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CHAPTER 9. HEALTH DIAGNOSTICS AND PROGNOSTICS 
 
 
9.1 Introduction 

Last several decades, tremendous advance has been made on the physics-based 
analysis and design under uncertainties. However, it is still difficult for the physics-
based analysis and design to deal with system failures with multiple failure mechanisms, 
complex physics-of-failure, and/or complicated joint behaviors. To overcome the 
difficulties of physics-based approaches, sensor-based approach has been emerged 
and actively engaged to promote life prediction, reliability analysis, and maintenance. 
Basic elements of sensor-based approach are shown in Figure 29. 

 

Figure 29: Basic Elements of Sensor-Based Risk Management  
 
Diagnostics – The ability to detect and classify fault conditions. 
 
Prognostics – The capability to provide early detection of a possible failure condition 
and to manage and predict the progression of this fault condition to component failure. 
 
Maintenance: 

Corrective Maintenance (CM): Action after failure 
Preventive Maintenance (PM): Time-based action 
Condition-Based Maintenance (CBM): Action if needed 
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Figure 30: Cost Associated to Maintenance Strategies  

 
 

Health diagnostics and prognostics are very useful to analyze health condition, to 
predict remaining useful life (RUL), and to make cost-effective maintenance action for 
large-scale systems, such as power plants, nuclear reactors, wind turbine generators, 
solar power systems, etc. 
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9.2 Signal Processing 
Signal Processing can be any computer operation or series of operations performed on 
data to get insightful information. Usually, sensory data will be processed in either time 
domain, or frequency domain, and sometime in joint time-frequency domain to show 
extract the data feature.  
 
9.2.1 Matlab Signal Processing Block-Set 

The Signal Processing Blockset is a tool for digital signal processing algorithm 
simulation and code generation. It enables you to design and prototype signal 
processing systems using key signal processing algorithms and components in the 
Simulink® block format.  Figure 31 shows the Library contained for signal processing 
block-set library (Type “dsplib” in the Matlab command window to open this library). 
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Figure 31: Matlab Signal Processing Block-Set Library  

 
9.2.2 Time Domain Data Processing 

Different statistics tools can be applied to time domain sensory signals to acquire data 
features, for example:  
Distribution Fitting: find the best distribution fit of the input data 
Histogram: generate histogram of input or sequence of inputs 
Autocorrelation: compute autocorrelation of vector inputs 
Correlation: compute cross-correlation of two inputs  
Max. /Min.: find max. /Min. values in an input or sequence of inputs 
Mean: find mean value of an input or sequence of inputs 
RMS: compute root-mean-square (RMS) value of an input or sequence of inputs 
Sort: Sort input elements by value  
Standard Deviation: find standard deviation of an input or sequence of inputs 
Variance: Compute variance of an input or sequence of inputs   
 
Example: Building the following data processing block diagram as shown in Fig. 32, 
when the sinusoid signal, as shown in Fig. 33(a) is being processed, the RMS signal in 
Fig. 33(b) can be obtained. RMS signals are usually used to detect the changes of 
machine vibrations. 
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Figure 32: Signal Processing Example: RMS block diagram  

 
 

     
(a)                                                                         (b) 

Figure 33: Sample Sinusoid Signal (a) and the RMS signal (b)  
 
 
9.2.3 Frequency Domain Data Processing 

When it is not clear of the data feature in time domain, usually we will transform the 
signal into frequency domain.  

FFT 
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The Fourier transform transforms a time domain signal into a frequency domain 
representation of that signal. This means that it generates a description of the 
distribution of the energy in the signal as a function of frequency. This is normally 
displayed as a plot of frequency (x-axis) against amplitude (y-axis) called a spectrum. In 
signal processing the Fourier transform is almost always performed using an algorithm 
called the Fast Fourier Transform (FFT).  

Example: FFT 

t = 0:0.001:0.6; 
x = sin(2*pi*50*t)+sin(2*pi*120*t)+sin(2*pi*200*t); 
y = x + randn(size(t)); 
figure(1) 
subplot(2,1,1) 
plot(1000*t(1:50),y(1:50)) 
xlabel('Time (Milli-Seconds)') 
ylabel('Signal with Random Noise') 
 
subplot(2, 1, 2) 
Y = fft(y, 512); 
Fy = Y.* conj(Y) / 512; 
f = 1000*(0:256)/512; 
plot(f, Fy(1:257)) 
xlabel('frequency (Hz)'); 
ylabel('Frequency Content of Signal'); 
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Figure 34: Sample Time Doman Signal (a) and Frequency Doman Signal (b)  

* You can also build a FFT block Diagram to do this example. 

 
9.2.4 Joint Time-Frequency Domain Analysis 

There is a tradeoff between resolution in frequency and resolution in time. Good 
frequency resolution implies poor time resolution and good time resolution implies poor 
frequency resolution.  Although frequency-domain representations such as the power 
spectrum of a signal often show useful information, the representations don’t show how 
the frequency content of a signal evolves over time.  

Joint Time-Frequency Analysis (JFTA) is a set of transforms that maps a one-
dimensional time domain signal into a two-dimensional representation of energy 
versus time and frequency. JTFA shows the frequency content of a signal and the 
change in frequency with time.  
There are a number of different transforms available for JTFA. Each transform type 
shows a different time-frequency representation. The Short Time Fourier Transform 
(STFT) is the simplest JTFA transform. For the STFT, you apply FFT repeatedly to short 
segments of a signal at ever-later positions in time. You can display the result on a 3-D 
graph or a so-called 2-D 1/2 representation (the energy is mapped to light intensity or 
color values). 
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The STFT technique uses FFT and suffers from an inherent coupling between time 
resolution and frequency resolution as mentioned earlier (increasing the first decreases 
the second, and vice versa). Other JTFA methods and transforms can yield a more 
precise estimate of the energy in a given Frequency-Time domain. Some options include:  

· Gabor spectrogram 
· Wavelet transform 
· Wigner distribution 
· Cohen class transforms 

 
9.3 Health Monitoring 
The process of implementing a damage detection strategy for engineering structures is 
referred to as Structural Health Monitoring (SHM). The SHM process involves the 
observation of a system over time using periodically sampled dynamic response 
measurements from an array of sensors, the extraction of damage-sensitive features 
from these measurements, and the statistical analysis of these features to determine the 
current state of system health. For long term SHM, the output of this process is 
periodically updated information regarding the ability of the structure to perform its 
intended function in light of the inevitable aging and degradation resulting from 
operational environments.  
The SHM problem can be addressed in the context of a statistical pattern recognition 
paradigm, which includes four-step process: (i) Operational evaluation, (ii) Data 
acquisition, normalization and cleansing, (iii) Feature extraction and information 
condensation, and (iv) Statistical model development for feature discrimination. 

· Operational evaluation 

Operational evaluation attempts to answer the following four questions regarding the 
implementation of a damage identification capability.  

a) What are the life-safety and/or economic justification for performing SHM? 
b) How is damage defined for the system being investigated and, for multiple 

damage possibilities, which cases are of the most concern?  
c) What are the conditions, both operational and environmental, under which the 

system to be monitored functions? 
d) What are the limitations on acquiring data in the operational environment?  

 
· Data acquisition, normalization and cleansing 

The data acquisition portion of the SHM process involves selecting the excitation 
methods, the sensor types, number and locations, and the data acquisition/storage 
/transmittal hardware. 

As data can be measured under varying conditions, the ability to normalize the data 
becomes very important to the damage identification process. One of the most common 
procedures is to normalize the measured responses by the measured inputs. 
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Data cleansing is the process of selectively choosing data to pass on to or reject from the 
feature extraction process. Signal processing techniques such as filtering and re-
sampling can be used as data cleansing procedures. 

· Feature extraction and information condensation 

The area of the SHM process that receives the most attention in the technical literature 
is the data feature extraction that allows one to distinguish between the undamaged 
and damaged structure. Inherent in this feature selection process is the condensation of 
the data. The best features for damage identification are, again, application specific. 

One of the most common feature extraction methods is based on correlating measured 
system response quantities, such a vibration amplitude or frequency, with the first-hand 
observations of the degrading system.  

Another method of developing features for damage identification is to apply engineered 
flaws, similar to ones expected in actual operating conditions, to systems and develop an 
initial understanding of the parameters that are sensitive to the expected damage. The 
flawed system can also be used to validate that the diagnostic measurements are 
sensitive enough to distinguish between features identified from the undamaged and 
damaged system. The use of analytical tools such as experimentally-validated finite 
element models can be a great asset in this process. In many cases the analytical tools 
are used to perform numerical experiments where the flaws are introduced through 
computer simulation.  

Damage accumulation testing, during which significant structural components of the 
system under study are degraded by subjecting them to realistic loading conditions, can 
also be used to identify appropriate features. This process may involve induced-damage 
testing, fatigue testing, corrosion growth, or temperature cycling to accumulate certain 
types of damage in an accelerated fashion. Insight into the appropriate features can be 
gained from several types of analytical and experimental studies as described above and 
is usually the result of information obtained from some combination of these studies. 

 
The operational implementation and diagnostic measurement technologies needed to 
perform SHM produce more data than traditional uses of structural dynamics 
information. A condensation of the data is advantageous and necessary when 
comparisons of many feature sets obtained over the lifetime of the structure are 
envisioned. Also, because data will be acquired from a structure over an extended period 
of time and in an operational environment, robust data reduction techniques must be 
developed to retain feature sensitivity to the structural changes of interest in the 
presence of environmental and operational variability. To further aid in the extraction 
and recording of quality data needed to perform SHM, the statistical significance of the 
features should be characterized and used in the condensation process. 
 
· Statistical model development 

Statistical model development is concerned with the implementation of the algorithms 
that operate on the extracted features to quantify the damage state of the structure. The 
algorithms used in statistical model development usually fall into two categories: 
supervised learning and unsupervised learning. When data are available from 
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both the undamaged and damaged structure, the statistical pattern recognition 
algorithms fall into the general classification referred to as supervised learning. Group 
classification and regression analysis are categories of the supervised learning 
algorithms. Unsupervised learning refers to algorithms that are applied to data not 
containing examples from the damaged structure. Outlier or novelty detection is the 
primary class of algorithms applied in unsupervised learning applications. All of the 
algorithms analyze statistical distributions of the measured or derived features to 
enhance the damage identification process. 
 
9.4 Health Prognostics 

Real-time diagnosis and prognosis which interprets data acquired by smart sensors 
and distributed sensor networks, and utilizes these data streams in making critical 
decisions provides significant advancements across a wide range of application. Figure 
35 shows a typical paradigm of the sensor-based life and reliability prognostics, which 
utilizes the sensory signal to produce the system degradation signal through the signal 
processing, and then the diagnostics of the system current health condition and further 
predict the system Residual Useful Life (RUL) and reliability will be carried out based 
on the system degradation signals. Uncertainties for sensory signal noise, data 
processing error and prediction variability are considered in this process. Technical 
approaches to system sensor-based life and reliability prognostics can be categorized 
broadly into model-based approaches and data-driven approaches. 
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Figure 35: Sensor-Based Life and Reliability Prognostics  
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Figure 36: Procedures of Health Prognostics 

 
· Model-Based Prognostics 

Model-based prognostic approaches attempt to incorporate physical understanding 
(physical models) of the system into the estimation of remaining useful life (RUL). 
Different stochastic degradation models have been investigated in the literature, to 
model various degradation phenomena of systems or components.  
Real-time degradation model parameters updating with evolving sensory signals is a 
challenge of model-based prognostic approaches. Bayesian updating techniques are 
commonly used for this purpose. Table 1 describes a Markov-Chain Monte Carlo 
(MCMC) method for non-conjugate Bayesian updating. 
 
Example:  An exponential degradation model 

2
2

0( ) exp( ( ) )
2i i i iS t S t t t sd a b e= + × + + -  

where S(ti) represents the degradation signal at time ti; S0 is a known 
constant;  d, a, and b  are stochastic model parameters and e represents the 
random error term which follows normal distribution with zero mean and s2 deviation. 
Figure 37 shows the updating of this model and corresponding RUL. 
 

 
Figure 37: Model and RUL updating  

 
· Data-Driven Prognostics 

Data-driven prognostic techniques utilize monitored operational data related to system 
health. The major advantage of data driven approaches is that they can be deployed 
quicker and cheaper compared to other approaches, and that they can provide system-
wide coverage. The principal disadvantage is that data driven approaches may have 
wider confidence intervals than other approaches and that they require a substantial 
amount of data for training.  

Sensory 
signal 

Residual life 
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Data and information updating schemes 
a) Numerical Methods 

Linear Regression  
Kalman Filters 
Particle Filters 
 

Machine learning techniques 
b) Artificial Intelligence Based Techniques  

Artificial Neural Networks  
Decision Tree Method 
Novelty Detection Algorithms 
Support Vector Machine (SVM) 
Relevance Vector Machine (RVM) 
Fuzzy Logic 
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Homework 1: Sources of uncertainty in a vibration problem 
Let us consider an undamped system with a lumped mass and spring.  The 
motion behavior of the system can be ideally modeled using a second-order 
ordinary differential equation as 

 ( ) ( ) 0; (0) 15, (0) 0my t ky t y y¢¢ ¢+ = = =  

where m and k are the mass and spring coefficient of the system, respectively.  
According to the manufacturer of the system, the mass and spring coefficient are 
believed to be 10 kg and 1000 N/m, respectively.  At time t = 1 second, ten 
experimental tests show a set of y data as (4.4456, 4.2094, 4.3348, 4.2441, 
4.1768, 4.1756, 4.4057, 4.2448, 4.2303, 4.0952).  Answer the following questions: 
 
(1) Identify all possible sources of uncertainties involved in this problem. 
(2) Please explain why experimentally measured y values are random. 
(3) Also, provide possible reasons for what causes the difference between 
experimental and analytical y values. 

  



446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong 

2017 Copyright ã reserved by Mechanical and Aerospace Engineering, Seoul National University 172 
 

Homework 2: Probability Distribution & Statistical Moments 
Let us recall the example of fatigue tests.  The sample data can be obtained about 
the physical quantities in the damage model below. 

  

Let us consider a 30 data set (Table 5) for the fatigue ductility coefficient (ef¢) and 
exponent (c) used in the strain-life formula shown above.  Answer the following 
questions: 

(1) Construct the covariance matrix and find out the coefficient of correlation 
using the data set given in Table 5. 

(2) Use normal, weibull, and lognormal distributions. Find out the most suitable 
parameters of three distributions for the fatigue ductility coefficient (ef¢) and 
exponent (c) using the MLE method. 

(3) Find out the most suitable distributions for the data set (ef¢, c) using the chi-
square GOF. 

(4) Verify the results with the graphical methods (histogram and probability 
plots). 

 

 
Figure 8: Statistical Correlation 

 
Table 5: Data for the fatigue ductility coefficient and exponent 

(ef¢, c) (ef¢, c) (ef¢, c) (ef¢, c) (ef¢, c) 
0.022 0.289 0.253 0.466 0.539 0.630 0.989 0.694 1.611 0.702 
0.071 0.370 0.342 0.531 0.590 0.621 1.201 0.690 1.845 0.760 
0.146 0.450 0.353 0.553 0.622 0.653 1.304 0.715 1.995 0.759 
0.185 0.448 0.354 0.580 0.727 0.635 1.388 0.717 2.342 0.748 
0.196 0.452 0.431 0.587 0.729 0.645 1.392 0.716 3.288 0.821 
0.215 0.460 0.519 0.655 0.906 0.703 1.426 0.703 6.241 0.894 

 

( ) ( )2 2
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 Homework 3: Reliability Function 
Supposed it is desired to estimate the failure rate of an electronic component.  A 
test can be performed to estimate its failure rate.  A target life is set to 2000 
minutes.  R(t) = P(T > 2000 minutes) Answer the following questions: 

(1) Construct a histogram of TTF. 

(2) Find out a probability distribution model and its parameters, fT(t), for the TTF 
data. 

(3) Construct a reliability function. 

(4) Determine MTTF, standard deviation of TTF, and hazard function. 

(5) Compare the reliabilities from nf/N from the TTF data and the reliability 
function when t = 2000 where nf is the number of failed components and N (= 
100) is the total components. 

 
Table 5: Data for 100 Electronics Time-To-Failure (TTF) [minute] 

1703.2 1071.4 2225.8 1826.5 1131 2068.9 1573.5 1522.1 1490.7 2226.6 
1481.1 2065.1 1880.9 2290.9 1786.4 1867.2 1859.1 1907.5 1791.8 1871 

1990.4 2024.1 1688.6 1962.7 2191.7 1841 1814.1 1918.1 2237.5 1396.8 
1692.8 707.2 2101.3 2165.4 1975.2 1961.6 2116.7 1373 1798.8 2248.4 
1872.3 1597.8 1865.1 742.8 1436.7 1380.8 2258.2 1960 2182.8 1772.7 

2003.6 1589.4 1988.3 1874.9 1859 2051.9 1763 1854.6 1974.7 2289.9 
1945.7 1774.8 1579.6 1430.5 1855 1757.9 1029.3 1707.2 1864.7 1964.8 
1719.4 1565.2 1736.8 1759.4 1939.4 2065.7 2258.5 2292.8 1452.5 1692.2 
2120.7 1934.8 999.4 1919.9 2162.4 2094.9 2158.2 1884.2 1748.7 2260.3 
1040.8 1535 1283.4 2267.7 2100.3 2007.9 2499.8 1902.9 1599.6 1567.5 

 

(6) Attempt to update the TTF mean value (q) with aggregation of 100 TTF data 
using Bayesian inference.   Assume that the TTF follows a normal distribution 
with the standard deviation (s = 315.16) and the prior distribution of q  be 
P(q) = N( = 1750.0, = 5002). 

 

u 2t
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Homework 4: Reliability Analysis 

Consider the following simply supported beam subject to a uniform load, as 
illustrated in Fig. 19.  Suppose L = 5 m and w=10 kN/m. 
 
 
 
 
 
 
 
 

 
 
 

Figure 19: Simply Supported Beam 
 
Random Vector: 

  

The maximum deflection of the beam is shown as 

  

Using Monte Carlo simulation, first-order expansion method, MPP-based 
method (HL-RF) and Eigenvector Dimension Reduction (EDR) method, 
determine the PDF (or CDF) of the maximum deflection and estimate its 
reliability when the failure is defined as Y < yc = -3´10-3m.  Make your own 
discussion and conclusion. 

 
 

1 1

2 2

7 5
1

4 3
2

( 3 10 , 10 )
( 10 , 10 )

X X

X X

EI X N
w X N

m s
m s

= = ´ =

= = =

�

�

4
2

1 2
1

5( , )
384

= = -
X LY g X X

X

w per unit length 

L 

EI 



446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong 

2017 Copyright ã reserved by Mechanical and Aerospace Engineering, Seoul National University 175 
 

Homework 5: Bayesian Reliability Analysis 

Consider the following simply supported beam subject to a uniform load, as 
illustrated in Fig. 19.  Suppose L = 5 m and w=10 kN/m. 
 
 
 
 
 
 
 
 

 
 
 

Figure 19: Simply Supported Beam 
 
Random Vector: 

  

The maximum deflection of the beam is shown as 

  

The X2 is an epistemic uncertainty.  For X2, it is assumed that 10 data sets are 
gradually obtained at different times.  Using MPP-based method (HL-RF) 
and Eigenvector Dimension Reduction (EDR) method, determine the 
reliability of the maximum deflection constraint, P(Y(X1) ³ yc = -3´10-3m), at 
all individual X2 points in the table.  Predict reliability in a Bayesian sense 
using the first 10 data set and gradually update the reliability using the 
second and third data sets.  Make your own discussion and conclusion, and 
attach your code used for Bayesian reliability analysis. 

 
Table 9 Three sets of 10 data for X2 (´104) 

 
Set1       1.0000    0.8126    1.0731    1.0677    0.9623    0.9766    1.1444    1.0799    1.0212    0.9258 
Set2      0.9682    1.0428    1.0578    1.0569    0.9704    1.0118    0.9649    1.0941    1.0238    1.1082 
Set3      1.1095    1.0896    1.0040    0.9744    0.8525    1.0315    1.0623    0.9008    0.8992    0.9869 
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Homework 6: Design Optimization of Crashworthiness Problem 
A vehicle side impact problem is considered for design optimization.  All the 
design variables are shown in Table 11.  In this example, the abdomen load is 
treated as an objective function with nine constraints defined in Table 12.   

 
 

Table 11: Properties of design variables 
(X10 and X11 have “0” value) 

 
 

Table 12: Design variables and their bounds 

 
 
Responses: 
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OBJ= (1.16-0.3717*x(2)*x(4)-0.00931*x(2)*x(10)-
0.484*x(3)*x(9)+0.01343*x(6)*x(10));  
 
G1 = (28.98+3.818*x(3)-4.2*x(1)*x(2)+0.0207*x(5)*x(10)+6.63*x(6)*x(9)-
7.7*x(7)*x(8)+0.32*x(9)*x(10))-32;  
 
 G2= (33.86+2.95*x(3)+0.1792*x(10)-5.057*x(1)*x(2)-11*x(2)*x(8)-
0.0215*x(5)*x(10)-9.98*x(7)*x(8)+22*x(8)*x(9))-32;  
 
 G3 = (46.36-9.9*x(2)-12.9*x(1)*x(8)+0.1107*x(3)*x(10))-32;  
 
G4 = (0.261-0.0159*x(1)*x(2)-0.188*x(1)*x(8)-
0.019*x(2)*x(7)+0.0144*x(3)*x(5)+0.0008757*x(5)*x(10)+0.08045*x(6)*x(9)+0.00
139*x(8)*x(11)+0.00001575*x(10)*x(11))-0.32;  
 
G5 = (0.214+0.00817*x(5)-0.131*x(1)*x(8)-0.0704*x(1)*x(9)+ 0.03099*x(2)*x(6)-
0.018*x(2)*x(7)+0.0208*x(3)*x(8)+ 0.121*x(3)*x(9)-
0.00364*x(5)*x(6)+0.0007715*x(5)*x(10)-
0.0005354*x(6)*x(10)+0.00121*x(8)*x(11)+0.00184*x(9)*x(10)- 0.018*x(2).^2)-
0.32;  
 
G6 = (0.74-0.61*x(2)-0.163*x(3)*x(8)+0.001232*x(3)*x(10)-
0.166*x(7)*x(9)+0.227*x(2).^2)-0.32;  
 
G7 = (4.72-0.5*x(4)-0.19*x(2)*x(3)-
0.0122*x(4)*x(10)+0.009325*x(6)*x(10)+0.000191*x(11).^2)-4;  
 
G8 = (10.58-0.674*x(1)*x(2)-1.95*x(2)*x(8)+0.02054*x(3)*x(10)-
0.0198*x(4)*x(10)+0.028*x(6)*x(10))-9.9;  
 
G9 = (16.45-0.489*x(3)*x(7)-0.843*x(5)*x(6)+0.0432*x(9)*x(10)- 
0.0556*x(9)*x(11)-0.000786*x(11).^2)-15.7; 

 
The Design Optimization is formulated as 

9

Minimize ( )
Subject to   ( ) 0, 1, ,9

  ,
j

L U

f
g j

R

£ =

£ £ Î

x
x

x x x x

L  

 
Solve this optimization problem using the sequential quadratic programming 
(use the matlab function, ‘fmincon’, in Matlab).  Make your own discussion 
and conclusion. 
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Homework 7: RBDO of a Crashworthiness Problem 
 
A vehicle side impact problem is considered for design optimization.  All the 
design variables are shown in Table A.  In this example, the abdomen load is 
treated as an objective function with nine constraints defined in Table B.   
 

Table A: Properties of random and design variables 
(X10 and X11 have “0” value) 

Random  
Variables 

Distr.  
Type 

Std 
 Dev. dL d dU 

X1  Normal 0.050 0.500 1.000 1.500 
X2  Normal 0.050 0.500 1.000 1.500 
X3  Normal 0.050 0.500 1.000 1.500 
X4  Normal 0.050 0.500 1.000 1.500 
X5  Normal 0.050 0.500 1.000 1.500 
X6   Normal 0.050 0.500 1.000 1.500 
X 7   Normal 0.050 0.500 1.000 1.500 
X8    Lognorm 0.006 0.192 0.300 0.345 
X9    Lognorm 0.006 0.192 0.300 0.345 
X10    Normal 10.0 X10  and X11 are not 

design variables X11   Normal 10.0 
 
 

Table B: Design variables and their bounds 

 
 
The Design Optimization is formulated as 

( )
9

Minimize ( )

Subject to   ( ) 0 99%, 1, ,9

  ,
j
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Solve the RBDO optimization problem using the matlab function, ‘fmincon’, 
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in Matlab) starting at the initial design (d1 to d7 = 1.000, d8 = d9 = 0.300) and 
deterministic optimum design (obtained in the previous homework).  Make 
your own discussion and conclusion. 
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