Chapter 18. Kinetics of Rigid Bodies in Three Dimensions
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Three dimensional analyses are needed to determine the forces and moments

on the gimbals of gyroscopes, the joints of robotic welders, and the supports
of radio telescopes.
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Introduction
fH(,- . The fundamental relations developed for the

plane motion of rigid bodies may also be applied

“ma  to the general motion of three dimensional bodies.
. Therelation16 =18 yhich was used

to determine the angular momentum of a

rigid slab is not valid for general three

dimensional bodies and motion.

The current chapter is concerned with

evaluation of the angular momentum and

its rate of change for three dimensional

motion and application to effective forces,

the impulse-momentum and the work-

energy principles.



18.1A Angular Momentum of a Rigid Body in Three Dimensions

) Angular momentum of a body about its mass center,

—
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The x component of the angular momentum,
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Transformation of @ into is characterized by the inertia HG tensor for the body,
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« With respect to the principal axes of inertia,

[, 0 O
0 Iy O H.=l.o, H,=l,o, H,=l0,
0 0 T,

The angular momentum HG of 4 rigid body and its
angular velocity @ have the same direction if and only if

@ is directed along a principal axis of inertia.



) The momenta of the particles of a rigid body can be reduced
% L=mv 1O
L = linear momentum
= mv
Hg =angular momentum about G

-,

I

* The angular momentum about any other given point O'is

—

Fio —Fxmv + HG



The angular momentum of a body constrained to rotate about a

“Ti  fixed point may be calculated from

) Or,  the Fio I?Xm\7+HG
computed directly from the moments

angular momentum may be

4 x and products of inertia with respect to the Oxyz frame.

2]

_ n
Ho = X (F xv;Am)
i=1
= > [F x(&@x 7 )Am;]

I=
HX:+Ixa)x—lxya)y—lxza)Z
Hy:—Iyxa)x+Iya)y—lyza)Z
H =—l.o -1.o +| o



18.1B Principle of Impulse and Momentum
(He),

» The principle of impulse and momentum can be applied directly to the three-dimensional
motion of a rigid body,
Syst Momenta; + Syst Ext Imp;., = Syst Momenta,
» The free-body diagram equation is used to develop component and moment equations.
» For bodies rotating about a fixed point, eliminate the impulse of the reactions at O by

writing equation for moments of momenta and impulses about O.



18.1C Kinetic Energy

Kinetic energy of particles forming rigid body,

b = %mv2 + %(I_Xa))% + I_ya)§ + Lo? - 21wy,
X _ _
=2l 090, — 21 yo,0)
z
« If the axes correspond instantaneously with the
principle axes,
T = %mv2 +%(I_Xra))% +lyoy +1,0%)

» With these results, the principles of work and energy and conservation of energy may be

applied to the three-dimensional motion of a rigid body.




* Kinetic energy of a rigid body with a fixed point,
T =1(lkox + 1 oy + 1,07 -2l o0,
« If the axes Oxyz correspond instantaneously with the principle

axes Oxyz,

_1 2 2 2
T —E(Ix'a)x’ + Iy'a)y’ + Iz’a)zl)



Sample Problem 18.1
Rectangular plate of mass m that is suspended from two

wires is hit at D in a direction perpendicular to the plate.

Immediately after the impact, determine a) the velocity of

the mass center G, and b) the angular velocity of the plate.

STRATEGY:

* Apply the principle of impulse and momentum. Since the initial momenta is zero, the

system of impulses must be equivalent to the final system of momenta.

« Assume that the supporting cables remain taut such that the vertical velocity and the
rotation about an axis normal to the plate is zero.

* Principle of impulse and momentum yields to two equations for linear momentum and
two equations for angular momentum.

» Solve for the two horizontal components of the linear and angular velocity vectors.



4Ty At

MODELING and ANALYSIS:

Apply the principle of impulse and momentum. Since the initial momenta is zero, the
system of impulses must be equivalent to the final system of momenta.
Assume that the supporting cables remain taut such that the vertical velocity and the
rotation about an axis normal to the plate is zero.

V=i +v,k @ = 0,0 +oy]
Since the x ), and z axes are principal axes of inertia,

— T - — 7_i 2 - i 2 -
Hg = lyoyl + lyoy ) =5 mb oyl +5ma‘oy |
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* Principle of impulse and momentum yields two equations for linear momentum and two
equations for angular momentum.

» Solve for the two horizontal components of the linear and angular velocity vectors.

0=mv, —FAt=my 7PFAt=H, —3aFAt=H,
v, =0 v, =—FAt/m = mba, = L ma’,
vV =—(FAt/m)k w, = 6FAt/mb o, =—(6FAt/ma)




REFLECT and THINK:
* Equating the y components
of the impulses and

momenta and their

moments about the z axis, z/
you can obtain  two
additional equations that
yield Ta = Tg = %W, K
« This verifies that the wires
remain taut and that the
initial assumption was
correct. If the impulse were
at G, this would reduce to a

two-dimensional problem.



Sample Problem 18.2

A homogeneous disk of mass m is mounted on an axle

OG of negligible mass. The disk rotates counter-clockwise
at the rate wy about OG.
Determine: 4) the angular velocity of the disk, b) its

angular momentum about O, ¢ its kinetic energy, and d)

the vector and couple at G equivalent to the momenta of

the particles of the disk.
STRATEGY:

» The disk rotates about the vertical axis through O as well as about OG. Combine the
rotation components for the angular velocity of the disk.

« Compute the angular momentum of the disk using principle axes of inertia and noting
that O is a fixed point.

» The kinetic energy is computed from the angular velocity and moments of inertia.

« The vector and couple at G are also computed from the angular velocity and moments

of inertia.



| MODELING and ANALYSIS:
» The disk rotates about the vertical axis through O as well as

about OG. Combine the rotation components for the angular

velocity of the disk.

D= +wy]
Noting that the velocity at Cis zero,
Ve =@ xTc =0
0= (i +,])x(LT -1j)
= (La)2 — ra)l)lz
Wy =Twy/L

o=wi—(ro/L)j




« Compute the angular momentum of the disk using principle

axes of inertia and noting that Ois a fixed point.
Ho = lyoyl + lyoy J + 1,0,k

H, = Lo =(3mr’)e,

H, =10, =(m +imr®)(-ro,/L)

H =l o :(mL2 +%mr2)0:0

Ho =3mrlai —m(L*+4r°)(rey/L)

The kinetic energy is computed from the angular velocity and moments of inertia.
T =1{1,0f + 1,02 +1,0?)

[mr wf +m(L2+ X ra;l/L)z]




The vector and couple at G are also computed from

the angular velocity and moments of inertia.

mV = mrayk

- d r e
He =%mr2a)1(| o0 jj

REFLECT and THINK:

. If the mass of the axle were not negligible and it was instead
modeled as a slender rod with a mass My, it would also contribute
to the kinetic energy

Taxe = Y2(1/3 Mael?) w22 and the momenta

Haxe = Y2(1/3 Mayel?) w2 of the system.



18.2 Motion of a Rigid Body in Three Dimensions

18.2A Rate of Change of Angular Momentum

Y

H %

Angular momentum and its rate of change are taken with

respect to centroidal axes GX'Y'Z’ of fixed orientation.

—

Transformation of @ into G is independent of the
system of coordinate axes.
Convenient to use body fixed axes Gxyz where moments

and products of inertia are not time dependent.

» Define rate of change of change of Hg with respect

to the rotating frame,




Then,

18.2B Euler’s Eqs of Motion

(Am,)a;

With €2 =@ and Gxyz chosen to correspond to the

principal axes of inertia,
2 Mg = (HG)nyz +02xHg

Euler's Equations:



> My =Tyay —(I; - Ty oo

System of external forces and effective forces are equivalent for general
three dimensional motion.

r\ﬂfiu .

System of external forces are equivalent to the vector and couple,
7. Ma and I:iG




18.2C,D Motion About a Fixed Point or a Fixed Axis

! : For a rigid body rotation around a fixed point,

— (IjIO)Oxyz +02xHqg

For a rigid body rotation around a fixed axis,

H =-1,0 H, =-1,0 H, =lo




If symmetrical with respect to the xy plane,
Zl\/lx =0 Zl\/ly =0 ZI\/IZ =1,a

« If not symmetrical, the sum of external moments will not be zero, even if «&

2 2
2 My = yz @ ZMyzlxza) 2.M; =0

» A rotating shaft requires both static (a) - O) (a) 7 O)

and dynamic balancing

to avoid excessive vibration and bearing reactions.




Sample Problem 18.3

|§ Rod AB with mass m = 20 kg is pinned at A to a vertical axle which
= rotates with constant angular velocity @ = 15 rad/s. The rod
@ /,.f_;;B\ position is maintained by a horizontal wire BC.

e
Ve 4
4
e
e 4
e 4
e 4

/ Determine the tension in the wire and the reaction at A.
// Jo =X Fry

STRATEGY:

 Evaluate the system of effective forces by reducing them to a vector Ma attached at G

and couple ale}
» Expressing that the system of external forces is equivalent to the system of effective
forces, write vector expressions for the sum of moments about A4 and the summation of

forces.
« Solve for the wire tension and the reactions at A.



MODELING and ANALYSIS:

® * Evaluate the system of effective forces by reducing them to

vector Ma attached at G and couple Ho:

a
a=a :—ra)zf:—(%[,cosﬁ)aff

=—(112.5m/s?)1
ma =20(-112.5)=—(2250N)1




_ . _ _ )
L=4m? T =0 [ =imL
o, =-wCosf o,=wsinf o, =0
H, =—4ml’wcos T
Ho=(Hs) +oxH,
Gxyz
:O+(—a)cosﬂf+a)sinﬂj)x(%mﬁa)cosﬂf)

= LmL’®” sin Bcos Bk =(649.5N-m)k



Expressing that the system of external forces is equivalent to
the system of effective forces, write vector expressions for

the sum of moments about 4 and the summation of forces.

S M =3 (Mg

Z; W) ﬁ‘va Y 1.7323 x(~TI')+0.51 x(~196.27 ) = 0.866J x (22501 ) + 649.5K
V4 (1.732T -98.1)K = (1948.5 + 649.5)K
= Tl;“l/i% fie=6495K 3" F :Z(lf) =378
0.866 m eff
. - AT +AT+AK 16131 ~196.27 = 22501
z A=—(697 N)T +(196.2 N)J
REFLECT and THINK:

* You could have obtained the value of T from H, and Eq. (18.28). Even though the rod
rotates with a constant angular velocity, the asymmetry of the rod causes a moment
about the z axis. Note that we calculated the inertial term H4 by adding r X ma and the

couple HG



Gyroscopes are used in the navigation system of the Hubble telescope, and can
also be used as sensors. Modern gyroscopes can also be MEMS (Micro Electro-

Mechanical System) devices, or based on fiber optic technology.
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* Motion of a Gyroscope. Eulerian Angles *

A gyroscope consists of a rotor with its mass center fixed in space
but which can spin freely about its geometric axis and assume any
orientation.

From a reference position with gimbals and a reference diameter of
the rotor aligned, the gyroscope may be brought to any orientation

through a succession of three steps:

a) rotation of outer gimbal through ¢ about AA;
b) rotation of inner gimbal through ¢ about B85,
Q) rotation of the rotor through ¥ about CC

- c® OV : Eulerian Angles

¢ = rate of precession

@ = rate of nutation

¥ = rate of spin



The angular velocity of the gyroscope,

@ =g¢K +07 +¥k

with K =—sin @i +cos ok

& =—¢sin 01 + 0] +(W +gcoso)k

Equation of motion,

S Nio = (Ho Joy, +2x Ao

Ho =—1'gsinoi +1'0]+1 (¥ +gcosd)k
Q=¢K+0]

> M, =—I'(§sin0+20pcos0)+16( ¥ +dcoso)

> M, =1"(6—§ sinOcos6)+ I gsin 6 (¥ +cos )

SM, = %(‘P+¢Zcos@)



Steady Precession of a Gyroscope

Z

Steady precession,

N2 &,y are constant

@ =—$sindi + w,k
Ho =—1'dsinéi + lo,k
Q =—¢sindi + gcosdk

@ sin @i

ZMO Z.QX I:io
= (lw, — 1'gcos8)psin O]

Couple is applied about an axis perpendicular to the precession and
spin axes




When the precession and spin axis are at a right angle,

__—Precession axis

b 6 =90°

Couple axis

> Mg =1%4]
Gyroscope will precess about an axis perpendicular to both the

spin axis and couple axis.




Motion of an Axisymmetrical Body Under No Force

. Consider motion about its mass center of an axisymmetrical
Fixed direction oy

1y

body under no force but its own weight, e.g., projectiles,

He & .
e | satellites, and space craft.

Hg =0  Hg =constant

—

Define the Z axis to be aligned with HGand Z in a rotating
axes system along the axis of symmetry. The x axis is chosen

to lie in the Zz plane.

HG sin@
- ' v = —
Hy =—Hgsinf =l'w, X K
— — ’ —
H,=0=1'0, @, —HO )
H,=Hscos0=lo, 4 =60
* 9 = constant and body is in steady precession. |
0 I
-2 =tany =—tand
* Note: @7




Fized dire"“f’“\/z: « Two cases of motion of an axisymmetrical body which under
7 no force which involve no precession:

« Body set to spin about its axis of symmetry,

wy =H, =0

& and Hg arealigned and body keeps spinning
about its axis of symmetry.

*  Body is set to spin about its transverse axis,

x a)z = HZ = O
@ and H are aligned

and body keeps spinning about the given transverse axis.




The motion of a body about a fixed point (or its mass center) can be
represented by the motion of a body cone rolling on a space cone.

In the case of steady precession the two cones are circular.

X _—
« [ < I’ Case of an elongated body. y <6 and the vector @
lies inside the angle ZGz The space cone and body cone are tangent
externally; the spin and precession are both counterclockwise from

/” the positive z axis. The precession is said to be direct

@Kgp « /> I Case of a flattened body. » <6 and the vector @ lies outside the

angle ZGz. The space cone is inside the body cone; the spin and precession

have opposite senses. The precession is said to be retrograde.

Body cone



