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Energy and Momentum Methods 

The potential energy of the roller coaster car is converted into kinetic energy as it 

descends the track.  

 

 

 

 

Impact tests are often analyzed by 

using momentum methods 

 

 

 

 

 

 

 



Introduction 

 

 

• Previously, problems dealing with the motion of particles were solved through the 

fundamental equation of motion, 

 

• The current chapter introduces two additional methods of analysis.  

 

• Method of work and energy:  directly relates force, mass, velocity and displacement.  

 

• Method of impulse and momentum:  directly relates force, mass, velocity, and time.  
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Approaches to Kinetics Problems 

 

Forces and Accelerations  Velocities and Displacements  Velocities and Time 

 

 

 

 

 

 

Newton’s Second Law    Work-Energy     Impulse-Momentum 
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13.1A Work of a Force 

 

• Differential vector is the particle displacement. 

• Work of the force is  

 

 

 

 

• Work is a scalar quantity, i.e., it has magnitude and sign 

but not direction. 

• Dimensions of  work are  Units are 
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Work of a Force 

• Work of a force during a finite displacement, 

 
 

• Work is represented by the area under the curve of     

Ft plotted against s. 

• Ft is the force in the direction of the displacement ds 

        Fig.13.2 
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What is the work of a constant force in rectilinear motion? 

 
 

a)  

b) 

c) 

d) 

 

answer b) 

( )1 2 cosU F xα→ = ∆

( )1 2 sinU F xα→ = ∆

1 2U F x→ = ∆

1 2 0U → =



 

Work of the force of gravity, 

 
 

 

• Work of the weight is equal to product of weight W and vertical displacement  y.  

 

• In the figure above, when is the work done by the weight positive? 

a) Moving from y1 to y2  b) Moving from y2 to y1  c) Never  

 

answer b) 
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Magnitude of the force exerted by a spring is proportional 

to deflection, 

 
Work of the force exerted by spring, 
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• Work of the force exerted by spring is positive when x2 < x1, 

i.e., when the spring is returning to its undeformed position. 

• Work of the force exerted by the spring is equal to negative of 

area under curve of F plotted against x, 

 
 

Work of a Force 

 

 
 

As the block moves from A0 to A1, is the work positive or negative? 

( ) xFFU ∆+−=→ 212
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Positive ?   Negative ? 

 

As the block moves from A2 to Ao, is the work positive or negative? 

Positive ?   Negative ? 

 

answer ; negative, positive 



Work of a gravitational force (assume particle M occupies 

fixed position O while particle m follows path shown), 
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Does the normal force do work as the block slides from B to A? 

 

Yes    No       

 

 

 

 

Does the weight do work as the block slides from B to A? 

 

Yes    No 

 

Positive or Negative work? 

 

Answer ; No, Yes, Positive 

 

 



Work of a Force 

 

Forces which do not do work (ds = 0 or cosα  = 0): 

 

• Reaction at frictionless pin supporting rotating body, 

• Reaction at frictionless surface when body in contact moves along surface, 

• Reaction at a roller moving along its track, and 

• Weight of a body when its center of gravity moves horizontally. 

 

 

 

 

 

 

 

 



13.1B Principle of Work & Energy 

Consider a particle of mass m acted upon by force  

 
• Integrating from A1 to A2 , 

 
• The work of the force  is equal to the change in kinetic energy of the particle. 

• Units of work and kinetic energy are the same: 
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13.1.C Applications of the Principle of Work and Energy 

The bob is released from rest at position A1.  

Determine the velocity of the pendulum bob at A2  

using work & kinetic energy. 

 

 

 

• Force  acts normal to path and does no work. 

    
• Velocity is found without determining expression for acceleration and integrating. 

• All quantities are scalars and can be added directly. 

• Forces which do no work are eliminated from the problem. 
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Principle of work and energy cannot be applied to 

directly determine the acceleration of the pendulum 

bob. 

• Calculating the tension in the cord requires 

supplementing the method of work and energy with 

an application of Newton’s second law. 

 

• As the bob passes through A2 , 

 
 

If you designed the rope to hold twice the weight of the bob, what would happen? 
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13.1.D Power and Efficiency 

•    rate at which work is done.  

 

 

 

• Dimensions of power are work/time or force*velocity.  Units for power are 
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Sample Problem 13.1 

An automobile of mass 1000 kg is driven down 

a 5o incline at a speed of 72 km/h when the 

brakes are applied causing a constant total 

breaking force of 5000 N.  

Determine the distance traveled by the 

automobile as it comes to a stop. 

  

STRATEGY:  

• Evaluate the change in kinetic energy. 

• Determine the distance required for the work to equal the kinetic energy change. 

 

 

 

 

 



MODELING and ANALYSIS:  

• Evaluate the change in kinetic energy. 

 
        

• Determine the distance required for the work to equal the 

kinetic energy change. 
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REFLECT and THINK  

• Solving this problem using Newton’s second law would require determining the car’s 

deceleration from the free-body diagram and then integrating this to use the given 

velocity information.  

• Using the principle of work and energy allows you to avoid that calculation. 

 

 

 

 

 

 



Sample Problem 13.2 

Two blocks are joined by an inextensible cable 

as shown.  If the system is released from rest, 

determine the velocity of block A after it has 

moved 2 m.  Assume that the coefficient of 

friction between block A and the plane is mk = 

0.25 and that the pulley is weightless and 

frictionless. 

 

 

STRATEGY:  

• Apply the principle of work and energy separately to blocks A and B. 

• When the two relations are combined, the work of the cable forces cancel.  Solve 

for the velocity. 

 

 



MODELING and ANALYSIS  

• Apply the principle of work and energy separately to 

blocks A and B. 
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• When the two relations are combined, the work of the 

cable forces cancel.  Solve for the velocity. 

  

 

   

               
REFLECT and THINK: 

This problem can also be solved by applying the principle of work and energy to the 

combined system of blocks. 

 When using the principle of work and energy, it usually saves time to choose your system 

to be everything that moves.  
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Sample Problem 13.3 

A spring is used to stop a 60 kg package which is 

sliding on a horizontal surface.  The spring has a 

constant k = 20 kN/m and is held by cables so that 

it is initially compressed 120 mm.  The package has 

a velocity of 2.5 m/s in the position shown and the 

maximum deflection of the spring is 40 mm. 

Determine (a) the coefficient of kinetic friction between the package and surface and (b) 

the velocity of the package as it passes again through the position shown. 

 

STRATEGY:  

• Apply the principle of work and energy between the initial position and the point at 

which the spring is fully compressed and the velocity is zero.  The only unknown in 

the relation is the friction coefficient. 

• Apply the principle of work and energy for the rebound of the package.  The only 

unknown in the relation is the velocity at the final position. 



MODELING and ANALYSIS:  

• Apply principle of work and energy between initial 

position and the point at which spring is fully compressed. 
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*Apply the principle of work and energy for the  

rebound of the package.   

  

 

 
 

REFLECT and THINK: 

You needed to break this problem into two segments. From the first segment you were able to 

determine the coefficient of friction. Then you could use the principle of work and energy to determine 

the velocity of the package at any other location. Note that the system does not lose any energy due 

to the spring; it returns all of its energy back to the package. You would need to design something 

that could absorb the kinetic energy of the package in order to bring it to rest. 
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Sample Problem 13.6 

A 1000 kg car starts from rest at point 1 and moves 

without friction down the track shown. 

Determine: 

a) the force exerted by the track on the car at point 2, 

and b) the minimum safe value of the radius of 

curvature at point 3. 

 

STRATEGY:  

• Apply principle of work and energy to determine velocity at point 2. 

• Apply Newton’s second law to find normal force by the track at point 2. 

• Apply principle of work and energy to determine velocity at point 3. 

• Apply Newton’s second law to find minimum radius of curvature at point 3 such that 

a positive normal force is exerted by the track. 

 

 



MODELING and ANALYSIS:  

a. Apply principle of work and energy to determine 

velocity at point 2. 

 
• Apply Newton’s second law to find normal force by the track at 

point 2. 

 

 

:n nF m a+ ↑ =∑
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b. Apply principle of work and energy to determine 

velocity at point 3. 

 
• Apply Newton’s second law to find minimum radius of 

curvature at point 3 such that a positive normal force is exerted 

by the track. 

 

 

:n nF m a+ ↓ =∑



 
 

 

 
REFLECT and THINK  

This is an example where you need both Newton’s second law and the principle of work 

and energy.  

Work–energy is used to determine the speed of the car, and Newton’s second law is used 

to determine the normal force.  

A normal force of 5W is equivalent to a fighter pilot pulling 5g’s and should only be 



experienced for a very short time. 

 For safety, you would also want to make sure your radius of curvature was quite a bit 

larger than 15 m.  

 

 

Sample Problem 13.7 

The dumbwaiter D and its load have a combined mass of 300 kg, while 

the counterweight C has a mass of 400 kg.  

Determine the power delivered by the electric motor M when the 

dumbwaiter (a) is moving up at a constant speed of  

2.5 m/s and (b) has an instantaneous velocity of 2.5 m/s and an 

acceleration of 1 m/s2, both directed upwards. 

 

 



STRATEGY: 

Force exerted by the motor cable has same direction as the dumbwaiter velocity.  

Power delivered by motor is equal to  FvD, vD = 2.5 m/s. 

• In the first case, bodies are in uniform motion.  Determine force exerted by motor 

cable from conditions for static equilibrium. 

• In the second case, both bodies are accelerating.  Apply Newton’s second law to 

each body to determine the required motor cable force. 

MODELING and ANALYSIS: 

• In the first case, bodies are in uniform motion.  Determine force 

exerted by motor cable from conditions for static equilibrium. 

• Free-body C: 

 
Free-body D: 
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In the second case, both bodies are accelerating.  Apply Newton’s second 

law to each body to determine the required motor cable force. 

 
 

Free-body C: 
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Free-body D: 
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REFLECT and THINK 

As you might expect, the motor needs to deliver more power to produce accelerated motion 

than to produce motion at constant velocity. 

 

 

 

 

 



13.2 Conservation of Energy 

The potential energy stored at the top of the ball’s path is transferred to kinetic energy 

as the ball meets the ground.  Why is the ball’s height reducing?  

 
 



 

13.2A Potential Energy 

 

If the work of a force only depends on differences in position, we can express this work 

as potential energy. 

Can the work done by the following forces be expressed as potential energy? 

 

Weight    YES    NO 

Friction    YES    NO 

Normal force   YES    NO 

Spring force   YES    NO 

 

 

YES NO NO YES 

 

 



 

 

• Work of the force of gravity , 

 
• Work is independent of path followed; depends only 

on the initial and final values of Wy.  

potential energy of the body with respect to 

force of gravity. 

       
 

• Choice of datum from which the elevation y is measured is arbitrary. 

• Units of work and potential energy are the same: 
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• Previous expression for potential energy of a body with 

respect to gravity is only valid when the weight of the body 

can be assumed constant. 

• For a space vehicle, the variation of the force of gravity 

with distance from the center of the earth should be 

considered. 

• Work of a gravitational force, 

 
 

• Potential energy Vg when the variation in the force of gravity can not be neglected, 
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• Work of the force exerted by a spring depends only 

on the initial and final deflections of the spring, 

 
• The potential energy of the body with respect to the 

elastic force, 
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• Note that the preceding expression for Ve is valid only if 

the deflection of the spring is measured from its undeformed 

position. 

 

 

 

 

13.2B Conservative Forces 

Concept of potential energy can be applied if the work of 

the force is independent of the path followed by its point 

of application.  

  
Such forces are described as conservative forces. 

 

• For any conservative force applied on a closed path, 
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• Elementary work corresponding to displacement 

between two neighboring points, 

 
 

 

 

 

 

 

 

0=•∫ rdF 



( ) ( )
( )zyxdV

dzzdyydxxVzyxVdU
,,

,,,,
−=

+++−=

x y z
V V VF dx F dy F dz dx dy dz
x y z

V V VF V
x y z

 ∂ ∂ ∂
+ + = − + + ∂ ∂ ∂ 
 ∂ ∂ ∂

= − + + = − ∂ ∂ ∂ 
grad





13.2C The Principle of Conservation of Energy 

• Work of a conservative force, 

   
• Concept of work and energy, 

   
• Follows that 

   

    When a particle moves under the action of   

        conservative forces, the total mechanical   

        energy is constant. 

•         Friction forces are not conservative.  Total   

        mechanical energy of a system involving    

        friction decreases. 

        Mechanical energy is dissipated by friction into  

        thermal energy.  Total energy is constant. 
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13.2D Motion Under a Conservative Central Force 

• When a particle moves under a conservative central force, both 

the principle of conservation of angular momentum  

 

 
 

and the principle of conservation of energy  

 

    
 

Given r, the equations may be solved for v .  
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Also, using Eqns (25),(26) 

• At minimum and maximum r, φ  = 90o.  Given the launch 

conditions, the equations may be solved for rmin, rmax, vmin, and vmax . 

 

 

 

 

Sample Problem 13.8 

Sample Problem 13.10 

The 250 g pellet is pushed against the spring and 

released from rest at A.  Neglecting friction, 

determine the smallest deflection of the spring for 

which the pellet will travel around the loop and 

remain in contact with the loop at all times. 

 



STRATEGY:  

• Since the pellet must remain in contact with the loop, the force exerted on the pellet 

must be greater than or equal to zero.  Setting the force exerted by the loop to zero, 

solve for the minimum velocity at D. 

• Apply the principle of conservation of energy between points A and D.  Solve for 

the spring deflection required to produce the required velocity and kinetic energy at 

D.  

 

 

 

MODELING and ANALYSIS:  

• Setting the force exerted by the loop to zero, solve 

for the minimum velocity at D. 
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• Apply the principle of conservation of energy between points A and D.  

 
 

 

 

 

 

 

 

REFLECT and THINK 

A common misconception in problems like this is assuming that the speed of the particle 

is zero at the top of the loop, rather than that the normal force is equal to or greater than 

zero. If the pellet had a speed of zero at the top, it would clearly fall straight down, which 

is impossible.  
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Sample Problem 13.12 

A satellite is launched in a direction parallel to the 

surface of the earth with a velocity of 36900 km/h from 

an altitude of 500 km.   

Determine (a) the maximum altitude reached by the 

satellite, and (b) the maximum allowable error in the 

direction of launching if the satellite is to come no 

closer than 200 km to the surface of the earth 

STRATEGY:  

• For motion under a conservative central force, the principles of conservation of energy 

and conservation of angular momentum may be applied simultaneously. 

• Apply the principles to the points of minimum and maximum altitude to determine the 

maximum altitude. 

• Apply the principles to the orbit insertion point and the point of minimum altitude to 

determine maximum allowable orbit insertion angle error. 

 



MODELING and ANALYSIS: 

• Apply the principles of conservation of energy and 

conservation of angular momentum to the points of minimum 

and maximum altitude to determine the maximum altitude. 

Conservation of energy: 

       
 Conservation of angular momentum: 

   
 Combining, 
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Apply the principles to the orbit insertion point and the point 

of minimum altitude to determine maximum allowable orbit 

insertion angle error. 

 Conservation of energy: 

 
 Conservation of angular momentum: 

 
 Combining and solving for sin j0, 

     
 

REFLECT and THINK: 

• Space probes and other long-distance vehicles are designed with small rockets to allow for mid-

course corrections. Satellites launched from the Space Station usually do not need this kind of 

fine-tuning. 
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Impulsive Motion 

The thrust of a rocket acts over a specific time period to give the 

rocket linear momentum. 

 

 

 

 



The impulse applied to the railcar by the wall brings its momentum to zero.   

Crash tests are often performed to help improve safety in different vehicles. 

 

 

 

 

 

 

 

 

13.3A Principle of Impulse and Momentum 

• From Newton’s second law, 

linear momentum ( mv ) 

 

      ( )dF mv
dt

=




  (13.27) 



 

 

 

 

• Dimensions of the impulse of a force are force*time. 

• Units for the impulse of a force are  

•  

         

 

 

The final momentum of the particle can be obtained by adding vectorially its initial  

momentum and the impulse of the force during the time interval. 

 

    Fig.13.17 

Fig.13.18 
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13.3B Impulsive Motion 

Force acting on a particle during a very short time 

interval that is large enough to cause a significant 

change in momentum is called an impulsive force. 

• When impulsive forces act on a particle,  

 

  (13.35) 

 

• When a baseball is struck by a bat, contact occurs over a short time interval but force 

is large enough to change sense of ball motion. 

• Nonimpulsive forces are forces for which  is small and therefore, may be 

neglected – an example of this is the weight of the baseball. 
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Sample Problem 13.13 

An automobile weighing 1800 kg is driven down 

a 5o incline at a speed of 100 km/h when the 

brakes are applied, causing a constant total 

braking force of 7000 N.   

Determine the time required for the automobile 

to come to a stop. 

 

STRATEGY:  

• Apply the principle of impulse and momentum.  The impulse is equal to the product 

of the constant forces and the time interval. 

 

 

 

 



 

MODELING and ANALYSIS:  

• Apply the principle of impulse and momentum.   

 
 Taking components parallel to the incline, 

 

 

 

 

 

REFLECT and THINK 

• You could use Newton’s second law to solve this problem. First, you would determine 

the car’s deceleration, separate variables, and then integrate a = dv/dt to relate the 

velocity, deceleration, and time. You could not use conservation of energy to solve 

this problem, because this principle does not involve time.  
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Sample Problem 13.16 

A 120 g baseball is pitched with a velocity of 24 m/s.  After 

the ball is hit by the bat, it has a velocity of 36 m/s in the 

direction shown.  If the bat and ball are in contact for 0.015 

s, determine the average impulsive force exerted on the ball 

during the impact. 

 

 

STRATEGY:  

• Apply the principle of impulse and momentum in terms of horizontal and vertical 

component equations. 

 

 

 

 

 



MODELING and ANALYSIS:  

• Apply the principle of impulse and momentum in terms of 

horizontal and vertical component equations. 

 
 x component equation: 

 

 
 

  y component equation: 
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Sample Problem 13.17 

A 10 kg package drops from a chute into a 24 kg cart 

with a velocity of 3 m/s.  Knowing that the cart is 

initially at rest and can roll freely, determine (a) the final 

velocity of the cart, (b) the impulse exerted by the cart 

on the package, and (c) the fraction of the initial energy 

lost in the impact. 

 

 

STRATEGY:  

• Apply the principle of impulse and momentum to the package-cart system to 

determine the final velocity. 

• Apply the same principle to the package alone to determine the impulse exerted on 

it from the change in its momentum. 

 



 

MODELING and ANALYSIS  

• Apply the principle of impulse and momentum to the package-cart system to 

determine the final velocity. 

 
 

 

 

x components:    
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• Apply the same principle to the package alone to determine the impulse exerted on 

it from the change in its momentum. 

 
 

 

x components:   

 

y components:   
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To determine the fraction of energy lost, 

 

 

 

 

 

REFLECT and THINK:  

Except in the purely theoretical case of a “perfectly elastic” collision, mechanical energy is never conserved 

in a collision between two objects, even though linear momentum may be conserved. Note that, in this 

problem, momentum was conserved in the x direction but was not conserved in the y direction because of 

the vertical impulse on the wheels of the cart. Whenever you deal with an impact, you need to use impulse-
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momentum methods. 

13.4 Impact 

The coefficient of restitution is used to characterize the “bounciness” of different sports 

equipment.  The U.S. Golf Association limits the COR of golf balls at 0.83 

 
 



 

• Impact:  Collision between two bodies which occurs 

during a small time interval and during which the bodies 

exert large forces on each other.  

• Line of Impact:  Common normal to the surfaces in 

contact during impact.  

Central Impact:  Impact for which the mass centers of the 

two bodies lie on the line of impact;  otherwise,  Direct 

Central Impact     it is an eccentric impact..  

 

• Direct Impact:  Impact for which the velocities of the 

two bodies are directed along the line of impact.  

• Oblique Impact:  Impact for which one or both of 

the bodies move along a line other than the line of impact.  

 

  



13.4 A Direct Central Impact 

• Bodies moving in the same straight line,  

vA > vB . 

• Upon impact the bodies undergo a 

period of deformation, at the end of which, they are in 

contact and moving at a common velocity. 

• A period of restitution follows during which the bodies either regain 

their original shape or remain permanently deformed. 

 

• Wish to determine the final velocities of the two bodies.  

The total momentum of the two body system is preserved, 

 
• A second relation between the final velocities is required. 
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• Period of deformation:  

 
 

• Period of restitution:   

 

• A similar analysis of particle B yields   

 

• Combining the relations leads to the desired second relation between the final 

velocities.    

• Perfectly plastic impact, e = 0:   

• Perfectly elastic impact, e = 1:    

Total energy and total momentum conserved. 
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13.4B Oblique Central Impact 

• Final velocities are 

unknown in magnitude and 

direction.  Four equations 

are required. 

 

• No tangential impulse component; tangential component of momentum for each 

particle is conserved.  

  
• Normal component of total momentum of the two particles is conserved. 

  
• Normal components of relative velocities before and after impact are related by the 

coefficient of restitution. 
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• Block constrained to move along horizontal surface. 

• Impulses from internal forces  along the n axis and from external force 

 exerted by horizontal surface and directed along the vertical to the surface. 

• Final velocity of ball unknown in direction and magnitude and unknown final block 

velocity magnitude.  Three equations required. 
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• Tangential momentum of ball is conserved.  

 

• Total horizontal momentum of block and ball is conserved. 

  
• Normal component of relative velocities of block and ball are related by coefficient 

of restitution. 

  
 

• Note:  Validity of last expression does not follow from previous relation for the 

coefficient of restitution.  A similar but separate derivation is required.  
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13.4C Problems Involving Multiple Principles 

• Three methods for the analysis of kinetics problems: 

- Direct application of Newton’s second law 

- Method of work and energy 

- Method of impulse and momentum 

 

• Select the method best suited for the problem or part of a problem under 

consideration. 

 
 



Sample Problem 13.19 

A ball is thrown against a frictionless, vertical wall.  Immediately 

before the ball strikes the wall, its velocity has a magnitude v 

and forms angle of 30o with the horizontal.  Knowing that  

e = 0.90, determine the magnitude and direction of the velocity 

of the ball as it rebounds from the wall.  

 

 

STRATEGY:  

• Resolve ball velocity into components normal and tangential to wall. 

• Impulse exerted by the wall is normal to the wall.  Component of ball momentum 

tangential to wall is conserved. 

• Assume that the wall has infinite mass so that wall velocity before and after impact 

is zero.  Apply coefficient of restitution relation to find change  in normal  relative 

velocity between wall and ball, i.e., the normal ball velocity. 



MODELING and ANALYSIS:  

Resolve ball velocity into components parallel and perpendicular 

to wall. 

 
Component of ball momentum tangential to wall is conserved. 

  
 

         Apply coefficient of restitution relation with zero wall velocity. 
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REFLECT and THINK:  

Tests similar to this are done to make sure that sporting equipment––such as tennis balls, golf 

balls, and basketballs––are consistent and fall within certain specifications. Testing modern golf 

balls 

and clubs shows that the coefficient of restitution actually decreases with increasing club speed 

(from about 0.84 at a speed of 145 kmph to about 0.80 at club speeds of 210 kmph).  

 

 



Sample Problem 13.20 

The magnitude and direction of the velocities of two 

identical frictionless balls before they strike each other 

are as shown.  Assuming e = 0.9, determine the 

magnitude and direction of the velocity of each ball after 

the impact. 

 

STRATEGY:  

• Resolve the ball velocities into components normal and tangential to the contact plane. 

• Tangential component of momentum for each ball is conserved. 

• Total normal component of the momentum of the two ball system is conserved.   

• The normal relative velocities of the balls are related by the coefficient of restitution. 

• Solve the last two equations simultaneously for the normal velocities of the balls after the 

impact. 

 

 



MODELING and ANALYSIS:  

• Resolve the ball velocities into components normal and 

tangential to the contact plane. 

  

  
 

• Tangential component of momentum for each ball is 

conserved. 

   
• Total normal component of the momentum of the two ball 

system is conserved.   

 
 

  cos30 7.79m s A Anv v   sin30 4.5 m s A Atv v
  cos60 6 m s B Bnv v   sin 60 10.39 m s B Btv v



• The normal relative velocities of the balls are related by 

the coefficient of restitution. 

 
• Solve the last two equations simultaneously for the normal 

velocities of the balls after the impact. 

   
 

 



 
 

REFLECT and THINK:  

• Rather than choosing your system to be both balls, you could have applied impulse-

momentum along the line of impact for each ball individually.  

• This would have resulted in two equations and one additional unknown, FΔt. To 

determine the impulsive force F, you would need to be given the time for the impact, 

Δt. 

 

 

 

 



Sample Problem 13.21 

Ball B is hanging from an inextensible cord.  An identical ball A is 

released from rest when it is just touching the cord and acquires a 

velocity v0 before striking ball B.  Assuming perfectly elastic impact 

(e = 1) and no friction, determine the velocity of each ball 

immediately after impact. 

 

 

STRATEGY:  

• Determine orientation of impact line of action. 

• The momentum component of ball A tangential to the contact plane is conserved. 

• The total horizontal momentum of the two ball system is conserved. 

• The relative velocities along the line of action before and after the impact are related by 

the coefficient of restitution. 

• Solve the last two expressions for the velocity of ball A along the line of action and the 

velocity of ball B which is horizontal. 



     MODELING and ANALYSIS:  

• Determine orientation of impact line of action.  

•   The momentum component of ball A tangential 

to the contact plane is conserved. 

 

 
 

 

• The total horizontal (x component) 

momentum of the two ball system is 

conserved. 
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• The relative velocities along the line of action 

before and after the impact are related by the 

coefficient of restitution. 

 
• Solve the last two expressions for the velocity of ball A along the line of action and 

the velocity of ball B which is horizontal. 
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REFLECT and THINK  

Since e = 1, the impact between A and B is perfectly elastic. Therefore, rather than using 

the coefficient of restitution, you could have used the conservation of energy as your final 

equation. 

 

 

 



Sample Problem 13.22 

 

A 30 kg block is dropped from a height of 2 m onto the 

10 kg pan of a spring scale.  Assuming the impact to be 

perfectly plastic, determine the maximum deflection of 

the pan.  The constant of the spring is k = 20 kN/m. 

 

STRATEGY:  

• Apply the principle of conservation of energy to determine the velocity of the block at 

the instant of impact. 

• Since the impact is perfectly plastic, the block and pan move together at the same velocity 

after impact.  Determine that velocity from the requirement that the total momentum of 

the block and pan is conserved. 

• Apply the principle of conservation of energy to determine the maximum deflection of 

the spring. 



MODELING and ANALYSIS:  

• Apply principle of conservation of energy to 

determine velocity of the block at instant of impact. 

 

 

 

 

 

• Determine velocity after impact from requirement 

that total momentum of the block and pan is conserved. 
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• Apply the principle of conservation of energy to 

determine the maximum deflection of the spring. 

 

 

 

 

 

Initial spring 

deflection 

due to pan weight: 
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REFLECT and THINK:  

The spring constant for this scale is pretty large, but the block is fairly massive and is 

dropped from a height of 2 m. From this perspective, the deflection seems reasonable.  

We included the spring in the system so we could treat it as an energy term rather than 

finding the work of the spring force. 

 

 

 



Sample Problem 13.23 

A 2-kg block A is pushed up against a spring 

compressing it a distance x= 0.1 m. The block is then 

released from rest and slides down the 20º incline until 

it strikes a 1-kg sphere B, which is suspended from a 1 

m inextensible rope. The spring constant k=800 N/m, 

the coefficient of friction between A and the ground is 

0.2, the distance A slides from the unstretched length of 

the spring d=1.5 m, and the coefficient of restitution 

between A and B is 0.8. When α  =40o, find (a) the speed of B (b) the tension in the rope. 

STRATEGY:  

• This is a multiple step problem.  Formulate your overall approach. 

• Use work-energy to find the velocity of the block just before impact 

• Use conservation of momentum to determine the speed of ball B after the impact 

• Use work energy to find the velocity at a 

• Use Newton’s 2nd Law to find tension in the rope  

 



MODELING and ANALYSIS:  

Given: mA= 2-kg mB= 1-kg, k= 800 N/m, mA 

=0.2, e= 0.8 

Find (a) vB (b) Trope 

• Use work-energy to find the velocity of the 

block just before impact 

 

Determine the friction force acting on the block A  

 
Sum forces in the y-direction      Solve for N 
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Set your datum, use work-energy to determine vA at impact. 

 

Determine values for each term. 

 

 

 

 

 

 

Substitute into the Work-Energy equation and solve for vA 

 

 

 

 

 

 

1 1 1 1 2 2 2 2( ) ( ) ( ) ( ) .....(1)e g e gT V V U T V V→+ + + = + +

2 2
1 1 1

1 10, ( ) (800)(0.1) 4.00 J
2 2eT V k x= = = =

1 1( ) ( )sin (2)(9.81)(1.6)sin 20 10.7367 ?Jg A AV m gh m g x d θ= = + = ° =

1 2 ( ) (3.6874)(1.6) 5.8998 ?JfU F x d→ = − + = − = −

2 2 2
2 2

1 1 (1) ( ) 1.000 ? 0
2 2A A A AT m v v v V= = = =

1 

2 

Datum x 
d 

2
1 1 1 2 2 2: 0 4.00 10.7367 5.8998 1.000 0AT V U T V v→+ + = + + + − = +

2 2 28.8369 m /sAv =

2.97 m/sA =v



• Use conservation of momentum to 

determine the speed of ball B after the 

impact 

• Draw the impulse diagram 

  

 

 

 

Apply conservation of momentum in the x direction 

 

      (2) 

Use the relative velocity/coefficient of restitution equation 

 

 

     (3) 

Solve (2) and (3) simultaneously      
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• Use work energy to find the velocity at a 

Set datum, use Work-Energy to determine vB at a= 40o 

 

 Determine values for each term. 

 

 

 

Substitute into the Work-Energy equation and solve for vA 
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• Use Newton’s 2nd Law to find tension in the rope  

• Draw your free-body and kinetic diagrams 

  
• Sum forces in the normal direction 

 

 

• Determine normal acceleration 

 

 

• Substitute and solve 
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Summary 

 

Approaches to Kinetics Problems 

 

Forces and Accelerations -> Newton’s Second Law  

 

Velocities and Displacements -> Work-Energy  

 

Velocities and Time -> Impulse-Momentum 
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