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Three dimensional analyses are needed to determine the forces and moments 

on the gimbals of gyroscopes, the joints of robotic welders, and the supports 

of radio telescopes.  

 

 

 

 

 

 

 

 

 

 



 

Introduction 

• The fundamental relations developed for the 

plane motion of rigid bodies may also be applied 

to the general motion of three dimensional bodies. 

• The relation  which was used 

 to determine the angular momentum of a  

 rigid slab is not valid for general three 

 18.1                dimensional bodies and motion. 

     The current chapter is concerned with      

     evaluation of the angular momentum and      

     its rate of change for three dimensional      

     motion and application to effective forces,      

     the impulse-momentum and the work-     

     energy principles. 
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18.1A Angular Momentum of a Rigid Body in Three Dimensions 

Angular momentum of a body about its mass center, 

 
The x component of the angular momentum, 

 
 

 

 

 

( ) ( )[ ]∑∑
==

′××′=×′=
n

i
iii

n

i
iiiG mrrmvrH

11
Δ



ω∆

( ) ( )[ ]

( ) ( )[ ]

( ) ∑∑∑

∑

∑

===

=

=

−−+=

−−−=

′×−′×=

n

i
iiiz

n

i
iiiy

n

i
iiix

n

i
iixiziiyixi

n

i
iyiiziix

mxzmyxmzy

mzxzxyy

mrzryH

111

22

1

1

ΔΔΔ

Δ

Δ

ωωω

ωωωω

ωω 

( )2 2
x x y zH y z dm xy dm zx dmω ω ω= + − −∫ ∫ ∫

x x xy y xz zI I Iω ω ω= + − −

y yx x y y yz z

z zx x zy y z z

H I I I

H I I I

ω ω ω

ω ω ω

= − + −

= − − +



Transformation of   into is characterized by the inertia tensor for the body, 

 

 

 

• With respect to the principal axes of inertia, 

 

 

 

       The angular momentum  of a rigid body and its  

      angular velocity  have the same direction if, and only if,  

 is directed along a principal axis of inertia. 
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The momenta of the particles of a rigid body can be reduced 

to: 

 

 

 
 

• The angular momentum about any other given point O is  
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The angular momentum of a body constrained to rotate about a 

fixed point may be calculated from 

• Or, the angular momentum may be 

computed directly from the moments 

and products of inertia with respect to the Oxyz frame. 
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18.1B Principle of Impulse and Momentum 

 
• The principle of impulse and momentum can be applied directly to the three-dimensional 

motion of a rigid body, 

Syst Momenta1 + Syst Ext Imp1-2 = Syst Momenta2 

• The free-body diagram equation is used to develop component and moment equations. 

• For bodies rotating about a fixed point, eliminate the impulse of the reactions at O by 

writing equation for moments of momenta and impulses about O. 

 

 



18.1C Kinetic Energy 

Kinetic energy of particles forming rigid body, 

 
• If the axes correspond instantaneously with the   

       principle axes, 

 

 

• With these results, the principles of work and energy and conservation of energy may be 

applied to the three-dimensional motion of a rigid body. 
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• Kinetic energy of a rigid body with a fixed point, 

 
• If the axes Oxyz correspond instantaneously with the principle 

axes Ox’y’z’, 
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Sample Problem 18.1 

Rectangular plate of mass m that is suspended from two 

wires is hit at D in a direction perpendicular to the plate. 

Immediately after the impact, determine a) the velocity of 

the mass center G, and b) the angular velocity of the plate. 

 

 

STRATEGY:  

• Apply the principle of impulse and momentum.  Since the initial momenta is zero, the 

system of impulses must be equivalent to the final system of momenta. 

• Assume that the supporting cables remain taut such that the vertical velocity and the 

rotation about an axis normal to the plate is zero. 

• Principle of impulse and momentum yields to two equations for linear momentum and 

two equations for angular momentum. 

• Solve for the two horizontal components of the linear and angular velocity vectors. 



 
MODELING and ANALYSIS:  

• Apply the principle of impulse and momentum.  Since the initial momenta is zero, the 

system of impulses must be equivalent to the final system of momenta. 

• Assume that the supporting cables remain taut such that the vertical velocity and the 

rotation about an axis normal to the plate is zero. 

           
 Since the x, y, and z axes are principal axes of inertia, 
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• Principle of impulse and momentum yields two equations for linear momentum and two 

equations for angular momentum. 

• Solve for the two horizontal components of the linear and angular velocity vectors. 
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REFLECT and THINK:  

• Equating the y components 

of the impulses and 

momenta and their 

moments about the z axis, 

you can obtain two 

additional equations that 

yield TA = TB = ½W.  

• This verifies that the wires 

remain taut and that the 

initial assumption was 

correct. If the impulse were 

at G, this would reduce to a 

two-dimensional problem. 
 



Sample Problem 18.2 

A homogeneous disk of mass m is mounted on an axle 

OG of negligible mass.  The disk rotates counter-clockwise 

at the rate w1 about OG. 

Determine:  a) the angular velocity of the disk, b) its 

angular momentum about O, c) its kinetic energy, and d) 

the vector and couple at G equivalent to the momenta of 

the particles of the disk. 

STRATEGY:  

• The disk rotates about the vertical axis through O as well as about OG.  Combine the 

rotation components for the angular velocity of the disk. 

• Compute the angular momentum of the disk using principle axes of inertia and  noting 

that O is a fixed point. 

• The kinetic energy is computed from the angular velocity and moments of inertia. 

• The vector and couple at G are also computed from the angular velocity and moments 

of inertia. 



MODELING and ANALYSIS:  

• The disk rotates about the vertical axis through O as well as 

about OG.  Combine the rotation components for the angular 

velocity of the disk. 

 
      Noting that the velocity at C is zero, 
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• Compute the angular momentum of the disk using principle 

axes of inertia and  noting that O is a fixed point. 

 
 

 

 
 

 

• The kinetic energy is computed from the angular velocity and moments of inertia. 
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The vector and couple at G are also computed from 

the angular velocity and moments of inertia. 

 
 

 

 
 

 

REFLECT and THINK: 

• If the mass of the axle were not negligible and it was instead 

modeled as a slender rod with a mass Maxle, it would also contribute 

to the kinetic energy  

Taxle = ½(1/3 MaxleL2) ω2
2 and the momenta  

Haxle = ½(1/3 MaxleL2) ω2 of the system. 
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18.2 Motion of a Rigid Body in Three Dimensions 

       

 

     

 

 18.2A Rate of Change of Angular Momentum 

Angular momentum and its rate of change are taken with 

respect to centroidal axes GX’Y’Z’ of fixed orientation. 

Transformation of   into  is independent of the 

system of coordinate axes. 

Convenient to use body fixed axes Gxyz where moments 

and products of inertia are not time dependent. 

• Define rate of change of change of    with respect 

to the rotating frame, 
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     Then, 

 

 

18.2B Euler’s Eqs of Motion  

With  and Gxyz chosen to correspond to the 

principal axes of inertia,  

 
 Euler’s Equations: 
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• System of external forces and effective forces are equivalent for general 

three dimensional motion. 

• System of external forces are equivalent to the vector and couple, 
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18.2C,D Motion About a Fixed Point or a Fixed Axis 

For a rigid body rotation around a fixed point, 

 
For a rigid body rotation around a fixed axis, 

x xzH I ω= −     y yzH I ω= −      z zH I ω=  
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If symmetrical with respect to the xy plane, 

 
• If not symmetrical, the sum of external moments will not be zero, even if  α   

= 0, 

 
 

• A rotating shaft requires both static and dynamic  balancing 

to avoid excessive vibration and bearing reactions. 
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Sample Problem 18.3 

Rod AB with mass m = 20 kg is pinned at A to a vertical axle which 

rotates with constant angular velocity ω  = 15 rad/s.  The rod 

position is maintained by a horizontal wire BC.  

Determine the tension in the wire and the reaction at A. 

 

 

 

STRATEGY:  

• Evaluate the system of effective forces by reducing them to a vector  attached at G 

and couple  

• Expressing that the system of external forces is equivalent to the system of  effective 

forces, write vector expressions for the sum of moments about A and the summation of 

forces.   

• Solve for the wire tension and the reactions at A. 
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MODELING and ANALYSIS:  

• Evaluate the system of effective forces by reducing them to 

a vector  attached at G and couple  
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Expressing that the system of external forces is equivalent to 

the system of  effective forces, write vector expressions for 

the sum of moments about A and the summation of forces.   
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Gyroscopes are used in the navigation system of the Hubble telescope, and can 

also be used as sensors .  Modern gyroscopes can also be MEMS (Micro Electro-

Mechanical System) devices, or based on fiber optic technology. 

 

 

 

 

 

 

 

 

 

 



* Motion of a Gyroscope.  Eulerian Angles * 

A gyroscope consists of a rotor with its mass center fixed in space 

but which can spin freely about its geometric axis and assume any 

orientation. 

From a reference position with gimbals and a reference diameter of 

the rotor aligned, the gyroscope may be brought to any orientation 

through a succession of three steps: 

 

a) rotation of outer gimbal through φ  about AA’, 

b) rotation of inner gimbal through θ  about BB’, 

c) rotation of the rotor through ψ  about CC’.  

• φ θ ψ  : Eulerian Angles   
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The angular velocity of the gyroscope, 

 
 

 

        

Equation of motion, 
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Steady Precession of a Gyroscope 

Steady precession, 

 

 
 

 

 
Couple is applied about an axis perpendicular to the precession and 

spin axes  
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When the precession and spin axis are at a right angle, 

 
Gyroscope will precess about an axis perpendicular to both the 

spin axis and couple axis. 
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Motion of an Axisymmetrical Body Under No Force 

Consider motion about its mass center of an axisymmetrical 

body under no force but its own weight, e.g., projectiles, 

satellites, and space craft. 

 

Define the Z axis to be aligned with and z in a rotating 

axes system along the axis of symmetry.  The x axis is chosen 

to lie in the Zz plane. 

     
 

 

• θ  = constant and body is in steady precession. 

• Note:        
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• Two cases of motion of an axisymmetrical body which under 

no force which involve no precession: 

• Body set to spin about its axis of symmetry, 

 

and body keeps spinning  

about its axis of symmetry. 

 

• Body is set to spin about its transverse axis, 

 
and body keeps spinning about the given transverse axis. 
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The motion of a body about a fixed point (or its mass center) can be 

represented by the motion of a body cone rolling on a space cone.  

In the case of steady precession the two cones are circular. 

 

 

• I < I’.  Case of an elongated body.  γ θ<   and the vector ω   

lies inside the angle ZGz.  The space cone and body cone are tangent 

externally; the spin and precession are both counterclockwise from 

the positive z axis.  The precession is said to be direct.  

• I > I’.  Case of a flattened body. γ θ<  and the vector ω  lies outside the 

angle ZGz.  The space cone is inside the body cone; the spin and precession 

have opposite senses.  The precession is said to be retrograde.  


