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10.1 Statement of the Third Law

• The third law of thermodynamics is concerned with the behavior of systems in 

equilibrium as their temperature approaches zero

• The definition of entropy given by

𝑆 = 0׬
𝑇 𝑑𝑄𝑟

𝑇
+ 𝑆0 (10.1)

Is incomplete because of the undetermined additive constant 𝑆0, the entropy at 

absolute zero.

• In this chapter we shall introduce a principle that will enable us to determine 𝑆0.
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• Gibbs-Helmholtz equation

𝐺 = 𝐻 + 𝑇(
𝜕𝐺

𝜕𝑇
)𝑃 (10.2)

• If this relation is applied to the initial and final states of a system undergoing 

an isothermal process, it takes the form

∆𝐺 = ∆𝐻 + 𝑇[
𝜕(∆𝐺)

𝜕𝑇
]𝑃 (10.3)

• This shows that the change in enthalpy and the change in the Gibbs function 

are equal at T=0 for an isobaric process.

lim
𝑇→0

[
𝜕 ∆𝐺

𝜕𝑇
]𝑃 = 0 lim

𝑇→0
[
𝜕 ∆𝐻

𝜕𝑇
]𝑃 = 0 (10.4)
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• Equation (10.4) is illustrated in Figure 10.1.

Figure 10.1 Variation of ∆𝐺 and ∆𝐻 in the vicinity of absolute zero.
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• We may write the equation (10.4) as

lim
𝑇→0

[
𝜕 𝐺2−𝐺1

𝜕𝑇
]𝑃 = lim

𝑇→0
[(
𝜕𝐺2

𝜕𝑇
)𝑃 − (

𝜕𝐺1

𝜕𝑇
)𝑃= 0 (10.5)

where the subscripts 1 and 2 refer to the initial and final states, respectively.

• From the reciprocity relation, we have the Nernst formulation of the third law.

lim
𝑇→0

𝑆1 − 𝑆2 = 0 (10.6)

All reactions in a liquid or solid in thermal equilibrium take place 

with no change of entropy in the neighborhood of absolute zero.

10.1 Statement of the Third Law

𝐺 = 𝑈 − 𝑇𝑆 + 𝑃𝑉 → 𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 → 𝑆 = −
𝜕𝐺

𝜕𝑇
𝑃

*



6/10  

• Planck extended Nernst’s hypothesis by assuming that it holds for 𝐺1 and 𝐺2
separately. 

lim
𝑇→0

𝐺(𝑇) = lim
𝑇→0

𝐻(𝑇) (10.7)

𝑇(
𝜕𝐺

𝜕𝑇
)𝑃 −𝛷 = 0 (10.9)

lim
𝑇→0

(
𝜕𝐺

𝜕𝑇
)𝑃 = lim

𝑇→0
(
𝜕𝐻

𝜕𝑇
)𝑃 (10.8)

• For convenience, we temporarily introduce a variable Φ ≡ 𝐺 − 𝐻. 

Equation (10.2) then becomes

• Adding the term −𝑇(𝜕𝐻/𝜕𝑇)𝑃 to both sides of Equation (10.9), we get

T(
𝜕Φ

𝜕T
)P −Φ = −T(

𝜕H

𝜕T
)P (10.10)
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• By L’Hopital’s rule,

lim
𝑇→0

(
𝜕𝐻

𝜕𝑇
)𝑃 = 0 (10.11)

• Finally, by Equation (10.8), we obtain the result

lim
𝑇→0

(
𝜕𝐺

𝜕𝑇
)𝑃 = 0 (10.12)

• Since (
𝜕𝐺

𝜕𝑇
)𝑃 = −𝑆, it follows the Planck’s statement of the third law.

lim
𝑇→0

𝑆 = 0 (10.13)

The entropy of a true equilibrium state of a system at absolute zero is zero
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10.2 Equivalence of the Statements

• By considering the adiabatic reversible process, we can show in a few steps 

the equivalence of two statements of the third law.

∆𝑆0 ≡ 𝑆02 − 𝑆01 = 0 (10.14)

where the naught subscript refers to T=0.

• We can examine the process in the entropy-temperature plane.

𝑆 = 𝑆0 + 0׬
𝑇 𝑑𝑄𝑟

𝑇
(10.15)

𝑆 = 𝑆0 + 0׬
𝑇
𝐶
𝑑𝑇

𝑇
(10.16)
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10.2 Equivalence of the Statements

Figure 10.2 Entropy-temperature diagram for a hypothetical cooling process in which 𝑆1 < 𝑆2. 
(The entropy curve for the initial value of the varied parameter lies below that of the final value)

• S increases with T according some power law, as Figure 10.2 reflects.
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10.2 Equivalence of the Statements

Figure 10.3 Entropy-temperature diagram for an actual cooling process.

lim
𝑇→0

𝑆 = 0

• The Nernst theorem states that

The absolute zero is unattainable due to the indefinitely increasing number of 

steps required to achieve a given temperature reduction as absolute zero is 

approached


