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Introduction

» Method of work and energy and the method of impulse and momentum will be used
to analyze the plane motion of rigid bodies and systems of rigid bodies.

* Principle of work and energy is well suited to the solution of problems involving
displacements and velocities.
T1+Up 0 =T

* Principle of impulse and momentum is appropriate for problems involving velocities

and time.
N t2_> N _» t, N N
L +> [Fdt=1L, (Ho) +X [Modt=(Ho ),
4 b

* Problems involving eccentric impact are solved by supplementing the principle of

impulse and momentum with the application of the coefficient of restitution.



Approaches to Rigid Body Kinetics Problems

> F
Forces and Accelerations -> Newton’s Second Law (last chapter) ¥

<

Velocities and Displacements -> Work-Energy T, +U,,, =T,

_ b= _
Velocities and Time -> Impulse-Momentum v+ ], Fdt=mv,

t2
IGw1+jt1 M, dt =1 0,

=ma
¢ = H



« Work and kinetic energy are scalar quantities.

« Assume that the rigid body is made of a large number of particles.
Ti+Up 0 =T
Ty, Ty =

initial and final total kinetic energy of particles forming body

Ui = total work of internal and external forces acting on particles of body.

» Internal forces between particles A and B are

equal and opposite.

 Therefore, the net work of internal forces is zero.




Work of Forces Acting on a Rigid Body

. Work of a force during a displacement of its

point of application,

A S
U,,= I If°dF=I(F cosar)ds
A 5

. Consider the net work of two forces Fand-F

—_

forming a couple of moment M during a

displacement of their points of application.

dU =F-df - F -dF, + F -dF,

=Fds, =Frdo
=M dé
0,
Upyp = [Md6
o
=M (92 _‘91) if M is constant.



Do the pin forces at point A do work?
Yes No
Does the force P do work?

Yes No

answer ; N/ Y

L
-

-

F o I

p



Does the normal force N do work on the disk?
100 mm 60 mm

Yes No

Does the weight W do work? 200 N

Yes No
If the disk rolls without slip, does the friction force F do work?

Yes No
dU = Fdsc = F(v.dt)=0

answer : N/N/N 1N



Kinetic Energy of a Rigid Body in Plane Motion

 Consider a rigid body of mass m in plane

motion consisting of individual particles /
The kinetic energy of the body can then be () =r]
expressed as:
T=imv?+1) Amy/’
=imv’ +4(> r°Am ) o’

12 L 17 42
—EmV +EIG)

» Kinetic energy of a rigid body can be

separated into:

— the kinetic energy associated with the ()

o

motion of the mass center G and

— the kinetic energy associated with the rotation of the body about G.

T =%mV2 + %I_a)2

Translation + Rotation




» Consider a rigid body rotating about a fixed axis through O.

T=13Amy} =33 Am (ro) =3(Xr'Am;)o’

_1 2

 This is equivalent to using:

T=imv’+ il
* Remember to only use

_ 1 2
T_EIOa)

when O is a fixed axis of rotation
® Q




Systems of Rigid Bodies

* For problems involving systems consisting of several rigid bodies, the principle of

work and energy can be applied to each body.

« We may also apply the principle of work and energy to the entire system,

T1+Up =Ty T,T,

= arithmetic sum of the kinetic energies of all bodies

forming the system

Ui52- work of all forces acting on the various bodies, whether
these forces are internal or external to the system as a

whole.

T

(120)(9.81) N




Conservation of Energy

Datum

. Expressing the work of conservative forces as a

change in potential energy, the principle of work and

o

energy becomes
Ty +Vy =Ty +V5

. Consider the slender rod of mass m.
T,=0, V;=0

Datum T, =1mvs +1lw

2
2
1m|
:% lIa) (] mlz)fa w°

Vo = —§WI sinf =—5 Lmglsing

T,+V, =T,+V,
1 ml 1
0==—w"-=mglsing
2 3 2
mass m
released with zero velocity o= (3—gsin @j
determine w at q



« Power = rate at which work is done

—>

* For a body acted upon by force F and moving with velocity V ,

—>

Power =d—U= F-v
dt

« For a rigid body rotating with an angular velocity @ and acted upon by a couple of

moment M parallel to the axis of rotation,

Power =

d U M d H M Copyright © McGraw-Hill Education. Permission required for reproduction or display.

©Richard McDowell/Alamy RF



Sample Problem 17.1
1 2
0.4 m For the drum and flywheel, | [16kg[m°.

The bearing friction is equivalent to a couple of At the

instant shown, the block is moving downward at 2 m/s.

Determine the velocity of the block after it has moved 1.25 m

downward.
STRATEGY:
| . Consider the system of the flywheel and block. The work
DIQO kg done by the internal forces exerted by the cable cancels.

. Note that the velocity of the block and the angular velocity
of the drum and flywheel are related by V =T®
» Apply the principle of work and kinetic energy to develop an expression for the final

velocity.



MODELING and ANALYSIS:
*Consider the system of the flywheel and block. The work done

by the internal forces exerted by the cable cancels.
*Note that the velocity of the block and the angular velocity of

the drum and flywheel are related by

oo G Eﬁrj—(ns s GO0




swon- * Apply the principle of work and kinetic energy to develop an

expression for the final velocity.

T, CEmvy CET/S
[%0 kg[[ﬂm/sﬁ[—ékg Iﬂlzﬁrad/sz
[ h40J

. Note that the block displacement and pulley rotation are

related by
g[ff '25;? [B.125rad




Uy, CW [} O [IM [
CiTL77 N[H25m[T{eb N @

[1190]

Principle of work and energy:

Tl |]J1|:|2 Drz
195 m 440J[1190J [110V

. @*Sfl.zsm v, [3.85m/s

'7

P
UNJ

125rad[

v, [B.85m/s |




[\

REFLECT and THINK:

» The speed of the block increases as it falls, but much more slowly than if it were in

free fall. This seems like a reasonable result.

* Rather than calculating the work done by gravity, you could have also treated the

effect of the weight using gravitational potential energy, V.



Sample Problem 17.2

STRATEGY:

ry =250 mm

rg = 100 mm

The system is at rest when a moment of is applied
to gear B.

Neglecting friction, &) determine the number of
revolutions of gear B before its angular velocity reaches

600 rpm, and b) tangential force exerted by gear B on

gear A.

Consider a system consisting of the two gears. Noting that the gear rotational speeds are related,

evaluate the final kinetic energy of the system.

Apply the principle of work and energy. Calculate the number of revolutions required for the work of

the applied moment to equal the final kinetic energy of the system.

Apply the principle of work and energy to a system consisting of gear A.  With the final kinetic energy

and number of revolutions known, calculate the moment and tangential force required for the indicated

work.



MODELING and ANALYSIS:
. Consider a system consisting of the two gears. Noting that

the gear rotational speeds are related, evaluate the final kinetic

energy of the system.

600 rpm)( 27 rad/rev
a)B:( pm) (27 1ad/16V) _ ¢ g radi/s
60s/min
w, = =62. 8—0 100 =25.1rad/s
rA 0.250

T, =mk? =(10kg)(0.200m)’ = 0.400kg - m?

I, = mgkZ =(3kg)(0.080m)” = 0.0192kg - m*

T,

r\.>||—\ N[

1 0: +i1,0;
= (0. 400)(25.1) +1(0.0192)(62.8)’
=163.9J



*  Apply the principle of work and energy. Calculate

the number of revolutions required for the work.

A Wy
- 0+(66,)J=163.9] PR P
0, = 27.32rad :

«  Apply the principle of work and energy to a system

consisting of gear A. Calculate the moment and

AR tangential force required for the indicated work.

6, =0, =27.3291% _10 93rad
rA 0.250

T, =1T,0? =1(0.400)(25.1)* =126.0J

T,+U,_,=T,

11.52

0+ M (10.93rad)=126.0J
F="—=46.2N
M, =r,F =11.52N-m 0250




Tk = 250 mm

rg =100 mm

00 mm

m, =10kg k, =2
ks =80mm

m; =3Kg

REFLECT and THINK:

« When the system was both gears, the tangential force between the gears did not appear
in the work—energy equation, since it was internal to the system and therefore did no
work. If you want to determine an internal force, you need to define a system where the
force of interest is an external force. This problem, like most problems, also could have

been solved using Newton's second law and kinematic relationships.



Sample Problem 17.3
A sphere, cylinder, and hoop, each having the same

rr——

\ mass and radius, are released from rest on an incline.
2

Determine the velocity of each body after it has

rolled through a distance corresponding to a change

of elevation A.

STRATEGY:

«  The work done by the weight of the bodies is

the same. From the principle of work and energy,
it follows that each body will have the same kinetic energy after the change of
elevation.

* Because each of the bodies has a different centroidal moment of inertia, the
distribution of the total kinetic energy between the linear and rotational components

will be different as well.



MODELING and ANALYSIS:
« The work done by the weight of the bodies is the same.

From the principle of work and energy, it follows that each

body will have the same kinetic energy after the change of

elevation.

72 2Wh 2gh

“mel/rr 1+1/mr?




« Because each of the bodies has a different centroidal moment of inertia, the
distribution of the total kinetic energy between the linear and rotational components

will be different as well.
. T 2
Sphere:  I=Zmr® v =0.845,2gh

i T =1mr? g—
g2 _ 2gh Cylinder : I__Emr v =0.816,/2gh
1+ I_/mr2 Hoop : =mr’ v=0.707./2gh
NOTE:

* For a frictionless block sliding through the same distance,
* The velocity of the body is independent of its mass and radius.

* The velocity of the body does depend on

y 2:|Z2 ,
mr r



REFLECT and THINK:

 Let us compare the results with the velocity
attained by a frictionless block sliding through
the same distance. The solution is 1dentical to
the previous solution except that w = 0; we

findv = ./2gh.

« Comparing the results, we note that the
velocity of the body 1s independent of both its
mass and radius. However, the velocity does
depend upon the quotient of I/mr? = k?/r?,
which measures the ratio of the rotational
kinetic energy to the translational kinetic
energy. Thus the hoop, which has the largest k
for a given radius r, attains the smallest
velocity, whereas the sliding block, which
does not rotate, attains the largest velocity.




Sample Problem

| D _ A 15-kg slender rod pivots about the point O. The

| until the spring is compressed 40 mm and the rod

A [ 4 [ _——-'B is in a horizontal position.

4,1(}.5 o other end is pressed against a spring (k = 300 kN/m)
(L

If the rod is released from this position, determine
its angular velocity and the reaction at the pivot as

the rod passes through a vertical position.

STRATEGY:
« The weight and spring forces are conservative. The principle of work and energy
can be expressed as Ti+Vi =Ty +V,
« Evaluate the initial and final potential energy.
« Express the final kinetic energy in terms of the final angular velocity of the rod.

- Based on the free-body-diagram equation, solve for the reactions at the pivot.



Position 2 — MODELING and ANALYSIS:

ol ::( 113)7(91; ]I\)I . The weight and spring forces are conservative. The
"’:,"*_ﬁ principle of work and energy can be expressed as
= 0 % '-T
\ o fo7s gt 1715 x T, +V =T, +V,
s | —"_:_Qalﬂln_
=
; . Evaluate the initial and final potential energy.
v, OV, OV, CD Ch ko (5[3D0,000 N/m[TBlo4om[*
[ P40J
I_Dl%mlz V, =V, +V, :Wh+0:(147.15N)(0.75m)
1 =110.4)
; Pl . .. .
Dﬁ kg SmE . Express the final kinetic energy in
[V.81kg [mh? terms of the angular velocity of the rod.

T, CEmv2 T3 OEm{GCR 3
[%EB 0] 753 TR (78117 [3.12/3




osition 2 — From the principle of work and energy,

LML, LY,
| AT - 0[240J [8.12/7[110.4] [3 [B.995rad/s )
by b
\ @, =0 10.1'5 migy! | 5N
|—‘“—"\:‘6—' e Dam . Based on the free-body-diagram equation, solve for
— ' the reactions at the pivot.
S a, =To? = (@I N8DeHst)s)” =11.97m/s?
a=ra &l 7
+DZMO:Z(MO)eff O=Ta+mra)r  ¢=0
9 ] -+, 2 F= Z(Fx)eff R, =m(ra) R, =0
§ iy > F, = Z(Fy )eff R, [147.15N [L1ha,
L (X ‘ is, 2
—ic = (s (Tb ko[[3L.97m/s?|
FT, 0.75 ¥ | N [W|ma, Ry m24 N
) N°
IR, |

R[B24N[



< 2 B

—(;| 0.5 :1-*--

A @ B
REFLECT and THINK:

 This problem illustrates how you might
need to supplement the conservation of
energy with Newton’s second law.

» What if the spring constant had been
smaller, say 30 kN/m? You would have
found V,, = 48 J and then solved to
obtain w,% = —7.68.

 This is clearly impossible and means
that the rod would not make it to
position 2 as assumed.



Sample Problem 17.6

ﬂ.}/\-’g\ Z Each of the two slender rods has a mass of 6 kg.

qf.fjt/ / \;\'\-\: 9 The system is released from rest with 6 = 60°.
\(\&___ ﬁ/ \x\y Determine a) the angular velocity of rod AB when
A é B \@D b = 20°, and b) the velocity of the point D at the

same instant.

STRATEGY:

» Consider a system consisting of the two rods. With the conservative weight force,
T +V;=T,+V,

» Evaluate the initial and final potential energy.

» Express the final kinetic energy of the system in terms of the angular velocities of

the rods.

« Solve the energy equation for the angular velocity, then evaluate the velocity of the

point D.



*MODELING and ANALYSIS:

Consider a system consisting of the two rods. With the
Tl +Vl = T2 +V2

conservative weight force,

Evaluate the initial and final potential energy.
V; = 2Wy; = 2(58.86 N)(0.325m)

Position 1
=38.26J
. s 589 V, =2Wy, =2(58.86 N)(0.1283m)
— N T ) i -
;’3 = 2; ,-):«"/:,fﬂ"/’PJHM-.,_:E?{.-LH_ = 15 10 \]
» - Ty
S =9 D
. 7,=01283m &
Datum '
Position 2

W =mg =(6 kg)(9.81m/32)
=58.86N



/'\ Express the final kinetic energy of the system in terms of

g™ N
/v\‘B/ ot W the angular velocities of the rods.
0BT g 10513 m =
\‘T/&’Q-’;’:ﬁ:" = e ““*-—LE‘:‘&?\E}OJ i VAB = (0-375 m)a) '\
¢~ N\__E=% ¥
e ~ ——————— . . @ . . o . o
é’-fg.-.ﬁ;‘_w B D Since VBis perpendicular to AB and Dis horizontal,

the instantaneous center of rotation for rod BDis C
BC =0.75m CD = 2(0.75m)sin 20° = 0.513m
and applying the law of cosines to CDE, £C = 0.522 m

Consider the velocity of point B

Vg =(AB)w =(BC)w,, Dgp = O )
Voo = (0.522m) @\,

For the final kinetic energy,

Iag = Igp =5 mI? =1 (6kg)(0.75m)* = 0.281kg - m?

T, = %mvxfs +%I_ABCO§B +%mVI§D +%I_BD60§D
= %(6)(0.3750))2 +%(0.281) * +ﬁ(6)(0.522a))2 +%(0.281) ®*
=1.5200°



B * Solve the energy equation for the angular velocity, then

2O N i ; }\\ 5RO N . .
'55;’__//(\\:‘g\;' evaluate the velocity of the point D,
o { N "ﬁj:.'
J——
y. 4 *ﬁe\se nl
I f{l‘/\ﬁ = 60° ‘\*\y‘\\y]}'; {1325 m Tl +Vl = T2 +V2
s ARSassimess - ICIN 0+38.26]=1.520" +15.10J o
‘| ' \ Datum OpB = 3.90 rad/ S D
®=3.90rad/s
Position 1
,,,,, g o PERS vp =(CD)o
B=20y =% ¥
B T Ty, = (0.513m)(3.90rad/s)
A [ / g,-01288m A _ _
Datum ) iD - 200 m/s VD = 200 m/S .
Position 2

REFLECT and THINK:

The only step in which you need to use forces is when calculating the gravitational potential energy in each
position. However, it is good engineering practice to show the complete free-body diagram in each case to

identify which, if any, forces do work. You could have also used vector algebra to relate the velocities of the

various objects.



Angular Impulse Momentum
When two rigid bodies collide, we typically use principles of angular impulse momentum.

We often also use linear impulse momentum (like we did for particles).

Copyright © McGraw-Hill Education. Permission required for reproduction or display. Copyright © McGraw-Hill Education. Permission required for reproduction or display.

©Tefra Images/Alamy RF ©Richard T. Nowitz/Corbis.



Introduction

Approaches to Rigid Body Kinetics Problems

Velocities and Time -> Impulse-Momentum _ b = _
mv, + | F dt =mv,
1

b
l o + . M;dt=1.m,



Principle of Impulse and Momentum

* Method of impulse and momentum:
— well suited to the solution of problems involving time and velocity

— the only practicable method for problems involving impulsive motion and impact.

y Y [Fdi Y (v; Am;)g
ity

Sys Momenta; + Sys Ext Impi., = Sys Momenta,

 The momenta of the particles of a system may be reduced to a vector attached to
L=> vAm =mv



the mass center equal to their sum,

and a couple equal to the sum of their moments about the mass center,

- o
Hg :Zri X V.Am.

* For the plane motion of a rigid slab or of a rigid body symmetrical with respect to

—

the reference plane, H; = low

L=mv

v; Am,

C
(@)
o P, H.=Io

» For plane motion problems, draw out an /mpulse-momentum diagram, (similar to a



free-body diagram)

v,

y ¥

* This leads to three equations of motion:
— summing and equating momenta and impulses in the x and y directions
— summing and equating the moments of the momenta and impulses with respect

to any given point (often choose G)



Impulse Momentum Diagrams

A sphere S hits a stationary bar AB and sticks
to it. Draw the /mpulse-momentum diagram
for the ball and bar separately; time 1 is
immediately before the impact and time 2 is

immediately after the impact.

T

0.6 m

!' 121

=



Momentum of
the ball before

Impact
meact

Momentum of
the bar before
Impact

—@A

et PHH;[; =i{)

Ico:()(O'G—>

imp

O

Impulse
on ball

At

Impulse
on bar

AyAi

#—

A At

Momentum of

the ball after
imggct
—_—

Momentum of
the bar after

Impact
Ap@ 1
0.6 m
— Ta)(::: ”;fh l




Principle of Impulse and Momentum
. Fixed axis rotation:
—  The angular momentum about O
low =1+ (mV)F
=lo+(mro)r

(I+mr’2)m

—  Equating the moments of the momenta and impulses
%) about Q

The pin forces at point O now contribute no moment to the equation




Systems of Rigid Bodies

» Motion of several rigid bodies can be analyzed by applying the principle of impulse
and momentum to each body separately.

* For problems involving no more than three unknowns, it may be convenient to apply
the principle of impulse and momentum to the system as a whole.

* For each moving part of the system, the diagrams of momenta should include a
momentum vector and/or a momentum couple.

 Internal forces occur in equal and opposite pairs of vectors and generate impulses

that cancel out.



Conservation of Angular Momentum

« When no external force acts on a rigid body or a system of rigid bodies, the system

of momenta at #; is equipollent to the system at £#,. The total linear momentum and

angular momentum about any point are conserved,

E]_:EZ (HO)]_:(HO)Z

* When the sum of the angular impulses pass through O the linear momentum may

not be conserved, yet the angular momentum about O is conserved,
(Ho), =(Ho),

 Two additional equations may be written by summing x and y components of

momenta and may be used to determine two unknown linear impulses, such as the

impulses of the reaction components at a fixed point.



Sample Problem 17.7

— The system is at rest when a moment of is applied
T"A::_nj 1111

to gear 5.
Neglecting friction, g) determine the time required for
gear B to reach an angular velocity of 600 rpm, and b)

the tangential force exerted by gear B on gear A.

m, =10kg k, =200mm
m, =3kg kg =80mm

STRATEGY:
« Considering each gear separately, apply the method of impulse and momentum.
* Solve the angular momentum equations for the two gears simultaneously for the

unknown time and tangential force.



MODELING and ANALYSIS:

» Considering each gear separately, apply the method of impulse and momentum.

_@ moments about A:

Ft(0.250m)
Ft =40.2N-s

(0.400kg - m)(25.1rad/s)

_@ moments about B;



Ly, 0+Mt—Ftrg =Tg(wp),
_ (6N-m)t — Ft(0.100m)
= (0.0192 kg - m2X62.8rad/s)

* Solve the angular momentum equations for the two gears simultaneously for the

unknown time and tangential force.

t=0.871s F=46.2N

rq =250 mm
g

ma =10kg ka =200mm
Y mg =3kg kg =80mm
REFLECT and THINK:
* This is the same answer obtained in Sample Prob. 17.2 by the method of work and

energy, as you would expect. The difference is that in Sample Prob. 17.2, you were



asked to find the number of revolutions, and in this problem, you were asked to find

the time.
 What you are asked to find will often determine the best approach to use when

solving a problem.



Sample Problem 17.8
Uniform sphere of mass m and radius ris projected along a rough
Vi

horizontal surface with a linear velocity and no angular

velocity. The coefficient of kinetic friction is Hi -

Determine g) the time # at which the sphere will start rolling

without sliding and b) the linear and angular velocities of the

sphere at time #%,.

STRATEGY:
» Apply principle of impulse and momentum to find variation of linear and angular velocities with
time.
+ Relate the linear and angular velocities when the sphere stops sliding by noting that the velocity
of the point of contact is zero at that instant.
+ Substitute for the linear and angular velocities and solve for the time at which sliding stops.

» Evaluate the linear and angular velocities at that instant.



Sys Momenta, + Sys Ext Imp, , = Sys Momenta,

MODELING and ANALYSIS:
« Apply principle of impulse and
momentum to find variation of linear and
angular velocities with time.
 Relate linear and angular velocities
when sphere stops sliding by noting that
velocity of point of contact is zero at that
instant.
Substitute for the linear and angular
velocities and solve for the time at which

sliding stops.

<

A9




Evaluate the linear and angular velocities
at that instant.

7 19 [ —
—

: w ZE/ng 2y
SJsMomental+S}5Ertfmp12—S}SMomenta2 22 7 1.9 5v.
+T}components N:W:mg ) -7

- : ; ; ; z 7r )
f | : _Smsg
- +) moments about G: - @, = > —t .
. . . . Y- .
. . : ]
ymrey
. 2 ﬁ .
HEE lp==_" :
t=r £= _ : o _
iu"‘g [?.rj?ﬂkg Vo =T, > v,
Vv, — gt =r| 249 ¢ ‘77
1 T AGL=T - £ 9

REFLECT and THINK:
« This is the same answer obtained in Sample Prob. 16.6 by first dealing directly with

force and acceleration and then applying kinematic relationships.



Sample Problem 17.9

y Two solid spheres (radius = 100 mm, m = 1 kg) are mounted
|\60?5r:r::*- 600 m on a sﬁipﬂiﬂg!l I{g)r'mgntal rod (
(;\1 Q*\{jm n"n\‘ w = 6 rad/sec) as shown. The balls are held together by a
A’ ‘?C/ Y string which is suddenly cut. Determine &) angular velocity of
il B'  the rod after the balls have moved to A" and B’ and b) the
/\ energy lost due to the plastic impact of the spheres and stops.
STRATEGY:

« Observing that none of the external forces produce a moment about the y axis, the
angular momentum is conserved.

» Equate the initial and final angular momenta. Solve for the final angular velocity.

» The energy lost due to the plastic impact is equal to the change in kinetic energy of

the system.



MODELING and ANALYSIS:

* Observing that none of the external

forces produce a moment about the y

axis, the angular momentum s
IR dt

conserved. Equate the initial and final

Sys Momenta, + Sys Ext Imp,_, = Sys Momenta, angular momenta. Solve for the

final angular velocity.

2 J— —_
m.r~+1ls +1g

0)2:0)1 5 — —
m.ry +1s +1g

= 6rad/s I, =0.4 kg-m?
Ig =2ma’® =2(1kg)(0. 1m)’=0.04kg - m?
(1kg)(0.15m)” =0.0225kg - m?
msT = (1kg)(0.6m) = 0.36kg - m? )

mrrs o1l o



« The energy lost due to the
plastic impact is equal to the

change in kinetic energy of the

system.

N Fl ?l
(mgval ¥

T, =1(0.453)(6)" =8.154]

T, =1(1.128)(2.4096)" =3.275J
AT =T, -T, =8.154-3.275 AT = 4.88




)
600 mm__|
=600 mm

P 150 m&; 150 mm
S
Al 9’

| B L

REFLECT and THINK:
* As expected, when the spheres move outward, the angular velocity of the system
decreases. This is similar to an ice skater who throws her arms outward to reduce her

angular speed.



Eccentric Impact

Period of deformation Period of restitution
Impulse = I Rdt Impulsez_[lsdt

* Principle of impulse and momentum is supplemented by



[ Rat

[ Pat

e = coefficient of restitution =

These velocities are for the points of impact

Sample Problem 17.11
A 25-g bullet is fired into the side of a 10-kg square

- .— panel which is initially at rest.
| Determine 4) the angular velocity of the panel
400 mm o i500 I - immediately after the bullet becomes embedded and
LE ; | b) the impulsive reaction at A, assuming that the
,1,__,'_ ;&T\ Y bullet becomes embedded in 0.0006 s.
o <500 mm»‘

STRATEGY:



Consider a system consisting of the bullet and panel. Apply the principle of impulse
and momentum.

The final angular velocity is found from the moments of the momenta and impulses
about A.

The reaction at A is found from the horizontal and vertical momenta and impulses.

v MODELING and ANALYSIS:
AL AL .
A\ Ak A r * Consider a system
- lm ) " ) B ) Qﬁ“m consisting of the bullet and
l G G — G panel. Apply the principle of
) = impulse and momentum.
Syst Momenta, + Syst Ext Imp, ,, = Syst Momenta, . The final angular velocity
+§ moments about A: is found from the moments of

MgVp @4”‘@ [MpV, @25”]@ pl 4 the momenta and impulses
about A.



0, =(025m)m,  Tp=Empb? = (10kg)(05m)’ ~0.417kg-m?
(0.025)(450)(0.4) = (10)(0.250, )(0.25) + 0.417a,

w, =4.32rad/s

V, =(0.25)w, =1.08m/s [ [h.32rad/s
A A y
LY, /\3,,
A\ Ardy AL ro The reactions at A are
400T 250 mm found from the horizontal and
mm 5 + ’ o - _,}
G G - G vertical momenta and impulses.

Syst Momenta; + Syst Ext Imp,_,, = Syst Momenta,
w, =4.32rad/s  V,=(0.25)w, =1.08m/s

_|_
—= X components:

mgvg L ALt MV,
[0lo25[[#Bo[ [, [0looos[ [I{1p

=

Tlog[

—




A, L1150N A, V50N __

"‘T y components:
0+ A At =0 A, =0

REFLECT and THINK:

The speed of the bullet is in the range of a modern high-performance rifle. Notice that the reaction at A is over

5000 times the weight of the bullet and over 10 times the weight of the plate.
Sample Problem 17.13

A 2-kg sphere with an initial velocity of 5 m/s strikes the lower

end of an 8-kg rod AB. The rod is hinged at A and initially at rest.

The coefficient of restitution between the rod and sphere is 0.8.
Determine the angular velocity of the rod and the velocity of the

sphere immediately after impact.

STRATEGY:

» Consider the sphere and rod as a single system. Apply the principle of impulse and momentum.

« The moments about A of the momenta and impulses provide a relation between the final angular



velocity of the rod and velocity of the sphere.

The definition of the coefficient of restitution provides a second relationship between the final

angular velocity of the rod and velocity of the sphere.

Solve the two relations simultaneously for the angular velocity of the rod and velocity of the

0.6m

MRVy

i)
it
]
i

i

- | B

Syst Momenta; + Syst Ext Imp,_,, = Syst Momenta,

_@ moments about A:

meVs(1.2m)=mgV;(1.2m)+ mgvis(0.6m)+ [’

(2kg)(5m/s)(1.2m)=(2kg)v,(1.2m)+(8kg)(0.6m)w'(0.6m)
+(0.96kg-m*) o

sphere.

. MODELING and ANALYSIS:
Consider the sphere and rod as
a single system. Apply the
principle of impulse and
momentum.

. The moments about A of

the momenta and impulses
provide a relation between the
final angular velocity of the rod

and velocity of the rod.



12=2.4V +3.84 0

JHR?}{ =) —+_

Syst Momenta; + Syst Ext Imp,_,, = Syst Momenta,
» The definition of the coefficient of restitution provides a second relationship between the final
angular velocity of the rod and velocity of the sphere.

* Solve the two relations simultaneously for the angular velocity of the rod and velocity of the
sphere.

_@ Moments about A: 12 =24V, +3.840



Vg Vs =e(Vg —Vs)

*. Relative velocities: (1.2m)o" —vg = 0.8(5m/s)

Solving,
o' =3.21rad/s o' =3.21rad/s 5
vg =—-0.143m/s vg =0.143m/s ___

REFLECT and THINK
* The negative value for the velocity of the sphere after impact means that it bounces

back to the left. Given the masses of the sphere and the rod, this seems reasonable



Sample Problem 17.14

A square package of mass m moves down conveyor
belt A with constant velocity. At the end of the
conveyor, the corner of the package strikes a rigid
support at B. The impact is perfectly plastic.

Derive an expression for the minimum velocity of

conveyor belt A for which the package will rotate
about B and reach conveyor belt C
STRATEGY:

* Apply the principle of impulse and momentum to relate the velocity of the package
on conveyor belt A before the impact at B to the angular velocity about B after
impact.

« Apply the principle of conservation of energy to determine the minimum initial
angular velocity such that the mass center of the package will reach a position directly
above 5.

* Relate the required angular velocity to the velocity of conveyor belt A.



MODELING and ANALYSIS:

« Apply the principle of impulse and momentum to relate the velocity of the package

on conveyor belt A before the impact at B to angular velocity about B after impact.

mvy

Syst Momenta, + Syst Ext Imp,_,, = Syst Momenta,

+§ Moments about B:
(mv1)< )+O (mv;) ( ) v, =(§a)wz
(my;)(3a)+0= m(faa)z)(§ ) (

T _ 4

ma

—l
Il
o~

o»||—\
v
|\>



oS & «  Apply the principle of conservation of energy to determine
the minimum initial angular velocity such that the mass center
of the package will reach a position directly above 5.

To+V, =T3+V;

e ! Datum T2

12 17,2
h2 = (GB)sin(45° +15°) 2ne e
. 1 1(1 2 1 2 2
v VT/rg§a)sm 60°=0.612a =M (_ )2 +3{gma’ pj = ma’o}
) = , Position 3
Ta=0 (solving for the minimum w)

V, =Wh,
1ma +Wh —0+Wh

o :ﬂz(hs “h,)=>9(0.707a—0.612a) = 0285 g/a

ma a’

h3—fa 0.707a V, =taw,=%a,/0.285g/a




REFLECT and THINK:
 The combination of energy and momentum methods is typical of many design
analyses. If you had been interested in determining the reaction at B immediately
after the impact or at some other point in the motion, you would have needed to

draw a free-body diagram and kinetic diagram and apply Newton’s second law.



