

Chapter 2. Probability and Statistics in PHM

Prognostics and Health Management (PHM)

Byeng D. Youn

System Health & Risk Management Laboratory Department of Mechanical & Aerospace Engineering Seoul National University

CONTENTS

1 Uncertainty

Δ

2 Characterization of Uncertainty

3 Types of Probability Distribution

Estimation of Parameter and Distribution

Bayesian Theorem

1. Uncertainty

Uncertainty Analytics (1)

• Uncertainty Types

Aleatory Uncertainty	Epistemic Uncertainty	
 Inherent randomness associated with physical systems Alea: (Latin Word) The rolling of dice Irreducible with the acquisition of additional data Ex) material properties, product geometry, loading condition, boundary condition, 	 Due to the lack of knowledge The smaller sample size, the wider confidence interval in statistical parameter estimation Reducible with additional information Ex) manufacturing tolerance, material property, expert opinion in case of knowledge absence, 	
30000 20000 10000 Henty of Data	No Data No Data Insufficient Data	

1. Uncertainty

Uncertainty Analytics (2)

• Uncertainty Sources

Uncertainty Sources	Meaning	
Physical Uncertainty	 Inherent variation in physical quantity Description by probability distribution Ex) material property, manufacturing tolerance, loading condition, boundary condition, 	
Statistical Uncertainty	 Imprecise statistical estimation (probability distribution type, parameters,) Only depending on the sample size and location Ex) lack of data, improper sampling 	
Modeling Uncertainty	 Uncertainty from invalid modeling Ex) improper approximation, inaccurate boundary condition, 	

Data Collection

- Population
 - All observation of a random variable
 - Impossible to collect all population
 - Representative sample is collected instead
- Sample
 - Gather information on population
 - A relatively large sample size is always preferable

Data Classification

Continuous	Discrete	
- The values can take on any value within a finite or infinite interval	- The values belong to the set are distinct and separate	
- Measured	- Counted	
- ex. Failure time	- ex. Number of defective specimen	
< < < < < < < < < < < < < < < < < < <	$\left \begin{array}{ccc} \bullet \bullet$	

Characterizing Descriptors

• Measure of Central Tendency

Mean	Mean Median	
 Location of centroid First moment (µ = E[X]) 	 Middle value of a set of data 	 The most frequentist value in a data set
Ex. Data set {1 2 3 4 5 5} $\rightarrow \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1+2+3+4+5+5}{6}$ $= \frac{10}{3}$	Ex. Data set {1 2 3 4 5 5} $\rightarrow \frac{3+4}{2} = 3.5$	Ex. Data set {1 2 3 4 5 5} → 5

Quantifying Descriptors

- Quantile & Percentile
 - The *x* value at which the CDF takes a value α is called the α -quantile for 100 α percentile.

$$F(x) = P(x \le x_{\alpha}) = \alpha$$

- Quartile
 - Data are grouped into four equal parts. Each quartile includes 25% of the data

Quantifying Descriptors

• Measure of Dispersion

Variance	Standard Deviation	Coefficient of Variation	
- Mean of squared deviation $Var(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_{x_i})^2$ - The second Moment $E[(\mathbf{X} - \mu)^2] = E(\mathbf{X}^2) - E(\mathbf{X})^2$	- Degree of dispersion of same unit with data $\sigma_{\mathbf{X}} = \sqrt{\operatorname{Var}(\mathbf{X})}$	- Non-dimensional term of standard deviation - COV(X)=0 : deterministic variable $\delta_{X} = \frac{\sigma_{X}}{\mu_{X}}$	
Ex. Data set {1 2 3 4 5 5} $\rightarrow \frac{1}{6}$ {(3.333 - 1) ² + +	Ex. Data set $\{1 \ 2 \ 3 \ 4 \ 5 \ 5\}$ $\rightarrow \sqrt{2.6667} = 1.633$	Ex. Data set {1 2 3 4 5 5} $\rightarrow \frac{1.633}{3.333} = 0.4899$	

Quantifying Descriptors

• Measure of Asymmetry

- Skewness =
$$\frac{1}{n}\sum_{i=1}^{n} (x_i - \mu_{x_i})$$

- The third moment (used as a **PHM feature**)
- Skewness Coefficient = $\theta_X = \frac{skewness}{\sigma_X^3}$

< Positively Skewed >

< Symmetric >

3

< Negatively skewed >

 $\pmb{\theta_X} > 0$

– The fourth moment

- Used as a PHM feature

• Measure of Flatness (Peakedness)

- Kurtosis = $\frac{1}{n}\sum_{i=1}^{n} (x_i - \mu_{x_i})^4$

- Kurtosis Coefficient = $\frac{Kurtosis}{\sigma_x^4}$

Probability Distribution

- Continuous
 - Probability Density Function (PDF) : $P(x_1 < X < x_2) = \int_{x_1}^{x_2} f_X(x) dx$
 - Cumulative Density Function (CDF) : $P(X < x) = F_X(x) = \int_{-\infty}^{x} f_X(x) dx$

- Discrete
 - Probability Mass Function (PMF) : $P(X = x) = p_X(x)$
 - Cumulative Density Function (CDF) : $P(X < x) = \sum_{x_i < x} p_X(x_i)$

Multivariate Distribution

• Joint Distribution

Multivariate Distribution

• Marginal PDF & PMF

The marginal distribution of a random variable X is obtained from the joint probability distribution of two random variables X and T by summing or integrating over the values of the random variable Y.

Covariance and Correlation

• Covariance

- Degree of linear relationship between two random variables

$$Cov(X,Y) = E[(X - \mu_x)(Y - \mu_y)] = E(XY) - E(X)E(Y)$$

- $\operatorname{Cov}(X, Y) = 0$ when (linearly) independent
- Correlation Coefficient
 - Nondimensionalizing the covariance

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

- Range between -1 and +1

3. Types of Probability Distribution

Normal (Gaussian) Distribution

• Probability Density Function

where μ : Mean of *X* σ : Standard deviation of *X*

- The PDF of normal distribution is symmetry
- Two parameters which are mean (μ) and standard deviation (σ) defines the PDF

• Properties
$$(\mathbf{X} \sim N(\mathbf{\mu}, \boldsymbol{\sigma}^2), X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2))$$

 $- Z = \alpha \mathbf{X} + \beta \rightarrow Z \sim N(\alpha \mathbf{\mu} + \beta, \alpha^2 \boldsymbol{\sigma}^2)$
 $- Z = X_1 + X_2 \rightarrow Z \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2 + 2Cov(X_1, X_2))$
 $- Z = \frac{\mathbf{X} - \mu}{\sigma} \rightarrow Z \sim N(0, 1)$

- Z~N(0,1), Z is called standard Gaussian and $f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$

3. Types of Probability Distribution

Lognormal Distribution

• Probability Density Function

- Closely related to the normal distribution

- Defined for positive values only
- Properties
 - λ: Mean of ln*X*, ζ: Variance of ln *X*
 - μ: Mean of *X*, σ: Standard deviation of *X*, $\delta = \sigma/\mu$: Coefficient of Variation of *X*

$$-\zeta = \sqrt{\ln(1+\delta^2)}, \lambda = \ln \mu - 0.5\ln(1+\delta^2)$$
$$-\mu = \exp(\lambda + 0.5\zeta^2), \delta = \sigma/\mu = \sqrt{\exp(\zeta^2) - 1}$$

3. Types of Probability Distribution

Beta Distribution

 $f_X(x)$ Probability Density Function $f_X(x) = \frac{1}{B(q,r)} \frac{(x-a)^{q-1}(b-x)^{r-1}}{(b-a)^{q+r-1}}, a < x < b$ • Properties - Variable is bounded \rightarrow a < x < b - Parameter relationship X q = r = 0.5 q = 5, r = 1 q = 1, r = 3 q = 2, r = 2 q = 2, r = 5 $E(X) = a + \frac{q}{a+r}(b-a)$ $Var(X) = \frac{qr}{(q+r)^2(q+r+1)}(b-a)^2$ - Standard beta distribution \rightarrow substitute a=0, b=1 $f_X(x) = \frac{1}{B(a,r)} x^{q-1} (1-x)^{r-1}$ q, r = shape parameter– Beta function $B(q,r) = \int_{0}^{1} x^{q-1} (1-x)^{r-1} dx = \frac{\Gamma(q)\Gamma(r)}{\Gamma(q+r)}$

 $\lambda = 0.5$

 $\lambda = 1$ $\lambda = 1.5$

• X

3. Types of Probability Distribution

Exponential Distribution

- Probability Density Function
- Properties

- Parameter and Variable is bounded $\rightarrow 0 < \lambda, 0 < x$

- Parameter relationship

$$E(X) = \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2}$$
– Memorylessness

$$P(X > s + t | X > s) = P(X > t)$$

 $f_X(x) = \lambda e^{-\lambda x}$

 $f_X(x)$

Weibull Distribution

• Probability Density Function

$$f_X(x) = \frac{\mathrm{k}}{\lambda} \left(\frac{x}{\lambda}\right)^{\mathrm{k}-1} e^{-\left(\frac{x}{\lambda}\right)^{\mathrm{k}}}$$

- Generalization of the exponential distribution
- Properties
 - Widely used to model the TTF distribution

$$MTTF = \frac{\Gamma(1+1/k)}{\lambda}$$

$$f_X(x)$$

$$\lambda = 1, k = 2$$

$$\lambda = 1, k = 1$$

$$\lambda = 0.5, k = 1$$

Parameter (**θ**)

- A property of an unknown probability distribution.
- For example, mean, variance, or a particular quantile
- One of the goals of statistical inference is to estimate them.
- Examples
 - Mean of Normal Distribution: μ
 - Standard Deviation of Normal Distribution: σ^2

Statistics

- To denote a quantity that is a property of a sample.
- For example, sample mean, a sample variance, or a particular sample quantile.
- Statistics can be used to estimate unknown parameters.
- Examples

- Sample mean :
$$\overline{\mathbf{x}} = \frac{x_1 + \dots + x_n}{n}$$

- Sample variance : $\mathbf{s}^2 = \frac{\sum_{i=1}^n (x_i - \overline{\mathbf{x}})^2}{n-1}$

Point Estimation

- Minimum Mean Square Error Estimation
- Maximum Likelihood Estimation
- Probability Distribution Estimation
 - Method of Moments
 - Goodness of Fit (Chi-square, K-S test)

Interval Estimation

Hypothesis Testing

Point Estimation of Parameters

- Unbiased and Biased Point Estimates
 - θ : statistical parameter (fixed constant)
 - $\widehat{\boldsymbol{\theta}}$: a statistics which serves as an estimator of $\boldsymbol{\theta}$
 - Unbiased if $E(\widehat{\boldsymbol{\theta}}) = \boldsymbol{\theta}$
 - Not unbiased, bias= $E(\widehat{\boldsymbol{\theta}}) \boldsymbol{\theta}$
 - To make $E(\widehat{\theta})$ with θ consistent for eliminating the bias which expresses systematic error.

- Point Estimate of a Population Mean
 - If $X_1, ..., X_n$ is a sample of observations from a probability distribution with a mean μ , then the sample mean $\hat{\mu} = \overline{X}$ is an unbiased point estimate of the population mean μ .
- Point Estimate of a Population Variance
 - If $X_1, ..., X_n$ is a sample of observations from a probability distribution with a variance σ^2 , then the sample variance $\hat{\sigma}^2 = S^2 = \frac{\sum_{i=1}^n (x_i \bar{x})^2}{n-1}$ is an unbiased point estimate of the population variance σ^2 .

Proof. $E(S^{2}) = \frac{1}{n-1} E(\sum_{i=1}^{n} (x_{i} - \bar{x})^{2})$ $= \frac{1}{n-1} E(\sum_{i=1}^{n} (x_{i} - \mu) - (\bar{x} - \mu))^{2})$ $= \frac{1}{n-1} E(\sum_{i=1}^{n} (x_{i} - \mu)^{2} - 2(\bar{x} - \mu) \sum_{i=1}^{n} (x_{i} - \mu) + n(\bar{x} - \mu)^{2})$ $= \frac{1}{n-1} E(\sum_{i=1}^{n} (x_{i} - \mu)^{2} - n(\bar{x} - \mu)^{2})$ $= \frac{1}{n-1} E(\sum_{i=1}^{n} (x_{i} - \mu)^{2}) - n E((\bar{x} - \mu)^{2})$ $= \frac{1}{n-1} (n\sigma^{2} - n(\frac{\sigma^{2}}{n})) = \sigma^{2}$

Minimum Mean Square Error Estimation (MMSE)

- The average of the square of the errors between the estimator and what is estimated.
- Because of randomness or because the estimator doesn't account for information that could produce a more accurate estimate.

$$MSE(\widehat{\mathbf{\theta}}) = E((\widehat{\mathbf{\theta}} - \mathbf{\theta})^2) = E[(\widehat{\mathbf{\theta}} - E(\widehat{\mathbf{\theta}}) + E(\widehat{\mathbf{\theta}}) - \mathbf{\theta})]^2 = E[((\widehat{\mathbf{\theta}} - E(\widehat{\mathbf{\theta}}))^2 + 2(\widehat{\mathbf{\theta}} - E(\widehat{\mathbf{\theta}}))(E(\widehat{\mathbf{\theta}}) - \mathbf{\theta}) + (E(\widehat{\mathbf{\theta}}) - \mathbf{\theta})^2] = E[((\widehat{\mathbf{\theta}} - E(\widehat{\mathbf{\theta}}))^2] + 2(E(\widehat{\mathbf{\theta}}) - \mathbf{\theta})E(\widehat{\mathbf{\theta}} - E(\widehat{\mathbf{\theta}})) + (E(\widehat{\mathbf{\theta}}) - \mathbf{\theta})^2] = E((\widehat{\mathbf{\theta}} - E(\widehat{\mathbf{\theta}}))^2 + (E(\widehat{\mathbf{\theta}}) - \mathbf{\theta})^2 = Var(\widehat{\mathbf{\theta}}) + bias^2$$

• Example

When $\widehat{\theta_1} \sim N(1.2\theta, 0.02\theta^2), \widehat{\theta_2} \sim N(0.9\theta, 0.04\theta^2)$, Mean Square Error of each estimator $\rightarrow \operatorname{Var}(\widehat{\theta_1}) < \operatorname{Var}(\widehat{\theta_2})$ $\operatorname{bias}_1 = \operatorname{E}(\widehat{\theta_1}) - \theta = 0.2 \ \theta$, $\operatorname{bias}_2 = \operatorname{E}(\widehat{\theta_2}) - \theta = -0.1 \ \theta$ $\operatorname{MSE}(\widehat{\theta_1}) = \operatorname{Var}(\widehat{\theta_1}) + (\operatorname{bias}_1)^2 = 0.06\theta^2$, $\operatorname{MSE}(\widehat{\theta_2}) = \operatorname{Var}(\widehat{\theta_2}) + (\operatorname{bias}_2)^2 = 0.05\theta^2$ $\rightarrow \operatorname{MSE}(\widehat{\theta_1}) > \operatorname{MSE}(\widehat{\theta_2})$

Maximum Likelihood Estimation (MLE)

• Likelihood function can be defined as

 $L(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n | \boldsymbol{\theta}) = f_X(\mathbf{x}_1 | \boldsymbol{\theta}) f_X(\mathbf{x}_2 | \boldsymbol{\theta}) \dots, f_X(\mathbf{x}_n | \boldsymbol{\theta}).$

 $f_X(x_i|\mathbf{\theta})$ = The PDF values of random variable X at x_i when statistical parameter is given as $\mathbf{\theta}$

• Maximum Likelihood Estimation (MLE) is to find the θ^* that maximizes the likelihood function, so the following equation is satisfied.

$$\frac{\partial L}{\partial \boldsymbol{\theta}}|_{\boldsymbol{\theta}=\boldsymbol{\theta}^*}=0$$

Ex) There's a big box with some black and white balls. But we don't know the number of the balls. Someone picked up a ball 10 times by sampling with replacement. And he picked up black balls 1 time, and white balls 9 times. Likelihood of black ball p?

Sol.)
$$L = p(1-p)^9$$

 $\frac{\partial L}{\partial p} = (1-p)^9 - 9p(1-p)^8 = 0 \qquad \therefore p = \frac{1}{10}$

Method of Moments

- Basic concept : All the parameters of a distribution can be estimated using the information on its moment.
- Parameters of a distribution have a definite relation with the moments of the random variable.

Distribution	Relation to mean and variance	Inverse Relation
Normal	$E(X) = \mu_x$, $Var(X) = \sigma_x^2$	$\mu_X = E(X), \sigma_X = \sqrt{Var(X)}$
Lognormal	$E(X) = \exp(\lambda + \frac{1}{2}\zeta^2)$ $Var(X) = E^2(X)[e^{\zeta^2} - 1]$	$\lambda = \ln E(X) - 0.5 \ln(1 + \delta^2)$ $\zeta = \sqrt{\ln(1 + \delta^2)}$ $\delta = \sqrt{Var(X)} / E(X)$
Weibull	$E(X) = \lambda \Gamma(1 + \frac{1}{k})$ $Var(X) = \lambda^2 \left[\Gamma\left(1 + \frac{2}{k}\right) - \left(\Gamma\left(1 + \frac{1}{k}\right)\right)^2 \right]$	$\lambda = \frac{E(X)}{\Gamma(1 + \frac{1}{k})}, \frac{\Gamma\left(1 + \frac{2}{k}\right)}{\left(\Gamma\left(1 + \frac{1}{k}\right)\right)^2}$ $= \frac{Var(X)}{E(X)^2} - 1 \rightarrow \text{implicit}$ Approximation : $\lambda = \frac{E(X)}{\Gamma(1 + \frac{1}{k})},$ $k = \left(\sqrt{Var(X)}/E(X)\right)^{-1.086}$

Distribution	Relation to mean and variance	Inverse Relation
Rayleigh	$E(X) = \sqrt{\frac{\pi}{2}}\alpha$ $Var(X) = (2 - \frac{\pi}{2})\alpha^{2}$	$\alpha = \sqrt{\frac{2}{\pi}} E(X) \text{ or } \alpha = \sqrt{\frac{2 \operatorname{Var}(X)}{4 - \pi}}$
Exponential	$E(X) = \frac{1}{v}, Var(X) = \frac{1}{v^2}$	$v = \frac{1}{E(X)}, v = \frac{1}{\sqrt{Var(X)}}$

System Health & Risk Management

4. Estimation of Parameter and Distribution

Goodness of Fit

- Quantitative method
- Based on the error between observed data and an assumed PDF
- Assume a distribution will be acceptable if an error between the observed data and the assumed PDF is less than a critical value.
- Examples
 - Chi-Square test
 - Kolmogorov-Smirnov (KS) test

Chi-Square Test

Kolmogorov-Smirnov (KS) Test

 $D_n = \max|F_X(x_i) - S_n(x_i)|$

 D_n : Maximum difference between CDFs

 $F_X(x_i)$: CDF of the theoretical CDF

 $S_n(x_i)$: CDF of the observed data

$$P(D_n \le D_n^{\alpha}) = 1 - \alpha$$

 D_n^{α} : Values at significance level α

Approaches to determine a probability

- Frequentist's approach
 - Postulate its probability based on the number of times the event occurs in a large number of samples

$$P(A) = \lim_{n \to \infty} \frac{k}{n}$$

- Bayesian approach
 - Employs a degree-of-belief, which is subjective information (e.g. previous experience, expert's opinion, data from handbook)
 - Express in the form of probability density function (PDF) and observations are used to change or update the PDF

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} (P(B) \neq 0)$$

- P(A) is initial degree-of-belief in event A or called the *prior*.
- -P(A|B) is the degree-of-belief after accounting for evidence B or called the *posterior*.
- The Bayes' theorem is modifying or updating the prior probability P(A) to the posterior probability P(A/B) after accounting for evidence.

System Health & Risk Managemen

5. Bayesian

(

Bayesian Theorem in Probability Density Form (PDF)

• f_X be a PDF of uncertainty variable X and test measure a value Y, random variable, whose PDF denoted by f_Y $f_{XY}(x, y) = f_X(x|Y = y)f_Y(y) = f_Y(y|X = x)f_X(x)$

• Ex. Fatigue life of X has epistemic uncertainty in the form of
$$f_X$$
. After measuring a fatigue life y of a specimen, our knowledge on fatigue life of X can be changed to $f_X(x|Y = y)$.

$$f_X(x|Y=y) = \frac{f_Y(y|X=x)f_X(x)}{f_Y(y)} (f_Y(y) = \int_{-\infty}^{\infty} f_Y(y|X=\varepsilon)f_X(\varepsilon)d\varepsilon)$$

• Analytical calculation is possible when prior distribution is as $f_X(x) = N(\mu_0, \sigma_0^2)$ and likelihood is normal distribution as $f_Y(y|X = x) = N(y, \sigma_y^2)$.

$$f_X(x|Y=y) = \frac{f_Y(y|X=x)f_X(x)}{f_Y(y)} \sim \exp\left[-\frac{(y-x)^2}{2\sigma_y^2} - \frac{(x-\mu_0)^2}{2\sigma_0^2}\right]$$

Example 3.1

There are three doors and behind two of the doors are goats and behind the third door is a new car with each door equally likely to provide the car. Thus the probability of selecting the car for each door at the beginning of the game is simply 1/3. After you have picked a door, say A, before showing you what is behind that door, Monty opens another door, say B, revealing a goat. At this point, Monty gives you the opportunity to switch doors from A to C if you want to. What should you do? (Given that Monty is trying to let you get a goat.)^{*c*}

Solution .

The question is whether the probability is 0.5 to get the car since only two doors left, or mathematically, $P(A|B_{Monty}) = P(C|B_{Monty}) = 0.5$. Basically we need to determine the probabilities of two event $E_1 = \{A|B_{Monty}\}, E_2 = \{C|B_{Monty}\}$. We elaborate the computation in the following steps:

1. The prior probabilities read $\underline{P}(A) = P(B) = P(C) = 1/3$.

2. We also have some useful conditional probabilities $P(B_{Monty}|A) = \frac{1}{2}$, $P(B_{Monty}|B) = 0$, and $P(B_{Monty}|C) = 1$.

3. We can compute the probabilities of joint events as $P(B_{Monty}, A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$, $P(B_{Monty}, B) = 0$, and $P(B_{Monty}, C) = 1 \times \frac{1}{3} = \frac{1}{3}$.

4. Finally, with the denominator computed as $P(B_{Monty}) = 1/6 + 0 + 1/3 = \frac{1}{2}$, we then get $P(A|B_{Monty}) = 1/3$, $P(C|B_{Monty}) = 2/3$. Thus, it is better to switch to C.

Bayesian Updating

• Overall Bayesian Update

$$f_X(x|Y=y) = \frac{1}{K} \prod_{i=1}^N [f_Y(y_i|X=x)] f_X(x)$$

- Likelihood functions of individual tests are multiplied together to build the total likelihood function.
- *K* is a normalizing constant.
- Recursive Bayesian Update

$$f_X^{(i)}(x|Y = y_i) = \frac{1}{K_i} f_Y(y_i|X = x) f_X^{(i-1)}(x), \quad i = 1, \dots, N$$

- K_i is a normalizing constant at *i*-th update and $f_X^{(i-1)}(x)$ is the PDF of X, updated using up to (i - 1)th tests.

Bayesian Parameter Estimation

- Bayes theorem's main purpose is parameter estimation and calibration of model parameters.
- Vector of unknown model parameters is denoted as **θ**, while the vector of measured data is denoted as **y**.

$$f(\boldsymbol{\theta}|\boldsymbol{y}) = \frac{f(\boldsymbol{y}|\boldsymbol{\theta})f(\boldsymbol{\theta})}{f(\boldsymbol{y})}$$

• Denominator in the above equation is independent of unknown parameters and a normalizing constant to make the one.

$$f(\boldsymbol{\theta}|\boldsymbol{y}) \propto f(\boldsymbol{y}|\boldsymbol{\theta})\boldsymbol{f}(\boldsymbol{\theta})$$

- $f(\mathbf{y}|\mathbf{\theta})$ is a likelihood function that is the PDF value at \mathbf{y} conditional on given $\mathbf{\theta}$.
- $-f(\mathbf{\theta})$ is the prior PDF of $\mathbf{\theta}$, which is updated to $f(\mathbf{\theta}|\mathbf{y})$, the posterior PDF of $\mathbf{\theta}$ conditional on given $\mathbf{\theta}$.

Example 3.2: Suppose that we have a set of random samples $\mathbf{x} = \{x_1, x_2, \dots, x_M\}$ from a normal PDF $f_X(x; \mu, \sigma)$ of a random variable *X*, where μ is unknown and σ is known. Assume that the prior distribution of μ , $f_M(\mu)$, is a normal distribution with its mean, *u*, and variance, τ^2 . Determine the posterior distribution of μ , $f_{MX}(\mu | \mathbf{x})$.

Solution .

Firstly, we compute the conditional probability of obtaining **x** given μ as

$$f_{X|M}\left(\mathbf{x} \mid \boldsymbol{\mu}\right) = \prod_{i=1}^{M} \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\left(\frac{x_i - \boldsymbol{\mu}}{\sigma}\right)^2\right]$$

$$= \left(2\pi\sigma^2\right)^{-M/2} \exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^{M}\left(x_i - \boldsymbol{\mu}\right)^2\right]$$
(28)

Next, we compute the joint probability of **x** and μ as

$$\begin{split} f_{X,M}(\mathbf{x},\mu) &= f_{X|M}(\mathbf{x} \mid \mu) f_{M}(\mu) \\ &= \left(2\pi\sigma^{2}\right)^{-M/2} \left(2\pi\tau^{2}\right)^{-1/2} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{M} (x_{i} - \mu)^{2} - \frac{1}{2\tau^{2}} (\mu - u)^{2}\right] \\ &= K_{1}(x_{1},...,x_{M},\sigma,u,\tau) \exp\left[-\left(\frac{M}{2\sigma^{2}} + \frac{1}{2\tau^{2}}\right) \mu^{2} + \left(\frac{M\overline{x}}{\sigma^{2}} + \frac{u}{\tau^{2}}\right) \mu\right]^{*} \end{split}$$

We then set up a square with μ in the exponent as

$$f_{X,M}(\mathbf{x},\mu) = K_2(x_1,...,x_M,\sigma,u,\tau) \exp\left[-\frac{1}{2}\left(\frac{M}{\sigma^2} + \frac{1}{\tau^2}\right) \left(\mu - \frac{M\overline{x}}{\frac{\sigma^2}{\sigma^2} + \frac{u}{\tau^2}}\right)^2\right]$$
$$= K_2(x_1,...,x_M,\sigma,u,\tau) \exp\left[-\frac{1}{2}\left(\frac{M}{\sigma^2} + \frac{1}{\tau^2}\right) \left(\mu - \frac{M\tau^2\overline{x} + \sigma^2u}{M\tau^2 + \sigma^2}\right)^2\right]^*$$

Since the denominator $f_X(x_1, x_2, ..., x_M)$ does not depend on μ , we then derive the posterior distribution of μ as

$$f_{M|X}\left(\mu \mid \mathbf{x}\right) = K_3\left(x_1, \dots, x_M, \sigma, u, \tau\right) \exp\left[-\frac{1}{2}\left(\frac{M}{\sigma^2} + \frac{1}{\tau^2}\right)\left(\mu - \frac{M\tau^2 \overline{x} + \sigma^2 u}{M\tau^2 + \sigma^2}\right)^2\right]$$

Clearly, this is a normal distribution with the mean and variance as .

$$\hat{u} = \frac{M\tau^{2}\overline{x} + \sigma^{2}u}{M\tau^{2} + \sigma^{2}}, \quad \hat{\tau} = \left(\frac{M}{\sigma^{2}} + \frac{1}{\tau^{2}}\right)^{-1} = \frac{\sigma^{2}\tau^{2}}{M\tau^{2} + \sigma^{2}}$$
(29)

Therefore, the Bayes estimate of μ is essentially a weighted-sum of the sample mean and the prior mean. In contrast, the maximum likelihood estimator is only the sample mean. As the number of samples M approaches the infinity, the Bayes estimate becomes equal to the maximum likelihood estimator since the sample data tend to have a predominant influence over the prior information. However, for the case of a small sample size, the prior information often plays an important role, especially when the prior variance τ^2 is small (or we have very specific prior information).

THANK YOU FOR LISTENING

Reference

- [1] Achintya Haldar, Sankaran Mahadevan, Probability, Reliability and Statistical Methods in Engineering Design, John Wiley, 2000.
- [2] Anthony Hayter, Probability and Statistics For Engineers and Scientists, Duxbury Resource Center, 2012.

Interval Estimation of Parameters

- An interval that contains a set of plausible value of the parameter.
 - The confidence level : 1α
 - ex) confidence interval for μ

$$P\left(\bar{X} - \frac{t_{\alpha/2, n-1}S}{\sqrt{n}} \le \mu \le \bar{X} + \frac{t_{\alpha/2, n-1}S}{\sqrt{n}}\right) = 1 - \alpha$$

- Confidence interval length

$$-L = \frac{2t_{\alpha/2, n-1} \times S}{\sqrt{n}} \propto \frac{1}{\sqrt{n}}$$

- Higher confidence levels require longer confidence intervals. ($\alpha_2 > \alpha_1$)

• t-Interval

$$\mu \in \left(\bar{x} - \frac{t_{\alpha/2, n-1}s}{\sqrt{n}}, \bar{x} + \frac{t_{\alpha/2, n-1}s}{\sqrt{n}}\right)$$

- with **unknown** population variance
- small sample sizes when the data are taken to be normally distributed.
- not normally distributed small sample data (nonparametric techniques)

System Health & Risk Management

4. Estimation of Parameter and Distribution

• z-Interval

$$\mu \in \left(\bar{x} - \frac{z_{\alpha/2, n-1}\sigma}{\sqrt{n}}, \bar{x} + \frac{z_{\alpha/2, n-1}\sigma}{\sqrt{n}}\right)$$

- with **known** population standard-deviation(σ)
- observations : $x_1, x_2, \dots x_n$ independent RV : $X_1, X_2, \dots X_n$ sample mean is itself a RV

$$(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i)$$

• One-sided t-Interval

$$\mu \in \left(-\infty, \bar{x} + \frac{t_{\alpha, n-1}s}{\sqrt{n}}\right) \text{ and } \mu \in \left(\bar{x} - \frac{t_{\alpha, n-1}s}{\sqrt{n}}, \infty\right)$$

• One-sided z-Interval

$$\mu \in \left(-\infty, \bar{x} + \frac{z_{\alpha, n-1}\sigma}{\sqrt{n}}\right) \text{ and } \mu \in \left(\bar{x} - \frac{z_{\alpha, n-1}\sigma}{\sqrt{n}}, \infty\right)$$

Hypothesis Testing

• Deciding the rejection yes or no of 'Null hypothesis' by providing the intensity of it's counterevidence.

	Two sided	One s	sided
Null hypothesis(H_o)	$\mu = \mu_o$	$\mu \leq \mu_o$	$\mu \ge \mu_o$
Alternative hypothesis(H_A)	$\mu \neq \mu_o$	$\mu > \mu_o$	$\mu < \mu_o$

• Ex) The machine that produces metal cylinders is set to make cylinders with a diameter 50mm. Is it calibrated correctly?

 $H_o: \mu=50$ vs $H_A: \mu\neq 50$

- p-Value(significance probability) : the probability of obtaining the worse data set when the null hypothesis is true. (usually 0.01)
 - The smaller the p-value, the less plausible is the null hypothesis.
 - H_A cannot be proven to be true; H_o can only be shown to be implausible.

• Two-sided problem

$$H_o: \mu = \mu_o \quad vs \quad H_A: \mu \neq \mu_o$$

Test statistic: $t = \frac{\sqrt{n}(\bar{x} - \mu_o)}{s}$

• One-sided problem

 $\begin{aligned} H_o: \ \mu &\leq \mu_o \quad vs \quad H_A: \mu > \mu_o \\ H_o: \ \mu &\geq \mu_o \quad vs \quad H_A: \mu < \mu_o \end{aligned}$

- Rejection region
 - The set of values for the test statistic that leads to rejection of H_0 .
 - If the value falls inside the rejection region, you reject the null hypothesis.
 - If you choose the alpha level 5%, that level is the rejection region.

H _A	P-value(reject), $X \sim t(n-1)$	Rejection region
$\mu \neq \mu_o$	$P\{ X \ge t \} < \alpha$	$ t > t_{\frac{\alpha}{2}, n-1}$
$\mu > \mu_o$	$P\{X \ge t\} < \alpha$	$ t > t_{\alpha,n-1}$
$\mu < \mu_o$	$P\{X \le t\} < \alpha$	$ t < -t_{\alpha,n-1}$

• Ex) The data : the times in minutes taken to remove paint. Question : Is the average blast time is less than 10 min?

Data : 10.3, 9.3, 11.2, 8.8, 9.5, 9.0

- 1. Data summary $n = 6, \bar{x} = 9.683, s=0.906$
- 2. Determination of suitable hypothesis $H_o: \mu \ge 10 \ vs \ H_A: \mu < 10$
- 3. Calculation of the test statistic $t = \frac{\sqrt{n}(\bar{x} - \mu_0)}{s} = \frac{\sqrt{6}(9.683 - 10)}{0.906} = -0.857$
- 4. Expression for the p value $p - value = P(X \le -0.857), X \sim t(5)$

- 5. Evaluation of the p valueset $\alpha = 0.1$, $P(X \le -0.857) >$ 0.1 or $t = -0.857 > -t_{0.1,5} = -1.476$
- 6. Decision H_o is accepted.
- 7. Conclusion

The data can't provide sufficient evidence that the average blast time is less than 10 min.

• Type of errors

		Real	
		Н _о true	H _A true
Result of test	select H _o	OK	Туре 2 error(β)
	select H _A	Type 1 error(a)	ОК