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1.

Uncertainty

Uncertainty Analytics (1)
» Uncertainty Types

Aleatory Uncertainty

Epistemic Uncertainty

Inherent randomness associated with
physical systems

Alea: (Latin Word) The rolling of dice
Irreducible with the acquisition of
additional data

Ex) material properties, product geometry,
loading condition, boundary condition, ...
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Plenty of Data

Due to the lack of knowledge

The smaller sample size, the wider
confidence interval in statistical parameter
estimation

Reducible with additional information

Ex) manufacturing tolerance, material
property, expert opinion in case of
knowledge absence, ..

Y ¢
& < - >
No Data A Datum
>
Insufficient Data Added Data
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1. Uncertainty

Uncertainty Analytics (2)
 Uncertainty Sources

Uncertainty Sources

Meaning

Physical Uncertainty

Inherent variation in physical quantity
Description by probability distribution

Ex) material property, manufacturing tolerance,
loading condition, boundary condition, ...

Statistical Uncertainty ‘ ﬁé ?

Imprecise statistical estimation (probability
distribution type, parameters, ...)

Only depending on the sample size and location
Ex) lack of data, improper sampling

Modeling Uncertainty

Uncertainty from invalid modeling
EX) improper approximation, inaccurate
boundary condition, ...
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2. Characterization of Uncertainty

Data Collection

 Population
— All observation of a random variable
— Impossible to collect all population
— Representative sample is collected instead

o Sample
— Gather information on population
— Arelatively large sample size is always preferable

Population

Sampleo

Data Classification

Continuous Discrete
- The values can take on any value withina | - The values belong to the set are distinct
finite or infinite interval and separate
- Measured - Counted
- ex. Failure time - eX. Number of defective specimen
T e Al S S S BN <4 ¢ * * * * 9
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2. Characterization of Uncertainty

Characterizing Descriptors

» Measure of Central Tendency

Mean

Median

Mode

— Location of centroid
— First moment (p = E[X])

— Middle value of a set of
data

— The most frequentist value
in a data set

Ex. Dataset {12 3455}

1 @n 14+2+3+4+5+5
> S i=1Xi = 6

Ex. Dataset{123455}
3+4

>3 -35
2

Ex. Dataset {123455}
2> 5

< Positively Skewed >
Mode

Median

Mean > Median > Mode

< Symmetric >

< Negatively skewed >

Mean = Median = Mode

Seoul National University
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2. Characterization of Uncertainty

Quantifying Descriptors
e Quantile & Percentile
— The x value at which the CDF takes a value «a is called the o -quantile for 100« -

percentile.
100 a %
F(x) =P(X<Xy) =« _/
a -quantile

e Quartile
— Data are grouped into four equal parts. Each quartile includes 25% of the data

75t percentile

25t percentile
<+ —> . .
Third Quartile

First Quartile

% | 25% | 25%

Median
50t percentile
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2. Characterization of Uncertainty

Quantifying Descriptors
» Measure of Dispersion

Variance

Standard Deviation

Coefficient of Variation

— Mean of squared deviation
n
1 2
Var(X) = Hz(xi — ly,)
i=1

— The second Moment
E[(X-m)?] = E(X?) - E(X)?

— Degree of dispersion of
same unit with data

ox = /Var(X)

— Non-dimensional term of
standard deviation

— COV(X)=0 : deterministic
variable

§v =
Xﬂx

Ex. Data set {123 455}
> {3333 - 12+ +

Ex. Dataset {123455}
-2 V2.6667 = 1.633

Ex. Dataset {123455}

> 1633 14899

3.333
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2. Characterization of Uncertainty

Quantifying Descriptors
» Measure of Asymmetry

1 3
— Skewness = ~ YL (x; — 1y,

— The third moment (used as a PHM feature)

— Skewness Coefficient = Oy = Ske:;‘ess
X
< Positively Skewed > < Symmetric > < Negatively skewed >
OX >0 OX =0

0x <0
» Measure of Flatness (Peakedness)
Higher Kurtosis

1 4
— Kurtosis =~ (= )

Kurtosi Normal
. . - _ Kurtosis . .
— Kurtosis Coefficient = o L ower Distribution

— The fourth moment Kurtosis

— Used as a PHM feature
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2. Characterization of Uncertainty

Probability Distribution
 Continuous

— Probability Density Function (PDF) : P(x; < X < X) = fxxlz fr () dx
— Cumulative Density Function (CDF) : P(X < x) = Fx(x) = [ fx(x)dx

_ P(x<X<x+Ax) _ Fx(x+Ax)-Fx(x) _dFx(x) _ fx(x)Ax _ f (X)
Ax - Ax T dx Ax —JX

fx(x) 4

Fx (x)l 1

fxcfx(x)dx P(xy < X < x3)

Xc X1 X2 X

 Discrete
— Probability Mass Function (PMF) :P(X = x) = px(x)
— Cumulative Density Function (CDF) : P(X < x) = Xy, «xbx(X;)

»

px(x) 1 0.4 FX(x)l 1

B
0.1 0.08 - f[_'i
I | >y

X1 X2 X3 XN X1 Xo X3 XN

v
=
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2. Characterization of Uncertainty

Multivariate Distribution
e Joint Distribution

Probability Density Function = Cumulative Density Function

/ fxy(x,y)
y

Fyy(x,y) = P(X <xY <y) = j j foy(,v)dudv

[B)
o©
o
L2
QO
/ pX Y(xu YL
FXY(x y) = Z Z PXY(xuyl
XisSXYisy
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2. Characterization of Uncertainty

Multivariate Distribution
* Marginal PDF & PMF

The marginal distribution of a random variable X is obtained from the joint probability
distribution of two random variables X and T by summing or integrating over the values of
the random variable .

— Marginal PDF — Marginal PMF
fx(x) = ij,Y(xJ)dY px(x) = z pxy (x,y; )dy
— 00 all Yi

py(y) = z pxy (X, y)dy

all x;

f ) = j fur (6, 7)dx
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2. Characterization of Uncertainty

Covariance and Correlation
» Covariance
— Degree of linear relationship between two random variables
Cov(X,Y) = E[(X — w)(Y — )] = EXY) — ECOE(Y)
— Cov(X, Y)=0 when (linearly) independent

e Correlation Coefficient

— Nondimensionalizing the covariance
Cov(X,Y)

Pxy =
' Ox Oy

— Range between -1 and +1

A A .‘... S
Se do °
oo %0 o

0<pyy<1 —1 <pxy <0 pxy =0 Pxy =0
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3. Types of Probability Distribution

Normal (Gaussian) Distribution
 Probability Density Function

(x—p)?
fx () 4 £ () = —— o~ 707
2102

where p: Mean of X

R o : Standard deviation of X
X

— The PDF of normal distribution is symmetry
— Two parameters which are mean (u) and standard deviation (o) defines the PDF

* Properties (X~N (i, 6%), X;~N (i1, 06%), X;~N (li2,0%))
—Z=aX+ B > Z~N(ap + B,a*c?)
—Z =X, +X,> Z~N(y + lp,0% + 05 + 2Cov(X1, X5))

~z="2>7~N(01)

1z

— Z~N(0,1), Zis called standard Gaussian and f,(z) = e 2
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3. Types of Probability Distribution

Lognormal Distribution
 Probability Density Function

fx(x) ¢ =0.5 forall Y

v
<

0 1 2
— fx(x) = (\/;2_118 2¢ where A: Mean of In X, ¢: Variance of InX

_(lnx—/'l)2

— Closely related to the normal distribution
— Defined for positive values only

* Properties
— A: Mean of InX, C: Variance of In X
— w: Mean of X, o: Standard deviation of X, § = o/u : Coefficient of Variation of X

— ¢ =+/In(1+82),A=1Inp—0.5In(1+ §?)
—nu=-exp(A+0.52%),8 =0/u=exp((?) — 1
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3. Types of Probability Distribution

Beta Distribution
« Probability Density Function fx(x)

1 (x—a)d(b—x)1
fX(x)zB(q,r) (b — a)ya+r-1 ,a<x<b |

 Properties
— Variable is bounded 2> a<x<b

— Parameter relationship X
— a4
EX)=a+ o (b—a)
_ qr 2
Var(X) = (q+1r)2(q+r+1) (b —a)
— Standard beta distribution = substitute a=0, b=1

Fu(0) = oo x0T (1 -

q,r = shape parameter

e

009,00 0
11 L T
NI = U1
IR W = Ul

= |

~-

— Beta function
! [(@)T(r)

B(q,r) = j x371(1 — x)'ldx = F(aT 1)
0
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3. Types of Probability Distribution

Exponential Distribution
 Probability Density Function
fx(x) = Ae™™
 Properties
— Parameter and Variable is bounded > 0<A,0<x
— Parameter relationship

1 1
E(X) == r = —
— Memorylessne(ss) A vart A%
PX>s+t|X>s)=PX >t)
Weibull Distribution
 Probability Density Function
k-1 x\K
R =10 e
— Generalization of the exponential distribution
* Properties
— Widely used to model the TTF distribution
ra+1/k)
A

MTTF =

Seoul National University



4. Estimation of Parameter and Distribution

Parameter (0)
» A property of an unknown probability distribution.
» For example, mean, variance, or a particular quantile

» One of the goals of statistical inference is to estimate them.
o Examples

— Mean of Normal Distribution:u
— Standard Deviation of Normal Distribution: o2
Statistics
» To denote a quantity that is a property of a sample.

» For example, sample mean, a sample variance, or a particular sample quantile.
« Statistics can be used to estimate unknown parameters.

o Examples
—_ Feeeeen +
- Sample mean . X = X1 - Xn
1 1-1'_ xXi—X 2
— Sample variance : s2 = %

2019/1/4
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4. Estimation of Parameter and Distribution

Point Estimation

e Minimum Mean Square Error Estimation
» Maximum Likelihood Estimation
 Probability Distribution Estimation

— Method of Moments

— Goodness of Fit (Chi-square, K-S test)
Interval Estimation

Hypothesis Testing
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4. Estimation of Parameter and Distribution

Point Estimation of Parameters
» Unbiased and Biased Point Estimates
— 0 : statistical parameter (fixed constant)
— 0 : a statistics which serves as an estimator of 0
— Unbiased if E(8)= 6
— Not unbiased, bias= E(6)—0
— To make E(8) with 0 consistent for eliminating the bias which expresses systematic
error.

4 == m [rue Distribution 4
- Estimated Distribution

v

E©) =0
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4. Estimation of Parameter and Distribution

 Point Estimate of a Population Mean
— If X3, ..., Xy, is a sample of observations from a probability distribution with a mean
then the sample mean {i=X is an unbiased point estimate of the population mean p.
 Point Estimate of a Population Variance

— If X4, ..., X, 1s a sample of observations from a probability distribution with a variance
Xiz1 (xi—%)?

a2, then the sample variance 62 = S? = o

the population variance o2.

IS an unbiased point estimate of

Proof.
E(S2) = —E(I1,(x; — %)?)

= LB, (- — F— )Y

= L E(Ey (x — )2 =2(X — 1) Xk O — 1) + N(X = w)?)
= —E(QL, (i — w2 — n® — w?)

= ——E(XM,(x; — %) — nE(X — p)?)

n-—1

2019/1/4 Seoul National University



4. Estimation of Parameter and Distribution

Minimum Mean Square Error Estimation (MMSE)
» The average of the square of the errors between the estimator and what is estimated.

o Because of randomness or because the estimator doesn’t account for information that
could produce a more accurate estimate.

MSE(0) = E((0 — 0)?)
=E[0—-E(0)+E(0) —0))?
= E[((0 - E(ﬁ))zz +2 (0 —E®)) (E(8) — 0) + (E(D) — 9)2]2
= E[((0—E(8))" 1+ 2(E(8) —0)E(6 —E(®)) + (E(8) —0)"]
= E((0 - E(0))" + (E(8) - 0)°
= Var(0) + bias?

o Example
When 8, ~N(1.26,0.026?2), 8, ~ N(0.96, 0.0462), Mean Square Error of each estimator
- Var(0,) < Var(8,)
bias; = E(6,) —6 =0.2 6, bias, =E(@,)—0=-0.10
MSE(8;) = Var(8,) + (bias;)* = 0.0662, MSE(8,) = Var(d,) + (bias,)* = 0.0562
> MSE(8,)> MSE(8,)

2019/1/4 Seoul National University
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4. Estimation of Parameter and Distribution

Maximum Likelihood Estimation (MLE)
 Likelihood function can be defined as

L(x1,X2,..+,Xn|0) = fx(X1|0)fx (x20)..., fx(xr|0).

fx(x;|0) = The PDF values of random variable X at x;
when statistical parameter is gievn as 0

» Maximum Likelihood Estimation (MLE) is to find the 8 that maximizes the likelihood
function, so the following equation is satisfied.

oL

Ex) There’s a big box with some black and white balls. But we don’t know the number
of the balls. Someone picked up a ball 10 times by sampling with replacement. And he
picked up black balls 1 time, and white balls 9 times. Likelihood of black ball p?

Sol) L =p(1—p)°

o 1—py—9p(l-p)P=0 +p=—
%_( _p)_ p( _p) - p_10

2019/1/4 Seoul National University
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4. Estimation of Parameter and Distribution

Method of Moments

 Basic concept : All the parameters of a distribution can be estimated using the information on
its moment.

o Parameters of a distribution have a definite relation with the moments of the random variable.

Distribution Relation to mean and variance Inverse Relation
Normal E(X) = p,,Var(X) = o2 wy = E(X), oy = /Var(X)
1 A=InEX)—-0.5In(1+ 8%
E(X) = A+ =2
Lognormal (X) = exp( +5¢%) {=+In(1+ 82)
2
Var(X) = E2(X)[e% — 1] § = /Var(X)/E(X)
2
_ E(X) r (1 + K)
= T .
r(1+7) 1
E(X) = AT(1 + %) K (F (1+ k))
i 5 Var(X) _ o
Weibull 2 1 = >-— 1 — implicit
Var(X) = A2 (T <1 + E) - (F (1 + E)) E(X) E(X)
Approximation :A = -,
F(1+E)

—1.086
ko= (VVarGo/E)

2019/1/4 Seoul National University



4. Estimation of Parameter and Distribution

Distribution Relation to mean and variance Inverse Relation
T
E(X) = \/:oc 2 2 Var(X)
' 2 = [—EX = [— X7
Rayleigh - o j; (X) ora g
Var(X) = (2 - E)on2
I 1 1 1 1
Exponentia = — X) = — V==—— V=————
p E(X) o Var(X) 3 e a0

2019/1/4 Seoul National University



4. Estimation of Parameter and Distribution

2019/1/4

Goodness of

Fit

* Quantitative method
» Based on the error between observed data and an assumed PDF

» Assume a distribution will be acceptable if an error between the observed data and the
assumed PDF is less than a critical value.

o Examples
— Chi-Square test
— Kolmogorov-Smirnov (KS) test
Chi-Square Test

df

=1

m —e:)2
Z (e < C1_q,f » Where

i=1 €
n; = observed frequency at i*" interval
e; = theoretical frequency of an assumed distribution
= significance level
= degrees of freedom (=m — 1 — k)
= number of distribution parameter

df =10

= K

Seoul National University



4. Estimation of Parameter and Distribution

Kolmogorov-Smirnov (KS) Test

Dy, = max|Fx(x;) — Sp(x;)] P(D,<Df)=1-a
D,,: Maximum difference between CDFs
Fx(x;): CDF of the theoretical CDF
Sn(x;): CDF of the observed data

DZ: Values at significance level a

0 x < Xq
Sp(x;)) ={m/n  Xm =X = Xpmya
~ 4 1 X = X,
=
:)é 74'4 S, (x;): Emperical CDF of the observed data
Fx(xi) n: Sample size
max|Fy(x;) — S, (x;)| = 0.1018
Sn(xi) y.
= >
26 27 28 29 30 31 32 33 34

Xi

2019/1/4 Seoul National University



5. Bayesian

Approaches to determine a probability
* Frequentist’s approach

— Postulate its probability based on the number of times the event occurs in a large
number of samples

k
P(A) = lim —

n-oon

» Bayesian approach

— Employs a degree-of-belief, which is subjective information (e.g. previous experience,
expert’s opinion, data from handbook)

— Express in the form of probability density function (PDF) and observations are used to
change or update the PDF

POl P(B|A)P(A)

P(B)

— P(A) is initial degree-of-belief in event A or called the prior.

— P(A|B) is the degree-of-belief after accounting for evidence B or called the posterior.

— The Bayes’ theorem is modifying or updating the prior probability P(A) to the
posterior probability P(A|B) after accounting for evidence.

(P(B) # 0)

2019/1/4 Seoul National University



5. Bayesian

Bayesian Theorem in Probability Density Form (PDF)

» fy be a PDF of uncertainty variable X and test measure a value Y, random variable,
whose PDF denoted by fy
fry(,y) = fxxY =y) () = fO1X = 0)fx(x)

» EXx. Fatigue life of X has epistemic uncertainty in the form of f5. After measuring a
fatigue life y of a specimen, our knowledge on fatigue life of X can be changed to

fx(x|Y =y).

_ frIX = x)fx(x)
fr»)

fe(xlY = y) ) = | fOlx = e

« Analytical calculation is possible when prior distribution is as fy(x) = N(uo, ) and
likelihood is normal distribution as fy (y|X = x) = N(y, o7).

_ frlX = x)fx(x) e
fr»)

_ (v — x)? _ (x — 1o)?
205 20

xp[ ]

fx(xlY =)

2019/1/4 Seoul National University
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5. Bayesian

el

Example 3.1 .

There are three doors and behind two of the doors are goats and behind the third door
1s a new car with each door equally likely to provide the car. Thus the probability of
selecting the car for cach door at the beginning of the game 1s simply 1/3. After you
have picked a door, say A, before showing you what is behind that door, Monty opens
another door, say B, revealing a goat. At this point, Monty gives you the opportunity to
switch doors from A to C if you want to. What should you do? (Given that Monty i1s
trying to let you get a goat.)-

a

Solution .
The question is whether the probability 1s 0.5 to get the car since only two doors left,
or mathematically, P(A|Bmonty) = P(C|BMonry) = 0.5. Basically we need to determine the

probabilities of two event Ei = {ABwmony}, E2 = {C|BMony}. We elaborate the
computation in the following steps:.
1. The prior probabilities read P(A) = P(B) = P(C) = 1/3..
2. We also have some useful conditional probabilities P(B A) = ',
P(Byony/B) = 0, and P(Byjoniy]C) = 1. -
3. We can compute the probabilities of joint events as P(Byonty, A) = ¥2x1/3 = 1/6,
P(Byonty, B) =0, and P(Buyony, C) = 1x1/3 =1/3..

4. Finally, with the denominator computed as P(Bygny) = 1/6 + 0 + 1/3 = 15, we
then get P(A[Bymonty) = 1/3, P(C|BMonty) = 2/3. Thus, 1t 1s better to switch to C. -

+

Seoul National University




5. Bayesian

Bayesian Updating
« Overall Bayesian Update

N
1
feelY = y) == | [thoix = 01500
i=1

— Likelihood functions of individual tests are multiplied together to build the total
likelihood function.

— K'is a normalizing constant.
» Recursive Bayesian Update

. 1 - '
@Y =y) = fOlX =0f P, i=1N
l

— K; is a normalizing constant at i-th update and f)((i_l) (x)is the PDF of X, updated
using up to (i — 1)th tests.

2019/1/4 Seoul National University



5. Bayesian

Bayesian Parameter Estimation

« Bayes theorem’s main purpose is parameter estimation and calibration of model
parameters.

 Vector of unknown model parameters is denoted as 0, while the vector of measured data
Is denoted as y.

f(y10)£(0)
f

fly) =

» Denominator in the above equation is independent of unknown parameters and a
normalizing constant to make the one.

f8ly) < f(yl6)f(6)

— f(y|0) is a likelihood function that is the PDF value at y conditional on given 0.

— f(0) is the prior PDF of 0, which is updated to f(0|y), the posterior PDF of 0
conditional on given 0.

2019/1/4 Seoul National University
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5. Bayesian

Example 3.2: Suppose that we have a set of random samples x = {x1, x2,..., x)} froma
normal PDF fx(x; u, o) of a random variable X, where y is unknown and o is known.
Assume that the prior distribution of x, fidu), 1s a normal distribution with 1ts mean, ,

and variance, 7. Determine the posterior distribution of u, fix(u|x).-

Solution .
Firstly, we compute the conditional probability of obtaining x given x as .

10T ] {24

(28)

Next, we compute the joint probability of x and y as .

fX,M (X,ﬂ) = fX\M (X | Ju)fM (ﬂ)
= (27[0_2)_,14/2 (27[12 )_m exp[— 2;2 i(xi - y)2 - 21—2(;1 —u)z]

i=1 T

= K, (X},-s Xy, 0,1, T)EXp | — M LM d
P\ e P 26°  21° # o’ T H

2019/1/4 Seoul National University
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5. Bayesian

We then set up a square with y in the exponent as.
2

My u
1(M 1 o
fX,M(X:ﬂ):Kl(xl,...,xM,O"u’f)exp _E(?+I__2) u-_ % i
L ot
=K (x X Juz’)ex _—l E.;_L —M aE
2 R R T ) p 2 0_2 Z'2 /1 Mz'2+o-2

Since the denominator fx(x1, x2,..., xu) does not depend on y, we then derive the
posterior distribution of u as.

(M 1 Mox+oiu)
fMX(/“X):Ks(xl"">vaU’”’T)eXp[_E(?Jr_Z)[ﬂ_T] ]

T Mt +o

Clearly, this 1s a normal distribution with the mean and variance as .

(29)

2 2

— -1
Mt x+oc’u . (M 1 ] 3 o'’
o T

. Mt +o* : Mz’ +o°
Therefore, the Bayes estimate of u 1s essentially a weighted-sum of the sample mean
and the prior mean. In contrast, the maximum likelihood estimator 1s only the sample
mean. As the number of samples M approaches the infinity, the Bayes estimate
becomes equal to the maximum likelthood estimator since the sample data tend to have
a predominant influence over the prior information. However, for the case of a small
sample size, the prior information often plays an important role, especially when the

prior variance 7 is small (or we have very specific prior information). .

Seoul National University
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4. Estimation of Parameter and Distribution

Interval Estimation of Parameters
» An interval that contains a set of plausible value of the parameter.
— The confidence level : 1 — «
ex) confidence interval for u
p ()? . ta/Z,n—ls < < X n ta/z,n—15> —1—q
Vn Vn
— Confidence interval length

_ L=2ta/2,n—1xs - 1
yn NG

— Higher confidence levels require longer confidence intervals. (a; > a4)

 t-Interval
— ta/Z,n—ls — ta/Z,n—ls
ElXx ———— , x + ———
g ( Vn Vn >
— with unknown population variance
— small sample sizes when the data are taken to be normally distributed.
— not normally distributed small sample data (nonparametric techniques)
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» z-Interval
Z _10 Z _10
ue (az——“/i;%l ,f+—“/3%1 )
— with known population standard-deviation(o)
— observations : xq, x5, *** X,

independent RV : X1, X5, X,
sample mean is itself a RV

(X__ n1X)

e One-sided t-Interval
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Hypothesis Testing

 Deciding the rejection yes or no of ‘Null hypothesis’ by providing the intensity of it’s

counterevidence.

Two sided One sided
Null hypothesis(H,) U= U U< U U= U
Alternative hypothesis(H,) U #* U U> U, U< u,

» Ex) The machine that produces metal cylinders is set to make cylinders with a diameter
50mm. Is it calibrated correctly?
H,:pu=50 ws H, :u#50
» p-Value(significance probability) : the probability of obtaining the worse data set when
the null hypothesis is true. (usually 0.01)
— The smaller the p-value, the less plausible is the null hypothesis.
— H, cannot be proven to be true; H, can only be shown to be implausible.
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4. Estimation of Parameter and Distribution

» Two-sided problem
Ho: =ty vs Hy:p # Uy

Test statistic: t = @

* One-sided problem
Ho: p=po vs Hy:p >,
Ho: p=2po vs Hyip <,
* Rejection region
— The set of values for the test statistic that leads to rejection of Hy,.
— If the value falls inside the rejection region, you reject the null hypothesis.
— If you choose the alpha level 5%, that level is the rejection region.

H, P-value(reject) , X~t(n—1) Rejection region
i o PUXI 2 It} <a t> e,
1> po PIX>t}<a t] > tan-1
U< U PIX<t}<a lt] < —tgn-1
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4. Estimation of Parameter and Distribution

» Ex) The data : the times in minutes taken to remove paint.
Question : Is the average blast time is less than 10 min?

Data : 10.3, 9.3, 11.2, 8.8, 9.5, 9.0

1. Data summary
n =6,x = 9.683, s=0.906

2. Determination of suitable hypothesis
Hy: u=10 vs Hy:pu <10

3. Calculation of the test statistic
Vn(x¥—po) _ V6(9.683-10)

t= = —0.857
s 0.906

4. Expression for the p — value
p — value = P(X < —0.857),X~t(5)

5. Evaluation of the p — value
set =0.1, P(X < —0.857) >
01 or t= _0857 > _t0_1’5 = _1476

6. Decision
H,is accepted.

7. Conclusion
The data can’t provide sufficient evidence
that the average blast time is less than 10 min.
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System Health &
Risk Management

4. Estimation of Parameter and Distribution

» Type of errors

Real
H, true Hy true
select H, OK Type 2 error(f)
Result of test
select Hy Type 1 error(a) OK
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