Chapter 7 Analysis of Stress and Strain

7.1 Introduction

- 1. Flexure and shear formula ($\sigma = -My/I$ and $\tau = VQ/Ib$), torsion formula ($\tau = T\rho/I_P$), etc. help determine the stresses on cross sections
- 2. However, larger stresses may occur on inclined sections
- Example 1: Uniaxial stress (Section 2.6) maximum shear at 45° and maximum normal at cross sections
- Example 2: Pure shear (Section 3.5) maximum tensile and compressive stresses occur on 45°
- 5. Generalization of these examples \rightarrow need theories for "Plane Stress"
- 6. Transformation equations help determine the stresses in any general direction from the given **state of stress**

7.2 Plane Stress

- Stress element under "plane stress" condition,
 e.g. in the *xy* plane: only the *x* and *y* faces of the element are subjected to stresses, and all stresses act parallel to the *x* and *y* axis.
- 2. Normal stress (σ)
 - Subscript identifies the face on which the stress acts, e.g. σ_x and σ_y
 - For e_____, equal normal stresses act on the opposite faces
 - Sign convention: _____ is positive while _____ is negative
- 3. Shear stress (τ)
 - Two subscripts: the first indicates the face, and the second direction
 - Sign convention: positive for plus(face)plus(direction), and negative otherwise

- The sign convention described above is consistent with the shear stress pattern discussed in Section 1.7 (derived from the equilibrium equation)
- Thus, $\tau_{xy} = \tau_{yx}$
- Stresses on Inclined Sections
 - 1. To express the stresses acting on the inclined x_1y_1 element in terms of those on the xy element, consider the e______ of the forces on the wedge-shaped element

(a) Stresses (b) Forces

2. Equilibrium equation in x_1 direction:

 $\sigma_{x_1}A_0 \sec \theta - \sigma_x A_0 \cos \theta - \tau_{xy}A_0 \sin \theta - \sigma_y A_0 \tan \theta \sin \theta - \tau_{yx}A_0 \tan \theta \cos \theta = 0$

3. Equilibrium equation in y_1 direction:

 $\tau_{x_1y_1}A_0 \sec \theta + \sigma_x A_0 \sin \theta - \tau_{xy}A_0 \cos \theta - \sigma_y A_0 \tan \theta \cos \theta + \tau_{yx}A_0 \tan \theta \sin \theta = 0$

4. Using the relationship $\tau_{xy} = \tau_{yx}$, and also simplifying and rearranging, we obtain

 $\sigma_{x_1} = \sigma_x \cos^2 \theta + \sigma_y \sin^2 \theta + 2\tau_{xy} \sin \theta \cos \theta$

$$\tau_{x_1y_1} = -(\sigma_x - \sigma_y)\sin\theta\cos\theta + \tau_{xy}(\cos^2\theta - \sin^2\theta)$$

- 5. For $\theta = 0$, $\sigma_{x_1} =$ and $\tau_{x_1y_1} =$
- 6. For $\theta = 90^{\circ}$, $\sigma_{x_1} =$ and $\tau_{x_1y_1} =$

- Transformation Equations for Plane Stress
 - 1. Using the following trigonometric identities:

$$\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta), \ \sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta), \ \sin \theta \cos \theta = \frac{1}{2}\sin 2\theta$$

2. The transformation equation is expressed in a more convenient form

$$\sigma_{x_1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
$$\tau_{x_1y_1} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

\rightarrow transformation equation for plane stress

3. Normal stress on the y_1 face – can be obtained by substituting $\theta + 90^{\circ}$

$$\sigma_{y_1} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos 2\theta - \tau_{xy} \sin 2\theta$$

4. It is noted that

$$\sigma_{x_1} + \sigma_{y_1} = \sigma_x + \sigma_y$$

- ⊙ Special Cases of Plane Stress
 - 1. Uniaxial stress, i.e. $\sigma_y = \tau_{xy} =$

$$\sigma_{x_1} = \frac{\sigma_x}{2} (1 + \cos 2\theta)$$
$$\tau_{x_1 y_1} = -\frac{\sigma_x}{2} (\sin 2\theta)$$

2. Pure shear, i.e. $\sigma_x = \sigma_y =$

$$\sigma_{x_1} = \tau_{xy} \sin 2\theta$$

$$\tau_{x_1y_1} = \tau_{xy}\cos 2\theta$$

3. Biaxial stress, i.e. $\tau_{xy} =$

$$\sigma_{x_1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta$$
$$\tau_{x_1 y_1} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta$$

Junho Song junhosong@snu.ac.kr

• **Example 7-1**: Internal pressure results in longitudinal stress $\sigma_x = 6,000$ psi and circumferential stress $\sigma_y =$ 12,000 psi. Differential

settlement after an earthquake

→ rotation at support B → shear stress $\tau_{xy} = 2,500$ psi. Find the stresses acting on the element when rotated through angle $\theta = 45^{\circ}$

7.3 Principal Stresses and Maximum Shear Stresses

- Principal Stresses
 - Principal stresses: maximum and minimum stresses (→ occurs at every 90°)
 - 2. Setting the derivative to be zero, i.e.

$$\frac{d\sigma_{x_1}}{d\theta} = -(\sigma_x - \sigma_y)\sin 2\theta + 2\tau_{xy}\cos 2\theta = 0$$

from which we get the principal angle θ_p

$$\tan 2\theta_p = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$

Note: the principal angles for minimum and maximum stresses are perpendicular to each other (why?)

3. Substituting θ_p into the transformation formula via (\rightarrow)

$$R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}, \qquad \cos 2\theta_p = \frac{\sigma_x - \sigma_y}{2R}, \qquad \sin 2\theta_p = \frac{\tau_{xy}}{R}$$

4. The larger of the two principal stresses, σ_1

$$\sigma_{1} = \sigma_{x_{1}}(\theta_{p}) = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta_{p} + \tau_{xy} \sin 2\theta_{p}$$
$$= \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \left(\frac{\sigma_{x} - \sigma_{y}}{2R}\right) + \tau_{xy} \left(\frac{\tau_{xy}}{R}\right)$$
$$= \frac{\sigma_{x} + \sigma_{y}}{2} + \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$$

5. The smaller of the principal stresses, $\sigma_2 \rightarrow$ From the property $\sigma_1 + \sigma_2 =$

$$\sigma_2 = \sigma_x + \sigma_y - \sigma_1$$
$$= \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

6. A single formula for the principal stresses

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

- Principal Angles
 - 1. Principal angles θ_{p1} and θ_{p2} (corresponding to σ_1 and σ_2 , respectively) are roots of the equation $\tan 2\theta_p = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} \rightarrow$ Check the normal stresses to determine θ_{p1} and θ_{p2}
 - 2. Alternatively, θ_{p1} is the root that satisfies both $\cos 2\theta_{p1} = \frac{\sigma_x \sigma_y}{2R}$ and $\sin 2\theta_{p1} = \frac{\tau_{xy}}{R}$. Then θ_{p2} is 90° larger or smaller than θ_{p1}
- Shear Stresses on the Principal Planes
 - 1. If we set $\tau_{x_1y_1} = 0$ for the transformation equation $\tau_{x_1y_1} = -\frac{\sigma_x \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$, we get the equation $\tan 2\theta = \frac{2\tau_{xy}}{\sigma_x \sigma_y}$, which is the same as the condition for having principal stresses
 - 2. "The shear stresses are zero on the principal planes"

• Maximum Shear Stresses

1. Setting the derivative to be zero, i.e.

$$\frac{d\tau_{x_1y_1}}{d\theta} = -(\sigma_x - \sigma_y)\cos 2\theta - 2\tau_{xy}\sin 2\theta = 0$$
$$\tan 2\theta_s = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}}$$

2. Relationship between θ_s and θ_p :

$$\tan 2\theta_s = -\frac{1}{\tan 2\theta_p}$$

- 3. Can show (See textbook for the derivation) $\theta_s = \theta_p \pm 45^\circ$
- 4. Maximum shear stress

$$\tau_{\max} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = \frac{\sigma_1 - \sigma_2}{2}$$

• **Example 7-3**: The state of stress in the beam web at element *C* is $\sigma_x = 86$ MPa, $\sigma_y = -28$ MPa, and $\tau_{xy} = -32$ MPa. (a) Determine the principal stresses and show them on a sketch of a properly oriented

element; and (b) Determine the maximum shear stresses and show them on a sketch of a properly oriented element.

7.4 Mohr's Circle for Plane Stress

- Equations of Mohr's Circle
 - 1. Recall the transformation equation

$$\sigma_{x_1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

$$\rightarrow \quad \sigma_{x_1} - \frac{\sigma_x + \sigma_y}{2} = \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

$$\tau_{x_1y_1} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

2. It can be shown that

$$\left(\sigma_{x_1} - \frac{\sigma_x + \sigma_y}{2}\right)^2 + \tau_{x_1y_1}^2 =$$

3. Note from the previous note that

$$\sigma_{\text{aver}} = \frac{\sigma_x + \sigma_y}{2}$$
 $R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$

4. Now the equation above becomes

 $\left(\sigma_{x_1} - \sigma_{\text{aver}}\right)^2 + \tau_{x_1y_1}^2 = R^2$

- 5. In words, $(\sigma_{x_1}, \tau_{x_1y_1})$ is located on a circle whose center is (,) and the radius is _____
- Construction of Mohr's Circle
 - 1. What's required: _____, ____ and _____
 - 2. Sign conventions (consistent with the transformation formula, etc.)
 - Positive shear stress: d_____
 - Positive normal stress: to the r_____
 - Positive rotation: c_____

- 3. Construction procedure
 - 1) Draw a set of coordinate axes with σ_{x_1} as abscissa and $\tau_{x_1y_1}$ as ordinate

- 2) Locate the center C, (,)
- 3) Locate point A representing the stress condition (,) shown in Figure (a), $\theta =$
- 4) Locate point *B* representing the stress condition on the *y* face, i.e. (,), $\theta =$
- 5) Draw a line *AB*. This goes through *C* (why?), i.e. opposite ends of the diameter of the circle
- 6) Using Point *C* as the center, draw Mohr's circle through points *A* and *B*. The radius is the length of the line segments *AC* and *BC*, which is R =

- Stresses on an Inclined Element
 - 1. Consider the new axes x_1 and y_1 after rotation θ
 - 2. From the point *A* representing the original state (σ_x, σ_y) , rotate by 2θ

c_____wise to locate the point *D* representing the inclined element

3. The coordinates of D are the normal and shear stresses of the inclined element

4. Proof: available in the textbook

Principal Stresses

- The points P₁ and P₂ on Mohr's circle represent m_____ and m_____ normal stresses, respectively → principal stresses
- 2. Principal stresses:

$$\sigma_1 = OC + CP_1 = \frac{1}{2} + \frac{1}{2}$$
$$\sigma_2 = OC - CP_2 = \frac{1}{2} - \frac{1}{2}$$

- The angle of rotation to achieve the principal planes = the angle between A and P₁ (or P₂) divided by _____
- 4. The angle θ_{p_1} can be obtained from

$$\cos 2\theta_{p_1} = \frac{\sigma_x - \sigma_y}{2R} \qquad \sin 2\theta_{p_1} = \frac{\tau_{xy}}{R}$$

5. From Mohr's circle, it is clear that

o

$$\theta_{p_2} = \theta_{p_1} +$$

- Maximum Shear Stresses
 - 1. The points S_1 and S_2 on Mohr's circle represent maximum positive and negative shear stresses, respectively.
 - 2. The angle between these points and P_1 and P_2 (on Mohr's circle) =
 - This confirms once again that the angle between principal stress and maximum shear stresses is
 - The normal stresses under maximum shear stresses =

Junho Song junhosong@snu.ac.kr

• **Example 7-4**: At a point on the surface of a hydraulic ram on a piece of construction equipment, the material is subjected to <u>biaxial stresses</u> $\sigma_x = 90$ MPa and $\sigma_y =$ 20 MPa. Using Mohr's circle, determine the stresses acting on an element inclined at an angle $\theta = 30^{\circ}$.

Junho Song junhosong@snu.ac.kr

• **Example 7-5**: An element in plane stress on the surface of an oil-drilling pump arm is subjected to stresses $\sigma_x =$ 100 MPa, $\sigma_y = 34$ MPa, and $\tau_{xy} = 28$ MPa. Using Mohr's circle, determine (a) the stresses acting on an element inclined at an angle $\theta = 40^\circ$, (b) the principal stresses, and (c) the maximum shear stresses.

• **Example 7-6**: At a point on the surface of a metalworking lathe the stresses are $\sigma_x = -50$ MPa, $\sigma_y = 10$ MPa, and $\tau_{xy} = -40$ MPa. Using Mohr's circle, determine (a) the stresses acting on an element inclined at an angle $\theta = 45^{\circ}$, (b) the principal stresses, and (c) the maximum shear stresses.

7.5 Hooke's Law for Plane Stress

- Hooke's Law for Plane Stress
 - 1. Conditions (in addition to being in "Plane Stress")
 - Material properties uniform throughout the body and in all directions (h_____ and i_____)
 - The material is I _____ e ____, i.e. follows Hooke's law
 - 2. "Resultant" strains

$$\varepsilon_x = \frac{1}{E} (\sigma_x - \nu \sigma_y) \quad \varepsilon_y = \frac{1}{E} (\sigma_y - \nu \sigma_x) \quad \varepsilon_z = -\frac{\nu}{E} (\sigma_x + \sigma_y)$$

- 3. Shear strain: $\gamma_{xy} = \frac{\tau_{xy}}{G}$
- 4. Solving the equations of resultant strains simultaneously for σ_x and σ_y , we can obtain "Hooke's law for plane stress" as

$$\sigma_x = \frac{E}{1 - \nu^2} (\varepsilon_x + \nu \varepsilon_y)$$
$$\sigma_y = \frac{E}{1 - \nu^2} (\varepsilon_y + \nu \varepsilon_x)$$

$$\tau_{xy} = G\gamma_{xy}$$

5. Hooke's law for plane stress contain three material constants: *E*, *G*, and ν , but <u>only</u> <u>two</u> are independent because of the relationship

$$G = \frac{E}{2(1+\nu)}$$

- Volume Change (for Plane Stress)
 - 1. Original volume: $V_0 = abc$
 - 2. Final volume: $V_1 = (a + a\varepsilon_x)(b + b\varepsilon_y)(c + c\varepsilon_z)$
 - 3. Volume change: $\Delta V = V_1 V_0 \cong V_0(\varepsilon_x + \varepsilon_y + \varepsilon_z)$
 - 4. Unit volume change ("dilatation"):

$$e = \Delta V / V_0 =$$

- Strain-Energy Density (for Plane Stress)
 - 1. Work done by the force on x-face and y-face:

$$\frac{1}{2}(\sigma_x bc)(a\varepsilon_x) + \frac{1}{2}(\sigma_y ac)(b\varepsilon_y)$$
$$= \frac{abc}{2}(\sigma_x \varepsilon_x + \sigma_y \varepsilon_y)$$

2. Strain energy density by the normal stresses:

$$u_1 = \frac{1}{2} \big(\sigma_x \varepsilon_x + \sigma_y \varepsilon_y \big)$$

3. Strain energy density associated with the shear stresses:

$$u_2 = \frac{\tau_{xy}\gamma_{xy}}{2}$$

4. Strain energy density in plane stress:

$$u = \frac{1}{2} \big(\sigma_x \varepsilon_x + \sigma_y \varepsilon_y + \tau_{xy} \gamma_{xy} \big)$$

5. Using Hooke's law, the strain energy density can be alternatively described as

$$u = \frac{1}{2E} \left(\sigma_x^2 + \sigma_y^2 - 2\nu\sigma_x\sigma_y \right) + \frac{\tau_{xy}^2}{2G}$$
$$u = \frac{E}{2(1-\nu^2)} \left(\varepsilon_x^2 + \varepsilon_y^2 + 2\nu\varepsilon_x\varepsilon_y \right) + \frac{G\gamma_{xy}^2}{2}$$

• **Example 7-7**: Consider a rectangular plate with thickness t = 7mm under plane stress (biaxial) condition. The readings of the gages *A* and *B* give $\varepsilon_x = -0.00075$ and $\varepsilon_y =$ 0.00125. E = 73 GPa and v = 0.33. Find the stresses σ_x and σ_y and the change Δt in the thickness. Find the volume change (or

dilatation) e and the strain energy density u for the plate.

7.7 Plane Strain

- Plane Strain Versus Plane Stress
 - 1. Recall "plane stress" condition:

 $\sigma_z=0 \quad \tau_{xz}=0 \quad \tau_{yz}=0$

2. "Plane strain" condition:

 $\varepsilon_z = 0$ $\gamma_{xz} = 0$ $\gamma_{yz} = 0$

- 3. Under ordinary conditions, plane stress and strain (do/do not) occur simultaneously.
- 4. The following exceptional cases of plane stress = plain strain (why?)
 - 1) Plane stress with $\sigma_x = -\sigma_y$
 - 2) Zero Poisson effect, i.e. v = 0
- Transformation Equations for Plane Strain
 - 1. Transformation equations (Proof in Textbook)

$$\varepsilon_{x_1} = \frac{\varepsilon_x + \varepsilon_y}{2} + \frac{\varepsilon_x - \varepsilon_y}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta$$
$$\frac{\gamma_{x_1y_1}}{2} = -\frac{\varepsilon_x - \varepsilon_y}{2} \sin 2\theta + \frac{\gamma_{xy}}{2} \cos 2\theta$$

- 2. Sum of strains is conserved, i.e. $\varepsilon_{\chi} + \varepsilon_{y} = \text{const}$
- 3. Principal strains

$$\tan 2\theta_p = \frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y}$$
$$\varepsilon_{1,2} = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}$$

4. Maximum shear strains and corresponding normal strains

$$\frac{\gamma_{\max}}{2} = \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}$$
$$\varepsilon_{\text{aver}} = \frac{\varepsilon_x + \varepsilon_y}{2}$$

5. Mohr's circle for strains (\rightarrow)

2

6. Applications of transformation equations: one can use transformation equations for plane strain for plane stress conditions (and vice versa) because ε_z does not affect the strains

⊙ Strain Measurements

- Electrical-resistance strain gage measures n_____ strain in t_____ directions with 45° angle differences (why?)
- 2. How it works: electrical resistance of wire is altered when it stretches or shortens

(a) 45° strain gages three-element rosette

- (b) Three-element strain-gage rosettes prewired
- **Example 7-8**: Consider a plane strain condition with $\varepsilon_x = 340 \times 10^{-6}$, $\varepsilon_y = 110 \times 10^{-6}$, $\gamma_{xy} = 180 \times 10^{-6}$. Determine (a) strains at $\theta = 30^{\circ}$, (b) principal strains, and (c) maximum shear strains.

• **Example 7-9**: Explain how to obtain strains ε_{x_1} , ε_{y_1} and $\gamma_{x_1y_1}$ associated with an angle θ from the gage readings ε_a , ε_b and ε_c .

