P(x(i))) 
 

where P(i) is the probability of the event E = {X | x(i) Î W} and U(i) follows a 
uniform distribution.  
 

>> x1 = wblrnd(3,2,100,1); 
>> x2 = raylrnd(3,100,1); 
>> probplot('weibull',[x1 x2]) 
>> legend('Weibull Sample','Rayleigh Sample','Location','NW') 
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Rayleigh distribution is a special case of weibull distribution when a shape 
parameter is 2.  Therefore both distributions follow the straight lines very closely. 

 
 

Homework 8: Graphical methods  
Use the data set for elastic modulus and yield strength in the excel file named 
‘tensile_test.xlex’.  Build histograms and plot each data set on the normal 
probability plot to determine if they follow a normal distribution.  Discuss your 
observation. 

 
3.1.2 Quantitative Methods 
 
· Statistical Moments: 

First-order moment (e.g., mean, location) 
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a. Confidence limits (or interval) for the mean (T-test) 

 ( 2, 1)NX t s Na -±  (20) 

where X and s are the sampled mean and standard deviation, N is the sample 
size, a is the desired significance level (or 1-a = confidence level), and t(a/2,N-1) 
is the critical value of the t-distribution with N-1. 
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From the formula, it is clear that the width of the interval is controlled by two 
factors:  

ü As N increases, the interval gets narrower from the N term and t(a/2,N-1).  
That is, one way to obtain more precise estimates for the mean is to 
increase the sample size.  

ü The larger the sample standard deviation, the larger the confidence 
interval. This simply means that noisy data, i.e., data with a large standard 
deviation, are going to generate wider intervals than data with a smaller 
standard deviation.   

 

To test whether the population mean has a specific value, m0, against the 
two-sided alternative that it does not have a value m0, the confidence 
interval is converted to hypothesis-test form. The test is a one-sample t-
test, and it is defined as: 

H0:     = m0 

H1:     ¹ m0 

Tested statistics:  T = ( - m0)/(s/ ) 
Significance level:  a (=0.05 is most commonly used.) 
Critical region:  Reject the null hypothesis that the mean is a 

specified value, m0, if 
 ( 2, 1) ( 2, 1)orN NT t T ta a- -< - >  

 
Let’s say the null hypothesis is rejected. The p-value indicates the probability 
that the rejection of the null hypothesis is wrong. 
 

 
>> x1 = normrnd(0.1,1,1,100); 
>> [h,p,ci] = ttest(x1,0) 
h = 
     0 
p = 
    0.8323 
ci = 
   -0.1650    0.2045 
 

 
The test fails to reject the 
null hypothesis at the 
default a.  The 95% 
confidence interval on the 
mean contains 0. 

X
X

X N
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>> x2 = normrnd(0.1,1,1,1000); 
>> [h,p,ci] = ttest(x2,0) 
h = 
     1 
p = 
    0.0160 
ci = 
    0.0142    0.1379 
 

 
The test rejects the null 
hypothesis at the default a.  
The p-value has fallen 
below a = 0.05 and 95% 
confidence interval on the 
mean does not contain 0. 

 
 
b. 1-factor ANOVA (Analysis of Variance) 
http://www.itl.nist.gov/div898/handbook/eda/section3/eda354.htm  

 
 
Second-order moment (e.g., variation) 
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a. Bartlett’s test: http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm  
b. Chi-Square test: http://www.itl.nist.gov/div898/handbook/eda/section3/eda358.htm  
c. F-test: http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.htm 
d. Levene test: http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm  

 
 

The formula for computing the covariance of the variables X and Y is 
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· Maximum Likelihood Estimation (MLE): 
The principle behind the MLE method is that for a random variable X, if x1, x2, … , 
xn are the N observations or sample values, then the estimated value of the 
parameter is the value most likely to produce these observed values.  Consider the 
density function of X to be fX(x,q), where q is the unknown parameter(s).  In 
random sampling, the xi’s are assumed to be independent.  If the likelihood of 
observing xi’s is proportional to their corresponding density functions, the 
likelihood function can be defined as 
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The MLE can be formulated as 
 To determine , maximize   L(, , … ) 
 

Homework 9: Quantitative methods 
Use the data set for elastic modulus and yield strength in the excel file named 
‘tensile_test.xlex’. Test whether or not the population mean has a specific value, 
m0=200 GPa, for a quality control. Let’s assume the elastic modulus follow a 
normal distribution.  Determine the optimal mean and standard deviation using 
the maximum likelihood method. 

 
>> load gas 
 
>> prices = [price1 price2]; 
 
>> normplot(prices) 
 

 
 

>> sample_means = mean(prices) 
 
sample_means = 
 
115.1500  118.5000 
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>> [h,pvalue,ci] = ttest(price2/100,1.1515) 
 
h = 
 
     1 
 
pvalue = 
 
4.9517e-004 
 

ci = 
 
    1.1675    1.2025 
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· Distributional Measures: 
Chi-squared Goodness-of-Fit (GOF) Tests: 
The chi-square test is used to test if sampled data come from a population with a 
specific distribution.  An attractive feature of the chi-square GOF test is that it 
can be applied to both continuous and discrete distributions.  The chi-square 
GOF test is applied to binned data (i.e., data put into classes).  So the values of 
the chi-square test statistic are dependent on how the data is binned.  Another 
disadvantage of the chi-square test is that it requires a sufficient sample size in 
order for the chi-square approximation to be valid.  
 

H0:    The data follow a specified distribution. 

H1:    The data do not follow the specified distribution. 
Significance level:  a (=0.05 is most commonly used.) 
Test statistics:  For the chi-square goodness-of-fit computation, 

the data are divided into k bins and the test 
statistics is defined as 

 ( )22

1

k

i i i
i

O E Ec
=

= -å  (24) 

where Oi is the observed frequency for bin i and Ei is 
the expected frequency for bin i.  The expected 
frequency is calculated by 

 ( )( ) ( )i u l ii
E N F X F X N f= × - = ×  (25) 

where F is the cumulative distribution function (CDF) 
for the distribution being tested, Xu is the upper limit 
for bin i, Xl is the lower limit for a bin i, and N is the 
sample size. 
 

Critical region:  The hypothesis that the data are from a population 
with the specified distribution is rejected if 

 
2 2

( , )k cac c ->  

where 2
( , )k cac -  is the chi-square percent point 

function with k-c degrees of freedom and a 
significant level of a.  k is the number of non-
empty cells and c = the number of estimated 
parameters (including location and scale 
parameters and shape parameters) for the 
distribution. 
 

Anderson-Darling (A-D) Goodness-of-Fit Test:  
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.htm  
 
Kolmogorov-Smirnov (K-S) Goodness-of-Fit Test: 
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http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm 
 
 
 
>> price2=normrnd(118,3.8,100,1); 
>> [h,p] = chi2gof(price2,'cdf',{@normcdf,mean(price2),std(price2)}) 
>> [h,p] = chi2gof(price2,'cdf',{@normcdf,119,3.5}) 
 
 
>> x = randn(100,1); 
>> [h,p,st] = chi2gof(x,'cdf',@normcdf) 
 
h = 
 
     0 
 
p = 
 
    0.370 
 
st =  
 
    chi2stat: 7.5909 
          df: 7 
       edges: [-2.1707 -1.2999 -0.8645 -0.4291 0.0063 0.4416 0.8770 1.3124 2.1832] 
           O: [8 9 10 19 18 21 10 5] 
           E: [9.6817 9.6835 14.0262 16.8581 16.8130 13.9138 9.5546 9.4690] 
 
>> normplot(x) 
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Homework 10: Probability Distribution & Statistical Moments 
Let us recall the example of fatigue tests.  The sample data can be obtained about 
the physical quantities in the damage model below. 

  

Let us consider a 30 data set (Table 3.1) for the fatigue ductility coefficient (ef¢) 
and exponent (c) used in the strain-life formula shown above.  Answer the 
following questions and provide a matlab code: 

(1) Construct the covariance matrix and find out the coefficient of correlation 
using the data set given in Table 3.1. 

(2) Use normal, weibull, and lognormal distributions. Determine the most 
suitable parameters of three distributions for the fatigue ductility coefficient 
(ef¢) and exponent (c) using the MLE method. 

(3) Find out the most suitable distributions for the data set (ef¢, c) using a GOF 
test. 

(4) Verify the results with the graphical methods (histogram and probability 
plots). 

 

 
Figure 3.2: Statistical Correlation 

 
Table 3.1: Data for the fatigue ductility coefficient and exponent 

(ef¢, c) (ef¢, c) (ef¢, c) (ef¢, c) (ef¢, c) 
0.022 0.289 0.253 0.466 0.539 0.630 0.989 0.694 1.611 0.702 
0.071 0.370 0.342 0.531 0.590 0.621 1.201 0.690 1.845 0.760 
0.146 0.450 0.353 0.553 0.622 0.653 1.304 0.715 1.995 0.759 
0.185 0.448 0.354 0.580 0.727 0.635 1.388 0.717 2.342 0.748 
0.196 0.452 0.431 0.587 0.729 0.645 1.392 0.716 3.288 0.821 
0.215 0.460 0.519 0.655 0.906 0.703 1.426 0.703 6.241 0.894 
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3.2 Bayesian 
We have discussed methods of statistical inference which view the probability as relative 
frequency and exclusively rely on the sample data to estimate the underlying probability 
distribution of the population. In addition to these frequentist statistical methods, the 
Bayesian approach utilizes some prior information in conjunction with the sample 
information. The Bayesian inference is capable of continuously updating the prior 
information with evolving sample data to obtain the posterior information.  
 

3.2.1 Bayes’ Theorem 
Bayes' theorem (also known as Bayes' rule or Bayes' law) is developed based on 
conditional probabilities.  If A and B denote two events, P(A|B) denotes the 
conditional probability of A occurring, given that B occurs.  An important application 
of Bayes' theorem is that it gives a rule how to update or revise a prior belief to a 
posterior belief.  Bayes' theorem relates the conditional and marginal probabilities of 
stochastic events A and B: 

 
( | ) ( )( | )

( )
P B A P AP A B

P B
×

=  (26) 

Each term in Bayes' theorem has a conventional name: 
· P(A) is the prior probability or marginal probability of A. The prior probability 

can be treated as the subjective probability which expresses our belief prior to the 
occurrence of A. It is “prior” in the sense that it does not take into account any 
information about B. 

· P(B) is the prior or marginal probability of B, and acts as a normalizing constant. 
· P(A|B) is the conditional probability of A, given B. It is also called the posterior 

probability of A, given B because it depends upon the specified value of B. 
· P(B|A) is the conditional probability of B given prior information of A. 
 
An important application of Bayes’ theorem is that it gives a rule how to update or 
revise a prior belief to a posterior belief. Let us take a look at an interesting example 
to get a better understanding.   

 
 
 

Example 3.1  
There are three doors and behind two of the doors are goats and behind the third door 
is a new car with each door equally likely to provide the car. Thus the probability of 
selecting the car for each door at the beginning of the game is simply 1/3. After you 
have picked a door, say A, before showing you what is behind that door, Monty opens 
another door, say B, revealing a goat. At this point, Monty gives you the opportunity to 
switch doors from A to C if you want to. What should you do?  (Given that Monty is 
trying to let you get a goat.) 
 

Solution  
The question is whether the probability is 0.5 to get the car since only two doors left, 
or mathematically, P(A|BMonty) = P(C|BMonty) = 0.5. Basically we need to determine the 
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probabilities of two event E1 = {A|BMonty}, E2 = {C|BMonty}. We elaborate the 
computation in the following steps: 

 1. The prior probabilities read P(A) = P(B) = P(C) = 1/3.  

 2. We also have some useful conditional probabilities P(BMonty|A) = ½, 
 P(BMonty|B) = 0, and P(BMonty|C) = 1.  

 3. We can compute the probabilities of joint events as P(BMonty, A) = ½´1/3 = 1/6, 
 P(BMonty, B) = 0, and P(BMonty, C) = 1´1/3 = 1/3.  

 4. Finally, with the denominator computed as P(BMonty) = 1/6 + 0 + 1/3 = ½, we 
 then get P(A|BMonty) = 1/3, P(C|BMonty) = 2/3. Thus, it is better to switch to C.  

 
 
 

3.2.2 Bayesian Inference 
Let X and Q be random variables with a joint probability density function f(x, q), 
q Î W.  When the amount of data for X is small or X is rapidly evolving, its statistical 
parameter q (e.g., m, s) is considered to be random.  From the Bayesian point of view, 
q  is interpreted as a realization of a random variable Q with a probability density 
fQ(q).  Based on the Bayes’ theorem, the posterior distribution of Q given a new 
observation X can be expressed as 

 

 |,
|

( | ) ( )( , )
( | )

( ) ( )
XX

X
X X

f x ff x
f x

f x f x
q qq

q Q QQ
Q

×
= =  (27) 

 
It can be seen that the Bayesian inference employs both the prior distribution of θ, 
f(θ), and the conditional probability distribution of the sample (evidence or 
likelihood), fX|Θ(x|θ), to find a posterior distribution of θ, f Θ|X(θ|x). Let us consider a 
normal inference model as one example to illustrate the Bayesian inference process. 

 
Example 3.2: Suppose that we have a set of random samples x = {x1, x2,…, xM} from a 
normal PDF fX(x; μ, σ) of a random variable X, where μ is unknown and σ is known. 
Assume that the prior distribution of μ, fM(μ), is a normal distribution with its mean, u, 
and variance, t2.  Determine the posterior distribution of μ, fM|X(μ|x). 

 

Solution  
Firstly, we compute the conditional probability of obtaining x given μ as  
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Next, we compute the joint probability of x and μ as  
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We then set up a square with μ in the exponent as 
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Since the denominator fX(x1, x2,…, xM) does not depend on μ, we then derive the 
posterior distribution of μ as 
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Clearly, this is a normal distribution with the mean and variance as  
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 Therefore, the Bayes estimate of μ is essentially a weighted-sum of the sample mean 
and the prior mean. In contrast, the maximum likelihood estimator is only the sample 
mean. As the number of samples M approaches the infinity, the Bayes estimate 
becomes equal to the maximum likelihood estimator since the sample data tend to have 
a predominant influence over the prior information. However, for the case of a small 
sample size, the prior information often plays an important role, especially when the 
prior variance t2 is small (or we have very specific prior information).  

 
 
 

3.2.3 Conjugate Bayes Models 
As can be seen in the Example 3.2, the Bayes inference and the maximum likelihood 
estimation essentially provide the same estimator if we have a very large sample size. 
In engineering practice, however, we often have very limited sample data possibly 
due to the high expense to obtain the data. In such cases, the maximum likelihood 
estimation may not give an accurate or even reasonable estimator. In contrast, the 
Bayesian inference would give much better estimator if we assume a reasonable prior 
assumption. By “reasonable”, we mean that the prior assumption is at least consistent 
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with the underlying distribution of the population. If there is no such consistency, the 
Bayesian inference may give an erroneous estimator due to the misleading prior 
information.  
Another important observation we can make from Example 3.2 is that the posterior 
distribution shares a similar form (i.e., normal distribution) with the prior. In this 
case, we say that the prior is conjugate to the likelihood. If we have a conjugate prior, 
the posterior distribution can be obtained in an explicit form. Looking back to 
Example 3.2, we note that the normal or Gaussian family is conjugate to itself (or self-
conjugate): if the likelihood function is normal, choosing a normal prior will ensure 
that the posterior distribution is also normal. Other conjugate Bayes inference models 
include the binomial inference, exponential inference, and Poisson inference. Among 
these inferences, the binomial inference is the most widely used. Consider a Bernoulli 
sequence of n experimental trials with x occurrences of an outcome whose probability 
of occurrence p0 is unknown. We assume a beta prior B(a,b) for the unknown 
binomial probability p0, expressed as 

( ) ( )
( ) ( ) ( )
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The likelihood function can be expressed according to a binomial distribution as 
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We can easily obtain the posterior distribution of p0 as a beta distribution, expressed 
as 
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The posterior distribution has the same form (beta distribution) as the prior 
distribution, leading to the conjugacy condition. Let us take a look at the use of this 
inference with a simple reliability analysis problem. 

 

Example 3.3 
Suppose that we intend to quantify the reliability of a product by conducting a 
sequence of 10 repeated tests. The product passes 8 of these tests and fails at the other 
two. We assume a beta prior B(4, 4) for the probability of success (or reliability) p0 in 
each test. Compute the posterior distribution of p0 with the reliability test data. 
 

Solution  
Clearly, the parameters in this example take the following values: a = 4, b = 4, x = 8, n 
= 10. Then the posterior distribution can be obtained as B(x+a, n+b‒x), or B(12, 6). 
The prior and posterior distributions of p0 are plotted in Figure 3.3, where we can see 
the posterior distribution combines the prior information and the testing information 
(evidence) and achieves a compromise between the prior distribution and the 
maximum likelihood estimator.  
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Figure 3.3 Prior and posterior distributions 
 

Homework 11. Matlab coding for Bayesian statistics 
Build your own Matlab coding for accomplishing the Example 3.3 (results and 
figure) above.  

 

 
In many engineering problems, the conjugacy condition does not hold and explicit 
solutions cannot be readily obtained with simple mathematical manipulations. In 
such cases, we can build the posterior distributions by random sampling. A 
commonly used simulation method for drawing samples from the posterior 
distribution is referred to as Markov chain Monte Carlo (MCMC) in which the two 
most common techniques, the Metropolis–Hastings algorithm and Gibbs sampling, 
are used. Others include particle filtering, (extended) Karman filtering, etc. An in-
depth theoretical discussion of these techniques is beyond the scope of this book. 
Readers are recommended to refer to some Bayesian statistics books for detailed 
information. 
 

Posterior Density 
fQ|X(q |x)

Prior Density 
fQ(q)

Observed data, X

Likelihood function
fX|Q(x|q)

Bayesian 
Updating 

Mechanism

Updating 
Iteration, i=i+1

 
Figure 3.4: Process of Bayesian Updating 
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The Bayesian approach is used for updating information about the parameter q.  First, 
a prior distribution of Q must be assigned before any future observation of X is taken. 
Then, the prior distribution of Q is updated to the posterior distribution as the new 
data for X is employed. The posterior distribution is set to a new prior distribution 
and this process can be repeated with an evolution of data sets. This updating process 
can be briefly illustrated in Fig. 3.4. 
 
Markov model is widely used in various fields such as word recognition, voice 
recognition and gesture recognition in which sequence of the data is very meaningful. 
Markov chain which consists of Markov model defines probability of posterior event 
given the prior events. For example, 1st Markov chain considers just last event and 2nd 
Markov chain take last two events into consideration to calculate probability of the 
current event, expressed as 
 

( ) ( )1 1 2 2 1 1 1 1

1
: , , ,

st

t t t t t t t t

Markov chain
P X x X x X x X x P X x X x- - - - - -= = = = = = =L

 

 

( ) ( )1 1 2 2 1 1 1 1 2 2

2
: , , , ,

nd

t t t t t t t t t t

Markov chain
P X x X x X x X x P X x X x X x- - - - - - - -= = = = = = = =L

 

 
A state diagram for a simple example of the 1st Markov chain is shown in the Figure 
3.5. 
 

 
Figure 3.5: State diagram of a simple Markov chain 

 
‘a’ represents the observations which can be obtained from the model, and ‘tij’ is 
probability that aj occurs when ai is given. For example, probability that the posterior 
event Xt becomes a2 can be defined based on prior events as follows 
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( ) ( ) ( ) ( )2 2 1 1 2 1 2 2 1 3

12 22 32 0.5 0.1 0.4 0.02
t t t t t t tP X a P X a X a P X a X a P X a X a

t t t
- - -= = = = ´ = = ´ = =

= ´ ´ = ´ ´ =
 

 
For more convenient interpretation of the model, transition matrix can be defined as 
 
 

0 0.5 0.5
0.3 0.1 0.6
0.2 0.4 0.4

T
é ù
ê ú= ê ú
ê úë û

 

 
It can be noticed that sum of the probability of all posterior events given one prior 
event is 1. 
 

Example 3.4 (Gambler’s ruin) 
Suppose that a gambler having $20 is going to gamble at roulette in a Casino. The 
gambler bets $10 on odd number, and makes $10 when it occurs. If even number occurs, 
he loses the money betting the roulette.  
He has to leave the Casino if he loses his entire money or make $20 to have $40 in his 
pocket. What is likelihood that the gambler lose his entire money from ten times of the 
roulette game given that probability of winning at each game is 50%? 

 

Solution  
First, we have to develop Markov chain to solve the example. 1st Markov chain is used in 
this example. Graphical model can be illustrated as 
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Figure 3.6 Markov chain for the Example 3.4 

And the corresponding transition matrix is 
 

1 0 0 0 0
0.5 0 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0.5
0 0 0 0 1

T

é ù
ê ú
ê ú
ê ú=
ê ú
ê ú
ê úë û

 

 
After ten times of roulette games, multiplication of the transition matrix gives  
 

1 0 0 0 0
0.734 0.016 0 0.016 0.234

10 0.484 0 0.031 0 0.484
0.234 0.016 0 0.016 0.734

0 0 0 0 1

T

é ù
ê ú
ê ú
ê ú»
ê ú
ê ú
ê úë û

 

  
What this result is saying is that probability of losing all initial pocket money ($20) as a 
result of 10 times of roulette games is about 48.4% under the given condition. 

 
The idea of Markov Chain Monte Carlo (MCMC) is basically the same as the Markov 
model in that it defines posterior position of the sampling point based on the prior 
information of the sampled points. Two most important techniques can be employed 
in MCMC, the Metropolis-Hastings algorithm and Gibbs sampling. 
 
Metropolis algorithm, which is the most simplified MCMC method can be performed 
by the following steps 
 

$0 $10 $20 $30 $40 

0.5 0.5 

0.5 0.5 0.5 

0.5 

1 

1 
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Step 1. Set a sample index i to 0 and initial sampling point  

Step 2. Pick a random value ~(0,1), where  follows the uniform distribution  
Step 3. Define a candidate of the next sampling point ∗~(∗|), where  is 

‘proposal distribution’   à generate ‘random walk’ using a proposal density 
Step 4. If  < min 1, (∗)() 
 

    = ∗ à accept a proposal 
 

 else 
 

    =  à reject a proposal 
 end 
In step 4, decision criterion is defined based on the ratio of probability of the 
candidate position and probability of the prior sampling point. Thus, the next 
position of the sampling point is defined in most likely direction. 
For example, it is possible to design the sampling position for the Gaussian 
distribution with mean of zero and standard deviation of one using the Metropolis 
algorithm, where ‘proposal function’  follows Gaussian distribution (norm(, 0.05)). 
 
>> n=1000000; 
>> x=zeros(n,1); 
>> x0=0.5;        % Step 1 
>> x(1)=x0; 
>> for i=1:n-1 
>>  x_star=normrnd(x(i),0.05);       % Step 2 
>>    u=rand;                    % Step 3 
>>    if u<min(1,normpdf(x_star)/normpdf(x(i)))   % Step 4 
>>        x(i+1)=x_star; 
>>    else 
>>        x(i+1)=x(i); 
>>    end 
>> end 
>>  
>> figure; 
>> hist(x,100); 
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Others include particle filtering, (extended) Karman filtering, etc. An in-depth 
theoretical discussion of these techniques is beyond the scope of this book. Readers 
are recommended to refer to some Bayesian statistics books for detailed information. 

 
 

3.2.4 How to Model Prior Distribution? 
 

· Informative Prior Distribution 
Generally we have two ways to handle known information (x):  
1. Histogram 
2. Select a prior density function with unknown parameters firstly, and then   

estimate the unknown parameters for the data. 
 
· Non-informative Prior Distribution 

Non-informative prior distribution means determining the prior distribution 
when no other information about the parameter q is available except its feasible 
field Q . 
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