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CHAPTER 5. PROBABILISTIC ENGINEERING ANALYSIS – TIME-
DEPENDENT PERFORMANCE 
 
In the previous chapter, methods were examined for obtaining the system’s reliability 
function analytically or computationally. In the calculation of probability values, we 
consider time independent safety events. However, in many practical cases, system’s 
performance degrade over time. In this chapter, time dependency in the probability of 
safety occurrence (or reliability) will be introduced. We will develop the reliability 
models necessary to observe the reliability over the life of the system, instead of at just 
one point in time. In addition, performance measure such as MTTF and failure rate are 
presented and also its related distributions are introduced. An accelerated life test will 
be discussed to acquire time dependent data in an efficient manner. Lastly, we take a 
glance at overview of PHM in the end of the chapter. 
 
5.1 Reliability Function (Time-Dependent) 

 
5.1.1 Reliability Function 

The Reliability Function R(t), also known as the Survival Function S(t), is 
defined by:  

R(t) = S(t) = the probability a unit survives beyond a designed life t. 

Since a unit either fails or survives, one of these two mutually exclusive 
alternatives must occur as  
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where T is a time-to-failure, FT(t) is the probability distribution function or CDF 
of an actual life, and fT(t) is the PDF of an actual life. 
 

5.1.2Expected Life or Mean Time-To-Failure (MTTF): 
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5.1.3 Failure Rate (or Hazard Function): 

Insight is normally gained into failure mechanisms by examining the behavior of 
the failure rate.  The failure rate, h(t), may be defined in terms of the reliability or 
the PDF of the time-to-failure (TTF).  Let h(t)Dt be the probability that the system 
will fail at some time T < t + Dt given that it has not yet failed at T = t.  Thus, it is 
the conditional probability as 
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There are a handful of parametric models that have successfully served as 
population models for failure times (TTF) arising from a wide range of products 
and failure mechanisms.  Sometimes there are probabilistic arguments based on 
the physics of the failure mechanics that tend to justify the choice of model.  
Other times the model is used solely because of its empirical success in fitting 
actual failure data. 

 
5.1.4 Bathtub Curve: 

The bathtub curve is widely used in reliability engineering, although the general 
concept is also applicable to humans.  It describes a particular form of the hazard 
function which comprises three parts: 
· The first part is a decreasing failure rate, known as early failures or infant 

mortality. 
· The second part is a constant failure rate, known as random failures. 
· The third part is an increasing failure rate, known as wear-out failures. 
 

 
Figure 5.1: Bathtub Curve for Hazard Function (or Failure Rate) 

 

Homework 16: Failure testing 
Perform the failure testing of a paper clip as instructed. 
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5.2 Parametric Distribution for Life Data 

Some parametric models will be described in this section.  There are two classes to 
describe a failure rate: (1) constant failure rate (section 4.4.1) and (2) time-
dependent failure rate (sections 4.4.2-4.4.4). 

5.2.1 Exponential Distribution (Constant Failure Rate) 
 
The exponential model, with only one unknown parameter, is the simplest of all 
life distribution models. 
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Figure 5.2: Exponential Distribution 
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5.2.2 Weibull Distribution 
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( a ) PDF     ( b ) CDF 

Figure 5.3: Weibull Distribution 
 

The Weibull is a very flexible life distribution model with two parameters.  

· When k = 1, the Weibull reduces to the exponential model with mT = 1/l. 
· For k < 1, failure rates are typical of infant mortality and decrease. 
· For k > 1, failure rates are typical of aging effects and increase. 
· For k = 2, the Weibull becomes the Rayleigh distribution. 
· For k > 4, the Weibull becomes closer to a normal. 

 
 

5.2.3 Normal Distribution 
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( a ) PDF     ( b ) CDF 
Figure 5.4: Normal Distribution 

 
The normal distribution describes the life of a tread on a tire or the cutting edge 
on a machine tool where the wearout time (m) is reasonably well-defined. 
 

5.2.4 Other Distributions 
Lognormal, Gamma, and others are available at http://www.itl.nist.gov/div898/ 
handbook/apr/section1/apr16.htm. 
 
 

Homework 17: Reliability Function 
Suppose it is desired to estimate the failure rate of an electronic component.  A 
test can be performed to estimate its failure rate.  A target life is set to 2000 
minutes.  R(t) = P(T > 2000 minutes) Answer the following questions: 

(1) Construct a histogram of TTF. 

(2) Find out the best probability distribution model and its parameters, fT(t), for 
the TTF data. 

(3) Construct a reliability function. 

(4) Determine MTTF, standard deviation of TTF, and hazard function. 

(5) Compare the reliability, nf/N, from the TTF data with the reliability from the 
reliability function when t = 2000 where nf is the number of failed 
components and N (= 100) is the total components. 

 
Table 5.1: Data for 100 Electronics Time-To-Failure (TTF) [minute] 

1703.2 1071.4 2225.8 1826.5 1131 2068.9 1573.5 1522.1 1490.7 2226.6 
1481.1 2065.1 1880.9 2290.9 1786.4 1867.2 1859.1 1907.5 1791.8 1871 

1990.4 2024.1 1688.6 1962.7 2191.7 1841 1814.1 1918.1 2237.5 1396.8 
1692.8 707.2 2101.3 2165.4 1975.2 1961.6 2116.7 1373 1798.8 2248.4 
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1872.3 1597.8 1865.1 742.8 1436.7 1380.8 2258.2 1960 2182.8 1772.7 
2003.6 1589.4 1988.3 1874.9 1859 2051.9 1763 1854.6 1974.7 2289.9 
1945.7 1774.8 1579.6 1430.5 1855 1757.9 1029.3 1707.2 1864.7 1964.8 
1719.4 1565.2 1736.8 1759.4 1939.4 2065.7 2258.5 2292.8 1452.5 1692.2 
2120.7 1934.8 999.4 1919.9 2162.4 2094.9 2158.2 1884.2 1748.7 2260.3 
1040.8 1535 1283.4 2267.7 2100.3 2007.9 2499.8 1902.9 1599.6 1567.5 

 

 
 

5.3 Time-Dependent Reliability Analysis: (Physical) Accelerated Tests 
 
The product life test would require a long-time test (e.g., 104 ~ 105 hours) under 
normal stress condition.  The questions then arise of how to collect information 
about the corresponding life distributions under normal use conditions and how to 
make a product design reliable. There are two closely related problems that are 
typical with reliability data: 
 

· Censoring (when the observation period ends, not all units have failed - some 
are survivors): Censored Type I (observe r for a fixed time, T) and Type II 
(observe T for a fixed number of failures, r). 
· Lack of Failures (even if there is too much censoring, say a large number of 
units under observation, the information in the data can be limited due to the 
lack of actual failures). 
à How to deal with suspension data and to design life testing 

 
These problems cause practical difficulty when planning reliability assessment tests 
and analyzing failure data.  A common way of tackling this problem is an Accelerated 
Life Testing (ALT). 
 

· Compressed-time testing 
 
Many products experience on-off operation cycles instead of continuous 
operation.  Reliability tests are performed in which appliance doors are more 
frequently opened and closed, consumer electronics is more frequently turned 
on and off, or pumps or motors are more frequently started and stopped to 
reach a designed life.  These are referred to as compressed-time tests.  The 
tests are used more steadily or frequently than in normal use, but the loads 
and environmental stresses are maintained at the level expected in normal 
use. 
 
If the cycle is accelerated too much, however, the conditions of operation may 
change and thus artificially generate different failure mechanisms.  In other 
words, compressed-time testing (e.g., door open/close) may introduce 
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different failure mechanisms instead of a primary failure mechanism under 
normal field operation. 
  

 
· Advanced stress testing (or physical acceleration testing) 

 
Failure mechanisms may not be accelerated using the forgoing time-
compressed testing.  Advanced stress testing, however, may be employed to 
accelerate failures, since as increased loads or harsher environments are 
applied to a device, an increased failure rate may be observed.  If a decrease in 
reliability can be quantitatively related to an increase in stress level, the life 
tests can be performed at high stress levels, and the reliability at normal levels 
inferred.  Both random failures and aging effects may be the subject of 
advanced stress tests. 
 
Some engineering instances include: 
- In the electronics industry, components are tested at elevated 

temperatures to increase the incidence of random failure. 
- In the nuclear industry, pressure vessel steels are exposed to extreme 

levels of neutron irradiation to increase the rate of failure. 
 
 
5.3.1 Physical Acceleration (or True Acceleration) 
 

Physical acceleration means that operating a unit at high stress (i.e., higher 
temperature or voltage or humidity or duty cycle, etc.) produces the same failures 
that would occur at normal-use stresses, except that they happen much quicker.  
Failure may be due to mechanical fatigue, corrosion, chemical reaction, diffusion, 
migration, etc.  These are the same causes of failure under normal stress; the time 
scale is simply different. 
 

Exercise: Non-parametric process 
Accelerated life tests are run on four sets of 12 flashlight bulbs and the 
failure times in minutes are found in Table 5.2.  Estimate the MTTF at 
each voltage and extrapolate the results to the normal operating voltage of 
6.0 volts. 
 

Table 5.2: Life Data for Flashlight Bulbs (TTF) [minute] 

Voltage 9.4 12.6 14.3 16 
1 63 87 9 7 
2 3542 111 13 9 
3 3782 117 23 9 
4 4172 118 25 9 
5 4412 121 28 9 
6 4647 121 30 9 
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7 5610 124 32 10 
8 5670 125 34 11 
9 5902 128 37 12 
10 6159 140 37 12 
11 6202 148 39 13 
12 6764 177 41 14 

 
Solution: 
The MTTFs can be obtained as  
 

MTTF(9.4 voltage) = 4,744 mim. 
MTTF(12.6 voltage) = 126 mim. 
MTTF(14.3 voltage) = 29.0 mim. 
MTTF(16.0 voltage) = 10.3 mim. 

 
>> y = load TTF.dat 
>> m(1)=log(mean(y(:,1)));m(2)=log(mean(y(:,2)));… 
>> m(3)=log(mean(y(:,3)));m(4)=log(mean(y(:,4))); 
>> p=polyfit(x,m,1) 
p = 
   -0.9438   17.0917 
>> hold on; x=[6:0.01:18]; y=exp(p(1)*x+p(2)); plot(x,y) 

 
In the figure above, MTTF versus voltage is plotted in a logarithmic scale: 
 
The least-square fit indicates 

Ln(MTTF) = -0.9438´v + 17.0917 
 
Hence, 
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MTTF = exp(17.0917 - 0.9438´v) = 241´ 106 exp(-0.9438´v) [min] 
= 1.8385´104 exp(-0.9438´v) days 

 
At 6 volts: 

MTTF = 1.8385´104 exp(-0.9438´6) days = 64 days = 2.13 months 
= 9.184´104 minutes 

 
 
The previous approach is a non-parametric process, while straightforward.  It has 
several drawbacks relative to the parametric methods. 
1. It requires that a complete set of life data be available at each stress level in 

order to use the sample mean to calculate the MTTF. 
2. Without attempting to fit the data to a distribution, one has no indication 

whether the shape, as well as the time scale of the distribution, is changing.  
Since the changes in distribution shape are usually indications that a new 
failure mechanism is being activated by the higher-stress levels, there is a 
greater danger that the non-parametric estimate will be inappropriately 
extrapolated. 

 
We use the following notation: 
 
ts = TTF at stress tu = corresponding TTF at use 
Fs(t) = CDF at stress Fu(t) = CDF at use 
 
When there is a true acceleration, changing stress is equivalent to transforming 
the time scale used to record when failures occur. The transformations commonly 
used are linear, which means that TTF at high stress just has to be multiplied by 
a constant (the acceleration factor) to obtain the equivalent TTF at use. 
 

Fu(tu) à Fs(ts) = Fs(ts =tu/AF) 
 
The Weibull and lognormal distributions are particularly well suited for the 
analysis of advanced-stress tests, for in each case there is a scale parameter that 
is inversely proportional to the acceleration factor and a shape parameter that 
should be unaffected by acceleration. 
 

Exercise: Parametric process 
Let us consider the Weibull distribution as 
 

 

 
>> close 
>> wblplot(y(:,1)),hold on; wblplot(y(:,2)); wblplot(y(:,3)); wblplot(y(:,4)); 
 

( )( ; ) 1 exp k
TF t tl lé ù= - -ë û
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>> wblfit(y(:,1)) 
ans = 
  1.0e+003 * 
    5.0904    0.0022 à first parameter for scale (l) and second for shape (k) 
>> wblfit(y(:,2)) 
ans = 
  135.4589    5.9462 
>> wblfit(y(:,3)) 
ans = 
   32.2150    3.6187 
>> wblfit(y(:,4)) 
ans = 
   11.1620    5.6660  
>> wblfit(y(2:12,1))            à excluding one outlier 
ans = 
  1.0e+003 * 
    5.5959    0.0058 
 
Assume that the shape parameter (k: second value) be unchanged but the 
scale parameter (l: first value) be changed. 

 
We use the following notation:   
 
fs(t) = PDF at stress fu(t) = PDF at use 
hs(t) = failure rate at stress hu(t) = failure rate at use 
 



446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong 

2017 Copyright ã reserved by Mechanical and Aerospace Engineering, Seoul National University 88 
 

Then, an acceleration factor AF between stress and use means the following 
relationships hold: 

 
Linear Acceleration Relationships 

MTTF tu = AF × ts 
Failure Probability Fu(tu) à Fs(tu/AF) 
Reliability Ru(tu) à Rs(tu/AF) 
PDF  fu(t) à (1/AF) ´ fs(tu/AF) 
Failure Rate hu(t) à (1/AF) ´ hs(tu/AF) 

 
5.3.2 Common Acceleration Models 
 

· Arrehenius 
One of the earliest and most successful acceleration models predicts how TTF 
varies with temperature.  This empirical model is known as the Arrhenius 
equation as 

 exp or expH BTTF A TTF A
kq q
Dì ü ì ü= =í ý í ý

î þ î þ
 (62) 

with q denoting temperature measured in degrees Kelvin (273.16 + degrees 
Celsius) at the point when the failure process takes place and k is Boltzmann's 
constant (8.617 x 10-5 in ev/K).  The constant A is a scaling factor that drops 
out when calculating acceleration factors, with DH denoting the activation 
energy, which is the critical parameter in the model. 
The acceleration factor between a high temperature q2 and a low temperature 
q1 is given by  

 
1

2 1 2

1 1expt HAF
t k q q

ì üé ùDï ï= = -í ýê ú
ï ïë ûî þ

 (63) 

The value of DH depends on the failure mechanism and the materials involved, 
and typically ranges from 0.3 to 1.5, or even higher.  Acceleration factors 
between two temperatures increase exponentially as DH increases.  

Using the value of k given above, this can be written in terms of q  in degrees 
Celsius as  

 ( ) ( )1 2

1 1exp 11605
273.16 273.16

AF H
q q

ì üé ùï ï= D ´ ´ -í ýê ú+ +ï ïë ûî þ
 (64) 

Note that the only unknown parameter in this formula is DH.  
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Figure 5.5 Arrehenius plot for Weibull life distribution 

(http://www.weibull.com/AccelTestWeb/arrhenius_relationship_chap_.htm) 

Exercise: Parametric process 
Consider the accelerated life tests for the four sets of 12 flashlight bulbs 
and the failure times in minutes are found in the Table 4.2.  Estimate the 
MTTF at normal operating 6.0 voltage using Arrehius model. 
Assume v1 = 9.4 and v2 = 12.6.  Accordingly, t1 = 4744 and t2 = 126.  
Hence, AF =4744/126 = 37.65.  Reliability function can be calculated as 
>> t=[0:10:500000];r1=exp(-(t./5090.4).^2.2); plot(t,r1) 
>> hold on;  
>> t=[0:1:500000];r2=exp(-(t./135.5).^5.9); plot(t,r2) 
>> t=[0:1:500000];r3=exp(-(t./32.22).^3.6); plot(t,r3) 
>> t=[0:1:500000];r4=exp(-(t./11.16).^5.7); plot(t,r4) 
>> t=[0:10:500000];r5=exp(-(t./5090.4/37.65).^2.2); plot(t,r5) 
>> R = @(t) exp(-(t./5090.4/37.65).^2.2); 
>> MTTF = quad(R,0,10^6) 
  MTTF = 
1.6973e+005 

>> R = @(t) exp(-(t./5595.9/37.65).^5.8); 
>> MTTF = quad(R,0,10^6) 
MTTF = 

  1.9509e+005 
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The Arrhenium model parameters can be also calculated. 

 The Arrhenius model has been used successfully for failure mechanisms that 
depend on chemical reactions, diffusion processes or migration processes. 
This covers many of the thermally-induced mechanical failure modes that 
cause electronic equipment failure. 

· Eyring 
Henry Eyring's contributions to chemical reaction rate theory have led to a 
very general and powerful model for acceleration known as the Eyring Model. 
This model has several key features:  

ü It has a theoretical basis from chemistry and quantum mechanics.  
ü If a chemical process (chemical reaction, diffusion, corrosion, migration, 

etc.) is causing degradation leading to failure, the Eyring model describes 
how the rate of degradation varies with stress or, equivalently, how TTF 
varies with stress.  

ü The model includes temperature and can be expanded to include other 
relevant stresses.  

ü The temperature term by itself is very similar to the Arrhenius empirical 
model, explaining why that model has been so successful in establishing 
the connection between the DH parameter and the quantum theory 
concept of "activation energy needed to cross an energy barrier and initiate 
a reaction".  

The model for temperature and one additional stress takes the general form:   
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 1exp H CTTF A B S
k

aq
q q

ìD üæ ö= + +í ýç ÷
è øî þ

 (65) 

for which S1 could be some function of voltage or current or any other relevant 
stress and the parameters k, DH, B, and C determine acceleration between 
stress combinations.  As with the Arrhenius Model, k is Boltzmann's constant 
and temperature is in degrees Kelvin. If we want to add an additional non-
thermal stress term, the model becomes 

 1 2
1 1 2 2expf

C CHt A B S B S
k

aq
q q q

ì üD æ ö æ ö= + + + +í ýç ÷ ç ÷
è ø è øî þ

 (66) 

and as many stresses as are relevant can be included by adding similar terms. 
 
Advantages of the Eyring Model  
ü Can handle many stresses.  
ü Can be used to model degradation data as well as failure data.  
ü The DH parameter has a physical meaning and has been studied and 

estimated for many well known failure mechanisms and materials. 

Disadvantages of the Eyring Model  
ü Even with just two stresses, there are 5 parameters to estimate. Each 

additional stress adds 2 more unknown parameters.  
ü Many of the parameters may have only a second-order effect.  For example, 

setting a = 0 works quite well since the temperature term then becomes 
the same as in the Arrhenius model.  Also, the constants C1 and C2 are only 
needed if there is a significant temperature interaction effect with respect 
to the other stresses.  

· Other models 
a. (Inverse) Power Rule for Voltage 
b. Exponential Voltage Model 
c. Two Temperature/Voltage Models 
d. Electromigration Model 
e. Three-Stress Models (Temperature, Voltage, and Humidity) 
f. Coffin-Manson Mechanical Crack Growth Model 
 
Refer to http://www.itl.nist.gov/div898/handbook/apr/section1/apr153.htm  
 

Homework 18: Failure analysis of a paper clip twisting 
Answer the following questions: 
(a) Identify data outlier(s) and justify it. 
(b) Develop a probability density function model for TTF data under twisting 

moment.  Use a Weibull distribution. 
(c) Calculate the MTTF and develop reliability function and failure rate models 

for the TTF data under a twisting condition. 
 



446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong 

2017 Copyright ã reserved by Mechanical and Aerospace Engineering, Seoul National University 92 
 

 

Homework 19: Life analysis of a paper clip bending 
Answer the following questions: 
(a) Develop probability density function models for TTF data under four bending 

conditions, 180o, 135o, 90o, and 45o.  Use a Weibull distribution and report the 
statistical parameters in table. 

(b) Discuss the result above. 
(c) Use the Arrehenius model with the TTF data (180o, 135o, 90o) to calculate the 

Accelerating Factor (AF) and plot Log(Life) vs Stress(bending angle). 
(d) Predict a TTF under a bending angle (45o) using the Arrehenius model 

obtained in (c) and compare the predicted TTF with the observed TTF from 
(a). 

 
 

5.4 Degradation-based Simulations 
 
5.4.1 Fatigue 
See the handout, fatigue_wiki.pdf 

 
5.4.2 Wear 
See the handout, wear_wiki.pdf 

 
5.4.3 Corrosion 
See the handout, corrosion_wiki.pdf 

 
5.4.4 Creep 
See the handout, creep_wiki.pdf 
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Figure 5.6: Fatigue Simulation Model – Fatigue Life = Y(X) 

 

 
Figure 5.7: General Description of Reliability (L-Type) 

 
 

5.5 Health monitoring and prognostics 
Accelerated life testing (ALT) is capable of providing an instantaneous reliability 

estimate for an engineered system based on degradation characteristics of historical 
units. We refer to this approach as the classical reliability approach, which incorporates 
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population characteristics into reliability estimation by modeling a life distribution. 
However, this classical reliability approach only provides an overall reliability estimate 
that takes the same value for the whole population of units. In engineering practice, we 
are more interested in investigating the specific reliability information of a particular 
unit under its actual life cycle conditions to determine the advent of a failure and 
mitigate potential risk.  

To overcome the limitation of the classical reliability approach, prognostics and 
health management (PHM) has recently emerged as a key technology to evaluate the 
current health condition (health monitoring) and predict the future degradation 
behavior (health prognostics) of an engineered system throughout its lifecycle. In 
general, PHM consists of four basic functions: health sensing function, health reasoning 
function, health prognostics function and health management functions (see Fig. 5.8 for 
he first three functions). 

 
Figure 5.8: Basic PHM Functions 

· Health Sensing Function: To acquire sensory signal with in-situ monitoring 
techniques and to ensure high damage detectability by designing an optimal wireless 
sensor network (WSN); 

· Health Reasoning Function: To extract system health relevant information in real-
time with feature extraction techniques and to classify system health condition with 
health classification techniques; 

· Health Prognostics Function: To predict the time remaining before an engineered 
system no longer performs the required function(s) or the remaining useful life (RUL) 
in real-time with advanced machine learning techniques; 
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· Health Management Function: To enable optimal decision making on maintenance 
of engineered systems based on RUL predictions from health prognostics function 
with trade-off analysis and random process modeling techniques. 

In recent years, prognostics and health management (PHM) has been successfully 
applied to many engineered systems to assess their health conditions in real-time under 
actual operation conditions and adaptively enhance life cycle reliabilities with condition-
based maintenance that will effectively avoid unexpected failures. Figure 5.8 exemplifies 
several engineered systems that capitalize on PHM to enable an early anticipation of 
failure, to develop cost-effective maintenance strategies and to seek opportunities for 
life extensions.  

 
Figure 5.9: Engineered Systems Capitalizing on PHM 

An example is provided in Fig. 5.10 to demonstrate the three main PHM functions.  

 
Figure 5.10: An Example Illustrating Three Main PHM Functions.  

 
 


