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11.1  Basic Assumption

Basic assumptions of the kinetic theory

1) Large number of molecules

𝑁𝐴 = 6.02 × 1026 molecules per kilomole

2) Identical molecules which behave like hard spheres

3) No intermolecular forces except when in collision
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11.1  Basic Assumption

Basic assumptions of the kinetic theory

4) Collisions are perfectly elastic

5) Uniform distribution throughout the container

n =
N

V
d𝑁 = ndV

Average # of molecules per unit volume
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11.1  Basic Assumption

θ

ϕ

r dθ

r sin θ d𝜙

r

6) Equal probability on the direction of molecular velocity

average # of intersections of velocity vectors per unit area

𝑁

4𝜋𝑟2

the # of intersections in dA

𝑁

4𝜋𝑟2
d𝐴

= d2Nθϕ =
Nsin θ dθdϕ

4π
, d2nθϕ =

n sin θ dθdϕ

4𝜋

# of molecules having velocities in a direction (θ<    <θ+dθ) 

(ϕ<    <ϕ+dϕ)

𝑟2 sin θ dθdϕ
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11.1  Basic Assumption

7) Magnitude of molecular velocity : 0 ~ ∞

c (speed of light)

dN𝑣 : # of molecules with specified speed (v<    <v+dv)
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11.1  Basic Assumption

• Let dN𝑣 as # of molecules with specified speed (v<    <v+dv)

• 0
∞
dN𝑣 = N

• Mean speed is ҧ𝑣 =
1

N
0
∞
𝑣dN𝑣

• Mean square speed is 𝑣2 =
1

N
0
∞
𝑣2dN𝑣

• Square root of 𝑣2 is called the root mean square or rms speed:

𝑣𝑟𝑚𝑠 = 𝑣2

• The n-th moment of distribution is defined as 

𝑣𝑛 =
1

N
0
∞
𝑣𝑛dN𝑣
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11.2  Molecular Flux

• # of molecules of a gas that strike a surface per unit area and unit time

• Molecules coming from particular direction θ, ϕ with specified speed v in time dt

→ θϕ𝑣 collision   θ<    <θ+dθ
ϕ<    <ϕ+dϕ
v<    <v+dv

• # of θϕ𝑣 collisions with dA dt

= θϕ𝑣 molecules in 

= θϕ molecules with speed v

Fig. Slant cylinder geometry used to calculate 

the number of molecules that strike the area dA in time dt.
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11.2  Molecular Flux

• How many molecules in 

dn𝑣 : # density between speed (v<    <v+dv)

d3nθϕ𝑣 = dn𝑣 ∙
𝑑𝐴

𝐴
= dn𝑣

sin θdθdϕ

4𝜋

dV = dA (vdt cosθ )

• # of θϕ𝑣 molecules in the cylinder

d3nθϕ𝑣𝑑𝑉 = 𝑑𝐴 (𝑣dt cosθ )dn𝑣
sin θdθdϕ

4𝜋

• # of collisions per unit area and time

d3nθϕ𝑣dV

dA dt
=

1

4π
𝑣dn𝑣sinθcosθdθdϕ

Volume of cylinder
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11.2  Molecular Flux

• Total # of collisions per unit area and time

d3nθϕ𝑣dV

dA dt
= 0

2𝜋
0
𝜋/2

sinθcosθdθdϕ ∙
1

4π
𝑣dn𝑣 =

1

4
𝑣dn𝑣

• Total # of collisions per unit area and time by molecules having all speed

0
∞ 1

4
𝑣dn𝑣 =

1

4
𝑛 ҧ𝑣

Cf. average speed ҧ𝑣 =
σ ത𝑣

𝑁
=

σ𝑁𝑖𝑣𝑖

𝑁
=
σ 𝑛𝑖𝑣𝑖
σ 𝑛𝑖

=
 𝑣d𝑛𝑣

𝑛
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11.3  Gas Pressure and Ideal Gas Law

• Gas pressure in Kinetic theory

Gas pressure is interpreted as impulse flux of particles striking a surface

𝜃 𝜃

𝑚𝑣1 𝑚𝑣2
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11.3  Gas Pressure and Ideal Gas Law

• Perfect elastic 𝑣 = 𝑣′

• Average force exerted by molecules 

F =
d(𝑚𝑣)

dt
= 𝑚 Ԧ𝑎 + ሶ𝑚 Ԧ𝑣

• Momentum change of one molecule (normal component only)

𝑚𝑣cos𝜃 − −𝑚𝑣cos𝜃 = 2𝑚𝑣cos𝜃

• # of θϕ𝑣 collisions for dA, dt

1

4π
𝑣dn𝑣sinθcosθdθdϕ

𝑣 sinθ

𝑣 cos θ

θ θ

ϕ
dA

𝑣
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11.3  Gas Pressure and Ideal Gas Law

• Change in momentum due to θϕ𝑣 collisions in time dt

2𝑚𝑣cos𝜃 ×
1

4π
𝑣dn𝑣sinθcosθdθdϕ

=
1

2π
𝑚𝑣2dn𝑣sinθcos

2θdθdϕdAdt

• Change in momentum in all v collisions 0 < θ ≤
𝜋

2
, 0 < ϕ ≤ 2𝜋

0

𝜋

2 0
2𝜋 1

2π
𝑚𝑣2dn𝑣sinθcos

2θdθdϕ ∙ dAdt

=
1

3
𝑚𝑣2dn𝑣dAdt
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11.3  Gas Pressure and Ideal Gas Law

• Change in momentum from collisions of molecules at all speed

1

3
𝑚𝑣2 dn𝑣 = 𝑑 Ԧ𝐹 ∙ 𝑑𝑡

• Average pressure ത𝑃 =
𝑑 Ԧ𝐹

𝑑𝐴

1

3
𝑚𝑣2 dn𝑣 =

1

3
𝑚𝑛𝑣2 cf. 𝑣2 =

σ 𝑣2

𝑁
=

 𝑣2d𝑛𝑣

𝑛
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11.3  Gas Pressure and Ideal Gas Law

𝑛 =
𝑁

𝑉
, 𝑃 =

1

3

𝑁

𝑉
𝑚𝑣2

𝑃𝑉 =
1

3
𝑁𝑚𝑣2 cf. EOS of an ideal gas PV = n ത𝑅𝑇 = mRT =

N

𝑁𝐴

ത𝑅𝑇 = 𝑁𝑘𝑇

𝑁𝐴 : Avogadro’s number  : 6.02 × 1026 𝑛𝑢𝑚𝑏𝑒𝑟/𝑘𝑚𝑜𝑙𝑒

𝑘𝐵 : Boltzmann constant : 𝑘𝐵 =
ത𝑅

𝑁𝐴
= 1.38 × 10−23𝐽/𝐾

𝑃𝑉 =
1

3
𝑁𝑚𝑣2 = 𝑁𝑘𝑇

1

2
𝑚𝑣2 =

3

2
𝑘𝑇

k: Boltzmann constant
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11.4  Equipartition of Energy

• Equipartition of energy

Because of even distribution of velocity of particles,

𝑣2 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2, 𝑣𝑥

2 = 𝑣𝑦
2 = 𝑣𝑧

2 =
1

3
𝑣2 →

1

2
𝑚𝑣𝑥

2 =
1

2
𝑘𝑇

It can be interpreted that a degree of freedom allocate energy of 1/2 𝑘𝑇
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ത𝐸 = ത𝐸𝑥 + ത𝐸𝑦 + ത𝐸𝑧

=
1

2
𝑚𝑣𝑥

2 +
1

2
𝑚𝑣𝑦

2 +
1

2
𝑚𝑣z

2

ത𝐸𝑥 =
𝑘𝑇

2
, ത𝐸𝑦 =

𝑘𝑇

2
, ത𝐸𝑧 =

𝑘𝑇

2

energy

11.4  Equipartition of Energy
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11.5  Specific Heat

δq = du + δW

U = f ∙
1

2
𝑁𝑘𝑇 f: number of degrees of freedom

u =
U

N
= f ∙

1

2
ത𝑅𝑘𝑇

𝑐𝑣 = ቁ
𝜕𝑢

𝜕𝑇 𝑣
= f ∙

1

2
ത𝑅 (n ത𝑅 = 𝑁𝑘)

𝑐𝑃 =
𝜕ℎ

𝜕𝑇 𝑝
=

𝑓

2
ത𝑅 + ത𝑅 =

(𝑓+2)

2
ത𝑅
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Monatomic 

gas 

Diatomic

gas 

11.5  Specific Heat

negligible

3

7

Near room temperature, rotational or vibrational DOF 

are excited, but not both.

1

2
𝑚𝑣𝑥

2, 
1

2
𝑚𝑣𝑦

2, 
1

2
𝑚𝑣𝑧

2

1

2
𝑚𝑣𝑥

2, 
1

2
𝑚𝑣𝑦

2, 
1

2
𝑚𝑣𝑧

2

1

2
𝐼𝑤𝑥

2, 
1

2
𝐼𝑤𝑦

2, 
1

2
𝐼𝑤𝑧

2

1

2
𝑘𝑥2, 

1

2
𝑚 ሶ𝑥2 no y,z vibration

𝑐𝑝

𝑐𝑣
=
5 + 2

5
= 1.4

𝑐𝑝
𝑐𝑣

=
3 + 2

3
= 1.67

Translational

Rotational

Vibrational
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Triatomic

gas

11.5  Specific Heat

9
CO2 translational 3

rotational 2

vibrational 4

𝑐𝑝
𝑐𝑣

=
7 + 2

7
= 1.28

• Vibration modes of CO2

Bending

Stretch

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj89czt46vTAhWCHZQKHXm_CZcQjRwIBw&url=http://www.wag.caltech.edu/home/jang/genchem/infrared.htm&psig=AFQjCNGzTo3nItvIH9oOUlsaeBdp9Nf4oA&ust=1492528393836803
http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj89czt46vTAhWCHZQKHXm_CZcQjRwIBw&url=http://www.wag.caltech.edu/home/jang/genchem/infrared.htm&psig=AFQjCNGzTo3nItvIH9oOUlsaeBdp9Nf4oA&ust=1492528393836803
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Solid

11.5  Specific Heat

x,y,z direction

𝑘𝑇

2
(kinetic)

𝑘𝑇

2
(potential)

U = 3𝑁𝑘𝑇

cv = 3𝑅(Dulong-Petit Law)


