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Chapter 2. Probability and Statistics in PHM

1. Uncertainty 
Uncertainty Analytics (1)
• Uncertainty Types

Aleatory Uncertainty Epistemic Uncertainty

- Inherent randomness associated with
physical systems

- Alea: (Latin Word) The rolling of dice
- Irreducible with the acquisition of 

additional data
- Ex) material properties, product geometry, 

loading condition, boundary condition, …

- Due to the lack of knowledge
- The smaller sample size, the wider 

confidence interval in statistical parameter
estimation

- Reducible with additional information
- Ex) manufacturing tolerance, material 

property, expert opinion in case of 
knowledge absence, ..
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Uncertainty Sources Meaning

Physical Uncertainty
- Inherent variation in physical quantity
- Description by probability distribution
- Ex) material property, manufacturing tolerance, 

loading condition, boundary condition, …

Statistical Uncertainty
- Imprecise statistical estimation (probability 

distribution type, parameters, …)
- Only depending on the sample size and location
- Ex) lack of data, improper sampling

Modeling Uncertainty - Uncertainty from invalid modeling
- Ex) improper approximation, inaccurate 

boundary condition, …

2019/1/4 - 4 -

1. Uncertainty 

?

Uncertainty Analytics (2)
• Uncertainty Sources

Chapter 2. Probability and Statistics in PHM



Seoul National University2019/1/4 - 5 -

2. Characterization of Uncertainty 
Data Collection
• Population

– All observation of a random variable
– Impossible to collect all population
– Representative sample is collected instead

• Sample
– Gather information on population
– A relatively large sample size is always preferable

Data Classification

Population

Sample

Continuous Discrete

- The values can take on any value within a 
finite or infinite interval

- Measured
- ex. Failure time

- The values belong to the set are distinct 
and separate

- Counted
- ex. Number of defective specimen

Chapter 2. Probability and Statistics in PHM
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Characterizing Descriptors
• Measure of Central Tendency

Mean Median Mode

– Location of centroid
– First moment (μ = E[X])

– Middle value of a set of 
data

– The most frequentist value  
in a data set

Ex. Data set {1 2 3 4 5 5}


1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 = 1+2+3+4+5+5

6

= 10
3

Ex. Data set {1 2 3 4 5 5}


3+4
2

= 3.5
Ex. Data set {1 2 3 4 5 5}
 5

< Positively Skewed >

Mean ≥ Median ≥ Mode

< Symmetric >

Mean = Median = Mode

< Negatively skewed >

Mean ≤ Median ≤ Mode

Mode
Median

Mean

Mode
Median

Mean

2. Characterization of Uncertainty 
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Chapter 2. Probability and Statistics in PHM

Quantifying Descriptors
• Quantile & Percentile

– The x value at which the CDF takes a value α is called the α -quantile for 100α -
percentile.

• Quartile
– Data are grouped into four equal parts. Each quartile includes 25% of the data

𝐹𝐹 𝑥𝑥 = 𝑃𝑃(x ≤ x𝛼𝛼) = 𝛼𝛼
100 α %

α -quantile 

25% 25%25% 25%

Median
50th percentile

25th percentile
First Quartile

75th percentile
Third Quartile

2. Characterization of Uncertainty 
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Quantifying Descriptors
• Measure of Dispersion

Variance Standard Deviation Coefficient of Variation

– Mean of squared deviation

Var 𝐗𝐗 =
1
𝑛𝑛
�
𝑖𝑖=1

n

𝑥𝑥𝑖𝑖 − µ𝑥𝑥𝑖𝑖
𝟐𝟐

– The second Moment
E[(X-μ)2] = E(X2) - E(X)2

– Degree of dispersion of
same unit with data

𝛔𝛔𝐗𝐗 = Var(𝐗𝐗)

– Non-dimensional term of 
standard deviation

– COV(X)=0 :  deterministic 
variable

𝛅𝛅𝐗𝐗 =
𝝈𝝈𝐗𝐗
𝝁𝝁𝐗𝐗

Ex. Data set {1 2 3 4 5 5}


1
6

{ 3.333 − 1 2 + ⋯+
Ex. Data set {1 2 3 4 5 5}
 2.6667 = 1.633

Ex. Data set {1 2 3 4 5 5}


1.633
3.333

=0.4899

2. Characterization of Uncertainty 
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Quantifying Descriptors
• Measure of Asymmetry

– Skewness = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − µ𝑥𝑥𝑖𝑖

𝟑𝟑

– The third moment (used as a PHM feature)

– Skewness Coefficient = 𝛉𝛉𝐗𝐗 = 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬
𝛔𝛔𝐗𝐗
𝟑𝟑

• Measure of Flatness (Peakedness)

– Kurtosis = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − µ𝑥𝑥𝑖𝑖

𝟒𝟒

– Kurtosis Coefficient = 𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲
𝛔𝛔𝐗𝐗
𝟒𝟒

– The fourth moment
– Used as a PHM feature

< Positively Skewed > < Symmetric > < Negatively skewed >

𝛉𝛉𝐗𝐗 > 0 𝛉𝛉𝐗𝐗 = 0 𝛉𝛉𝐗𝐗 < 0

Higher Kurtosis

Normal 
DistributionLower 

Kurtosis

2. Characterization of Uncertainty 
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Probability Distribution
• Continuous

– Probability Density Function (PDF) : 𝑃𝑃 x1 < 𝑋𝑋 < x2 = ∫x1
x2 𝑓𝑓𝑋𝑋 𝑥𝑥 dx

– Cumulative Density Function (CDF) : 𝑃𝑃 𝑋𝑋 < x = 𝐹𝐹𝐗𝐗(𝑥𝑥) = ∫−∞
x 𝑓𝑓𝑋𝑋 𝑥𝑥 dx

– 𝑃𝑃 x<𝑋𝑋<x+∆x
∆x

= 𝐹𝐹𝑋𝑋(𝑥𝑥+∆𝑥𝑥)−𝐹𝐹𝑋𝑋(𝑥𝑥)
∆x

= 𝑑𝑑𝐹𝐹𝑋𝑋(𝑥𝑥)
dx

= 𝑓𝑓𝑋𝑋 𝑥𝑥 ∆x
∆x

= 𝑓𝑓𝑋𝑋 𝑥𝑥

• Discrete
– Probability Mass Function (PMF) :𝑃𝑃 𝑋𝑋 = x = 𝑝𝑝𝑋𝑋 𝑥𝑥
– Cumulative Density Function (CDF) : 𝑃𝑃 𝑋𝑋 < x = ∑𝑥𝑥𝑖𝑖<x 𝑝𝑝𝑋𝑋 𝑥𝑥𝑖𝑖

𝑓𝑓𝑋𝑋 𝑥𝑥

𝑥𝑥

𝑃𝑃 x1 < 𝑋𝑋 < x2

x1 x2

𝐹𝐹𝑋𝑋(𝑥𝑥)

𝑥𝑥

1
�
−∞

xc
𝑓𝑓𝐗𝐗 𝑥𝑥 dx

x𝑐𝑐 xc

𝐹𝐹𝐗𝐗 xc
= 𝑃𝑃 𝑋𝑋 < xc

𝑝𝑝𝑋𝑋 𝑥𝑥

𝑥𝑥

𝐹𝐹𝑋𝑋(𝑥𝑥)

𝑥𝑥

1

x1 x2 x3

…

xN x1 x2 x3

…

xN

0.1
0.2

0.08

0.4

2. Characterization of Uncertainty 
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Multivariate Distribution
• Joint Distribution

C
on

tin
uo

us
D

is
cr

et
e

Probability Density Function Cumulative Density Function

𝐹𝐹𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝑃𝑃 𝑋𝑋 ≤ x,𝑌𝑌 ≤ y = �
−∞

x
�
−∞

y
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑢𝑢,𝑣𝑣 dudv

𝐹𝐹𝑋𝑋,𝑌𝑌 𝑥𝑥, 𝑦𝑦 = �
x𝑖𝑖≤x

�
y𝑖𝑖≤y

𝑝𝑝𝑋𝑋,𝑌𝑌(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

2. Characterization of Uncertainty 

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥, 𝑦𝑦

𝑝𝑝𝑋𝑋,𝑌𝑌(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
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Multivariate Distribution
• Marginal PDF & PMF
The marginal distribution of a random variable X is obtained from the joint probability 
distribution of two random variables X and T by summing or integrating over the values of 
the random variable Y.

– Marginal PDF

𝑝𝑝𝑋𝑋 𝑥𝑥 = �
𝑎𝑎𝑙𝑙𝑙𝑙 y𝑖𝑖

𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥, 𝑦𝑦𝑖𝑖 dy

𝑝𝑝𝑌𝑌 𝑦𝑦 = �
𝑎𝑎𝑙𝑙𝑙𝑙 x𝑖𝑖

𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥𝑖𝑖 ,𝑦𝑦 dy

𝑓𝑓𝑋𝑋 𝑥𝑥 = �
−∞

∞

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 dy

𝑓𝑓𝑌𝑌 𝑦𝑦 = �
−∞

∞

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 dx

– Marginal PMF

𝑓𝑓𝑋𝑋(𝑥𝑥)

x y

𝑓𝑓𝑌𝑌(𝑦𝑦)

2. Characterization of Uncertainty 
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Covariance and Correlation
• Covariance

– Degree of linear relationship between two random variables
𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 = E 𝑋𝑋 − µ𝑥𝑥 𝑌𝑌 − µ𝑦𝑦 = E 𝑋𝑋𝑋𝑋 − E 𝑋𝑋 𝐸𝐸(𝑌𝑌)

– Cov(𝑋𝑋,𝑌𝑌)=0 when (linearly) independent

• Correlation Coefficient
– Nondimensionalizing the covariance

𝜌𝜌𝑋𝑋,𝑌𝑌 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌)
𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌

– Range between -1 and +1

0 < 𝜌𝜌𝑋𝑋,𝑌𝑌 < 1 −1 < 𝜌𝜌𝑋𝑋,𝑌𝑌 < 0 𝜌𝜌𝑋𝑋,𝑌𝑌 = 0 𝜌𝜌𝑋𝑋,𝑌𝑌 = 0

2. Characterization of Uncertainty 
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3. Types of Probability Distribution 
Normal (Gaussian) Distribution
• Probability Density Function

– The PDF of normal distribution is symmetry 
– Two parameters which are mean (µ) and standard deviation (σ) defines the PDF

• Properties (𝐗𝐗~𝑁𝑁(𝛍𝛍,𝛔𝛔𝟐𝟐), 𝑋𝑋1~𝑁𝑁(µ1,σ12), 𝑋𝑋2~𝑁𝑁(µ2,σ22))
– 𝑍𝑍 = 𝛼𝛼𝐗𝐗 + 𝛽𝛽 𝑍𝑍~𝑁𝑁(𝛼𝛼𝛍𝛍 + 𝛽𝛽,𝛼𝛼2𝛔𝛔2)
– 𝑍𝑍 = 𝑋𝑋1 + 𝑋𝑋2 𝑍𝑍~𝑁𝑁(µ1 + µ2,σ12 + σ22 + 2𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋1,𝑋𝑋2 )

– 𝑍𝑍 = 𝐗𝐗−𝛍𝛍
𝛔𝛔
 𝑍𝑍~𝑁𝑁 0,1

– 𝑍𝑍~𝑁𝑁 0,1 , Z is called standard Gaussian and 𝑓𝑓𝑍𝑍 𝑧𝑧 = 1
2𝜋𝜋
𝑒𝑒−

𝑧𝑧2

2

𝑓𝑓𝑋𝑋 𝑥𝑥

𝑥𝑥

f𝑋𝑋 𝑥𝑥 =
1

2𝜋𝜋σ2
𝑒𝑒−

𝑥𝑥−µ 2

2σ2

where µ : Mean of X
σ : Standard deviation of X
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3. Types of Probability Distribution 
Lognormal Distribution
• Probability Density Function

– 𝑓𝑓𝑋𝑋 𝑥𝑥 = 1
𝜁𝜁 2𝜋𝜋

𝑒𝑒−
ln𝑥𝑥−𝜆𝜆 2

2𝜁𝜁 , where 𝜆𝜆: Mean of ln X , 𝜁𝜁: Variance of lnX

– Closely related to the normal distribution
– Defined for positive values only

• Properties
– λ: Mean of lnX,  ζ: Variance of ln X
– µ: Mean of X , σ: Standard deviation of X , δ = σ/µ : Coefficient of Variation of X

– 𝜁𝜁 = ln 1 + δ2 , λ = ln µ − 0.5ln(1 + 𝛿𝛿2)

– µ = exp λ + 0.5ζ2 , δ = 𝜎𝜎/𝜇𝜇 = exp ζ2 − 1

𝑓𝑓Y y

𝑥𝑥

𝑓𝑓𝑋𝑋 𝑥𝑥
y = ln x

yx = 𝑒𝑒𝑦𝑦

𝝀𝝀 = 𝟎𝟎
𝝀𝝀 = 𝟏𝟏 𝝀𝝀 = 𝟐𝟐

0 1 2

𝜁𝜁 = 0.5 for all
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3. Types of Probability Distribution 
Beta Distribution
• Probability Density Function

• Properties
– Variable is bounded  a < x < b
– Parameter relationship

E 𝑋𝑋 = a + q
q+r

b − a

Var 𝑋𝑋 = qr
q+r 2 q+r+1

b − a 2

– Standard beta distribution  substitute  a=0, b=1

𝑓𝑓𝑋𝑋 𝑥𝑥 =
1

𝐵𝐵(q, r)
𝑥𝑥q−1(1 − 𝑥𝑥)r−1

q, r = shape parameter
– Beta function

B q, r = �
0

1
𝑥𝑥q−1 1 − 𝑥𝑥 r−1dx =

Γ(q)Γ(r)
Γ(q + r)

𝑓𝑓𝑋𝑋 𝑥𝑥 =
1

𝐵𝐵(q, r)
𝑥𝑥 − a q−1 b − 𝑥𝑥 r−1

b − a q+r−1 , a < 𝑥𝑥 < b

q = r = 0.5
q = 5, r = 1
q = 1, r = 3
q = 2, r = 2
q = 2, r = 5

𝑥𝑥

𝑓𝑓𝑋𝑋 𝑥𝑥
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3. Types of Probability Distribution 
Exponential Distribution
• Probability Density Function

• Properties
– Parameter and Variable is bounded  0 < λ, 0 < 𝑥𝑥
– Parameter relationship

– Memorylessness
P 𝑋𝑋 > 𝑠𝑠 + 𝑡𝑡|𝑋𝑋 > 𝑠𝑠 = P(𝑋𝑋 > 𝑡𝑡)

Weibull Distribution
• Probability Density Function

– Generalization of the exponential distribution
• Properties

– Widely used to model the TTF distribution

𝑓𝑓𝑋𝑋 𝑥𝑥 = λ𝑒𝑒−λ𝑥𝑥

𝑥𝑥

𝑓𝑓𝑋𝑋 𝑥𝑥
λ = 0.5

λ = 1.5
λ = 1

𝑥𝑥

𝑓𝑓𝑋𝑋 𝑥𝑥
λ = 1, k = 2

λ = 0.5, k = 1
λ = 1, k = 1

𝑓𝑓𝑋𝑋 𝑥𝑥 =
k
λ
𝑥𝑥
λ

k−1
𝑒𝑒−

𝑥𝑥
λ

k

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
Γ(1 + 1/k)

λ

E 𝑋𝑋 =
1
λ

, Var 𝑋𝑋 =
1
λ2
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4. Estimation of Parameter and Distribution
Parameter (𝛉𝛉)
• A property of an unknown probability distribution. 
• For example, mean, variance, or a particular quantile
• One of the goals of statistical inference is to estimate them.
• Examples 

– Mean of Normal Distribution:𝜇𝜇
– Standard Deviation of Normal Distribution: 𝜎𝜎2

Statistics
• To denote a quantity that is a property of a sample. 
• For example, sample mean, a sample variance, or a particular sample quantile. 
• Statistics can be used to estimate unknown parameters.
• Examples 

– Sample mean : �x = 𝑥𝑥1+⋯⋯+𝑥𝑥𝑛𝑛
𝑛𝑛

– Sample variance : s2 = ∑𝑖𝑖=1
𝑛𝑛 (𝑥𝑥𝑖𝑖−�x)2

𝑛𝑛−1
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4. Estimation of Parameter and Distribution
Point Estimation 

• Minimum Mean Square Error Estimation 

• Maximum Likelihood Estimation 

• Probability Distribution Estimation

– Method of Moments

– Goodness of Fit (Chi-square, K-S test)

Interval Estimation

Hypothesis Testing
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4. Estimation of Parameter and Distribution
Point Estimation of Parameters
• Unbiased and Biased Point Estimates

– 𝛉𝛉 : statistical parameter (fixed constant)
– �𝛉𝛉 : a statistics which serves as an estimator of 𝛉𝛉
– Unbiased if  E(�𝛉𝛉)= 𝛉𝛉
– Not unbiased, bias= E(�𝛉𝛉)−𝛉𝛉
– To  make E(�𝛉𝛉) with 𝛉𝛉 consistent for eliminating the bias which expresses systematic  

error.

E(�𝛉𝛉) = 𝛉𝛉 𝛉𝛉E(�𝛉𝛉)

bias

True Distribution
Estimated Distribution
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4. Estimation of Parameter and Distribution
• Point Estimate of a Population Mean

– If 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 is a sample of observations from a probability distribution with a mean µ, 
then the sample mean �µ=�X is an unbiased point estimate of the population mean µ.

• Point Estimate of a Population Variance
– If 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 is a sample of observations from a probability distribution with a variance 
𝜎𝜎2, then the sample variance �σ2 = 𝑆𝑆2 = ∑𝑖𝑖=1

𝑛𝑛 (𝑥𝑥𝑖𝑖−�x)2

𝑛𝑛−1
is an unbiased point estimate of 

the population variance σ2.

Proof.
E 𝑆𝑆2 = 1

𝑛𝑛−1
𝐸𝐸(∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖 − �x)2)

= 1
𝑛𝑛−1

𝐸𝐸(∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − µ − 𝑥̅𝑥 − µ )2)

= 1
𝑛𝑛−1

𝐸𝐸(∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2−2(�x − µ)∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖 − µ) + n(�x − µ)2)   

= 1
𝑛𝑛−1

𝐸𝐸(∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − µ 2 − n(�x − µ)2)

= 1
𝑛𝑛−1

𝐸𝐸(∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖 − µ)2) − n E((�x − µ)2)

= 1
𝑛𝑛−1

(𝑛𝑛σ2 − n(𝜎𝜎
2

n )) = σ2
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4. Estimation of Parameter and Distribution
Minimum Mean Square Error Estimation (MMSE)
• The average of the square of the errors between the estimator and what is estimated. 
• Because of randomness or because the estimator doesn’t account for information that 

could produce a more accurate estimate.

MSE(�𝛉𝛉) = 𝐸𝐸((�𝛉𝛉 − 𝛉𝛉)2)
= 𝐸𝐸[(�𝛉𝛉 − 𝐸𝐸 �𝛉𝛉 + 𝐸𝐸 �𝛉𝛉 − 𝛉𝛉)]2

= 𝐸𝐸[((�𝛉𝛉 − 𝐸𝐸 �𝛉𝛉 )2 + 2 (�𝛉𝛉 −E(�𝛉𝛉)) (𝐸𝐸 �𝛉𝛉 − 𝛉𝛉) + (𝐸𝐸 �𝛉𝛉 − 𝛉𝛉)2]
= E[((�𝛉𝛉 − 𝐸𝐸 �𝛉𝛉 )2] + 2(𝐸𝐸 �𝛉𝛉 − 𝛉𝛉)E (�𝛉𝛉 −E(�𝛉𝛉)) + (𝐸𝐸 �𝛉𝛉 − 𝛉𝛉)2]
= 𝐸𝐸((�𝛉𝛉 − 𝐸𝐸 �𝛉𝛉 )2 + (𝐸𝐸 �𝛉𝛉 − 𝛉𝛉)2

= Var(�𝛉𝛉) + bias2

• Example
When  �𝜃𝜃1 ~ N(1.2𝜃𝜃, 0.02𝜃𝜃2), �𝜃𝜃2 ~ N(0.9𝜃𝜃, 0.04𝜃𝜃2), Mean Square Error of each estimator

 Var(�𝜃𝜃1) < Var(�𝜃𝜃2)
bias1 = E(�𝜃𝜃1)− 𝜃𝜃 = 0.2 𝜃𝜃, bias2 = E(�𝜃𝜃2)− 𝜃𝜃 = − 0.1 𝜃𝜃
MSE(�𝜃𝜃1) = Var(�𝜃𝜃1) + (bias1)2 = 0.06𝜃𝜃2, MSE(�𝜃𝜃2) = Var(�𝜃𝜃2) + (bias2)2 = 0.05𝜃𝜃2

MSE(�𝜃𝜃1)> MSE(�𝜃𝜃2)



Seoul National University2019/1/4 - 24 -

Chapter 2. Probability and Statistics in PHM
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Maximum Likelihood Estimation (MLE)
• Likelihood function can be defined as

• Maximum Likelihood Estimation (MLE) is to find the 𝛉𝛉∗ that maximizes the likelihood 
function, so the following equation is satisfied. 

Ex) There’s a big box with some black and white balls. But we don’t know the number 
of the balls. Someone picked up a ball 10 times by sampling with replacement. And he 
picked up black balls 1 time, and white balls 9 times. Likelihood of black ball p?

𝐿𝐿(x1, x2, . . . , xn|𝛉𝛉) = 𝑓𝑓𝑋𝑋(x1|𝛉𝛉)𝑓𝑓𝑋𝑋(x2|𝛉𝛉). . . , 𝑓𝑓𝑋𝑋(x𝑛𝑛|𝛉𝛉).

𝑓𝑓𝑋𝑋 𝑥𝑥𝑖𝑖|𝛉𝛉 = The PDF values of random variable𝑋𝑋 at 𝑥𝑥𝑖𝑖
when statistical parameter is gievn as 𝛉𝛉

Sol.) 𝐿𝐿 = 𝑝𝑝(1 − 𝑝𝑝)9

∴ 𝑝𝑝 =
1

10
𝜕𝜕𝐿𝐿
𝜕𝜕𝑝𝑝

= (1 − 𝑝𝑝)9−9𝑝𝑝 1 − 𝑝𝑝 8 = 0

𝜕𝜕𝐿𝐿
𝜕𝜕𝛉𝛉

|𝛉𝛉=𝛉𝛉∗ = 0
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4. Estimation of Parameter and Distribution

Distribution Relation to mean and variance Inverse Relation

Normal E 𝑋𝑋 = µ𝑥𝑥 , Var(𝑋𝑋) = σ𝑥𝑥2 µ𝑋𝑋 = E 𝑋𝑋 ,σ𝑋𝑋 = Var 𝑋𝑋

Lognormal
E(𝑋𝑋) = exp(λ +

1
2
ζ2)

�Var(𝑋𝑋) = E2(𝑋𝑋)[𝑒𝑒ζ2 − 1

λ = ln E 𝑋𝑋 − 0.5 ln 1 + δ2

ζ = ln 1 + δ2

δ = Var(𝑋𝑋)/E 𝑋𝑋

Weibull

E 𝑋𝑋 = λ Γ(1 +
1
k)

Var 𝑋𝑋 = λ2 Γ 1 +
2
k − Γ 1 +

1
k

2

λ =
E 𝑋𝑋

Γ(1 + 1
k)

,
Γ 1 + 2

k

Γ 1 + 1
k

2

=
Var 𝑋𝑋
E 𝑋𝑋 2 − 1 → implicit

Approximation :λ = E 𝑋𝑋
Γ(1+1k)

,

k = Var 𝑋𝑋 /E 𝑋𝑋
−1.086

Method of Moments
• Basic concept : All the parameters of a distribution can be estimated using the information on 

its moment.
• Parameters of a distribution have a definite relation with the moments of the random variable.
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4. Estimation of Parameter and Distribution

Distribution Relation to mean and variance Inverse Relation

Rayleigh
E(𝑋𝑋) =

𝜋𝜋
2
α

Var(𝑋𝑋) = (2 −
π
2

)α2
α =

2
π

E 𝑋𝑋 𝑜𝑜𝑜𝑜 α =
2 Var 𝑋𝑋

4 − 𝜋𝜋

Exponential E(𝑋𝑋) =
1
v

, Var(𝑋𝑋) =
1
𝑣𝑣2

𝑣𝑣 =
1

E(𝑋𝑋)
, 𝑣𝑣 =

1

Var 𝑋𝑋
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4. Estimation of Parameter and Distribution

�
𝑖𝑖=1

𝑚𝑚 𝑛𝑛𝑖𝑖−𝑒𝑒𝑖𝑖 2

𝑒𝑒𝑖𝑖
< 𝑐𝑐1−α,𝑓𝑓 , where

𝑛𝑛𝑖𝑖 = observed frequency at 𝑖𝑖𝑡𝑡𝑡 interval
𝑒𝑒𝑖𝑖 = theoretical frequency of an assumed distribution
α = significance level

)𝑓𝑓 = degrees of freedom (= 𝑚𝑚 − 1 − 𝑘𝑘
𝑘𝑘 = number of distribution parameter

Goodness of Fit
• Quantitative method
• Based on the error between observed data and an assumed PDF
• Assume a distribution will be acceptable if an error between the observed data and the 

assumed PDF is less than a critical value.
• Examples 

– Chi-Square test  
– Kolmogorov-Smirnov (KS) test 

Chi-Square Test

df = 1

df = 2
df = 3

df = 5
df = 10
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4. Estimation of Parameter and Distribution

𝐷𝐷𝑛𝑛 = max 𝐹𝐹𝑋𝑋 𝑥𝑥𝑖𝑖 − 𝑆𝑆𝑛𝑛(𝑥𝑥𝑖𝑖)

𝐷𝐷𝑛𝑛: Maximum difference between CDFs

𝐹𝐹𝑋𝑋(𝑥𝑥𝑖𝑖): CDF of the theoretical CDF

𝑆𝑆𝑛𝑛(𝑥𝑥𝑖𝑖): CDF of the observed data

𝑆𝑆𝑛𝑛 𝑥𝑥𝑖𝑖 = �
0

𝑚𝑚/𝑛𝑛
1

𝑥𝑥 < 𝑥𝑥1
𝑥𝑥𝑚𝑚 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑚𝑚+1

𝑥𝑥 ≥ 𝑥𝑥𝑛𝑛
𝑆𝑆𝑛𝑛(𝑥𝑥𝑖𝑖): Emperical CDF of the observed data
𝑛𝑛: Sample size

𝑥𝑥𝑖𝑖

𝑆𝑆 𝑛𝑛
𝑥𝑥 𝑖𝑖

26   27   28   29   30   31   32   33   34

𝑭𝑭𝑿𝑿 𝒙𝒙𝒊𝒊

𝑆𝑆𝑛𝑛 𝑥𝑥𝑖𝑖
max 𝐹𝐹𝑋𝑋 𝑥𝑥𝑖𝑖 − 𝑆𝑆𝑛𝑛(𝑥𝑥𝑖𝑖) = 0.1018

Kolmogorov-Smirnov (KS) Test 

𝑃𝑃 𝐷𝐷𝑛𝑛 ≤ 𝐷𝐷𝑛𝑛𝛼𝛼 = 1 − 𝛼𝛼

𝐷𝐷𝑛𝑛𝛼𝛼: Values at significance level 𝛼𝛼
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5. Bayesian
Approaches to determine a probability
• Frequentist’s approach

– Postulate its probability based on the number of times the event occurs in a large 
number of samples 

𝑃𝑃 𝐴𝐴 = lim
𝑛𝑛→∞

𝑘𝑘
𝑛𝑛

• Bayesian approach
– Employs a degree-of-belief, which is subjective information (e.g. previous experience, 

expert’s opinion, data from handbook)
– Express in the form of probability density function (PDF) and observations are used to 

change or update the PDF

𝑃𝑃 𝐴𝐴 𝐵𝐵 =
𝑃𝑃 𝐵𝐵 𝐴𝐴 𝑃𝑃 𝐴𝐴

𝑃𝑃 𝐵𝐵
(𝑃𝑃(𝐵𝐵) ≠ 0)

– 𝑃𝑃(𝐴𝐴) is initial degree-of-belief in event A or called the prior.
– 𝑃𝑃 𝐴𝐴 𝐵𝐵 is the degree-of-belief after accounting for evidence B or called  the posterior.
– The Bayes’ theorem is modifying or updating the prior probability P(A) to the 

posterior probability P(A|B) after accounting for evidence.
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5. Bayesian
Bayesian Theorem in Probability Density Form (PDF)
• 𝑓𝑓𝑋𝑋 be a PDF of uncertainty variable X and test measure a value Y, random variable, 

whose PDF denoted by 𝑓𝑓𝑌𝑌
𝑓𝑓𝑋𝑋𝑋𝑋 𝑥𝑥,𝑦𝑦 = 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑌𝑌 = 𝑦𝑦 𝑓𝑓𝑌𝑌 𝑦𝑦 = 𝑓𝑓𝑌𝑌 𝑦𝑦 𝑋𝑋 = 𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥

• Ex. Fatigue life of X has epistemic uncertainty in the form of 𝑓𝑓𝑋𝑋. After measuring a 
fatigue life y of a specimen, our knowledge on fatigue life of X can be changed to 
𝑓𝑓𝑋𝑋 𝑥𝑥 𝑌𝑌 = 𝑦𝑦 .

𝑓𝑓𝑋𝑋 𝑥𝑥 𝑌𝑌 = 𝑦𝑦 =
𝑓𝑓𝑌𝑌 𝑦𝑦 𝑋𝑋 = 𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥

𝑓𝑓𝑌𝑌 𝑦𝑦
(𝑓𝑓𝑌𝑌 𝑦𝑦 = �

−∞

∞
𝑓𝑓𝑌𝑌 𝑦𝑦 𝑋𝑋 = 𝜀𝜀 𝑓𝑓𝑋𝑋 𝜀𝜀 𝑑𝑑𝜀𝜀)

• Analytical calculation is possible when prior distribution is as 𝑓𝑓𝑋𝑋 𝑥𝑥 = 𝑁𝑁(𝜇𝜇0,𝜎𝜎02) and 
likelihood is normal distribution as 𝑓𝑓𝑌𝑌 𝑦𝑦|𝑋𝑋 = 𝑥𝑥 = 𝑁𝑁(𝑦𝑦,𝜎𝜎𝑦𝑦2).

𝑓𝑓𝑋𝑋 𝑥𝑥 𝑌𝑌 = 𝑦𝑦 =
𝑓𝑓𝑌𝑌 𝑦𝑦 𝑋𝑋 = 𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥

𝑓𝑓𝑌𝑌 𝑦𝑦
~exp[−

𝑦𝑦 − 𝑥𝑥 2

2𝜎𝜎𝑦𝑦2
−

(𝑥𝑥 − 𝜇𝜇0)2

2𝜎𝜎02
]
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5. Bayesian
Bayesian Updating
• Overall Bayesian Update

𝑓𝑓𝑋𝑋 𝑥𝑥 𝑌𝑌 = 𝑦𝑦 =
1
𝐾𝐾
�
𝑖𝑖=1

𝑁𝑁

𝑓𝑓𝑌𝑌 𝑦𝑦𝑖𝑖|𝑋𝑋 = 𝑥𝑥 𝑓𝑓𝑋𝑋(𝑥𝑥)

– Likelihood functions of individual tests are multiplied together to build the total 
likelihood function.

– K is a normalizing constant.

• Recursive Bayesian Update

𝑓𝑓𝑋𝑋
(𝑖𝑖) 𝑥𝑥 𝑌𝑌 = 𝑦𝑦𝑖𝑖 =

1
𝐾𝐾𝑖𝑖
𝑓𝑓𝑌𝑌 𝑦𝑦𝑖𝑖 𝑋𝑋 = 𝑥𝑥 𝑓𝑓𝑋𝑋

𝑖𝑖−1 𝑥𝑥 , 𝑖𝑖 = 1,⋯ ,𝑁𝑁

– 𝐾𝐾𝑖𝑖 is a normalizing constant at i-th update and 𝑓𝑓𝑋𝑋
𝑖𝑖−1 (𝑥𝑥)is the PDF of X, updated 

using up to (𝑖𝑖 − 1)th tests.
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5. Bayesian
Bayesian Parameter Estimation
• Bayes theorem’s main purpose is parameter estimation and calibration of model 

parameters.
• Vector of unknown model parameters is denoted as θ, while the vector of measured data 

is denoted as y.

𝑓𝑓 θ 𝒚𝒚 =
𝑓𝑓 y θ 𝒇𝒇(θ)

𝑓𝑓(y)

• Denominator in the above equation is independent of unknown parameters and a 
normalizing constant to make the one.

𝑓𝑓 θ 𝒚𝒚 ∝ 𝑓𝑓 y θ 𝒇𝒇(θ)

– f(y|θ) is a likelihood function that is the PDF value at y conditional on given θ.
– f(θ) is the prior PDF of θ, which is updated to f(θ|y), the posterior PDF of θ

conditional on given θ.
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5. Bayesian
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4. Estimation of Parameter and Distribution
Interval Estimation of Parameters
• An interval that contains a set of plausible value of the parameter.

– The confidence level : 1 − 𝛼𝛼
ex) confidence interval for 𝜇𝜇

𝑃𝑃 �𝑋𝑋 −
𝑡𝑡𝛼𝛼/2,𝑛𝑛−1𝑆𝑆

𝑛𝑛
≤ 𝜇𝜇 ≤ �𝑋𝑋 +

𝑡𝑡𝛼𝛼/2,𝑛𝑛−1𝑆𝑆
𝑛𝑛

= 1 − 𝛼𝛼

– Confidence interval length

– 𝐿𝐿 = 2𝑡𝑡𝛼𝛼/2, 𝑛𝑛−1× 𝑆𝑆
𝑛𝑛

∝ 1
𝑛𝑛

– Higher confidence levels require longer confidence intervals.  (𝛼𝛼2 > 𝛼𝛼1)

• t-Interval

𝜇𝜇 ∈ 𝑥̅𝑥 −
𝑡𝑡𝛼𝛼/2,𝑛𝑛−1𝑠𝑠

𝑛𝑛
, 𝑥̅𝑥 +

𝑡𝑡𝛼𝛼/2,𝑛𝑛−1𝑠𝑠
𝑛𝑛

– with unknown population variance
– small sample sizes when the data are taken to be normally distributed.
– not normally distributed small sample data (nonparametric techniques)
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• z-Interval

𝜇𝜇 ∈ 𝑥̅𝑥 −
𝑧𝑧𝛼𝛼/2,𝑛𝑛−1𝜎𝜎

𝑛𝑛
, 𝑥̅𝑥 +

𝑧𝑧𝛼𝛼/2,𝑛𝑛−1𝜎𝜎
𝑛𝑛

– with known population standard-deviation(𝜎𝜎)
– observations : 𝑥𝑥1, 𝑥𝑥2,⋯𝑥𝑥𝑛𝑛

independent RV : 𝑋𝑋1, 𝑋𝑋2,⋯𝑋𝑋𝑛𝑛
sample mean is itself a RV

( �𝑋𝑋 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖)

• One-sided t-Interval

𝜇𝜇 ∈ −∞, 𝑥̅𝑥 +
𝑡𝑡𝛼𝛼,𝑛𝑛−1𝑠𝑠

𝑛𝑛
𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇 ∈ 𝑥̅𝑥 −

𝑡𝑡𝛼𝛼,𝑛𝑛−1𝑠𝑠
𝑛𝑛

,∞

• One-sided z-Interval

𝜇𝜇 ∈ −∞, 𝑥̅𝑥 +
𝑧𝑧𝛼𝛼,𝑛𝑛−1𝜎𝜎

𝑛𝑛
𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇 ∈ 𝑥̅𝑥 −

𝑧𝑧𝛼𝛼,𝑛𝑛−1𝜎𝜎
𝑛𝑛

,∞
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Hypothesis Testing
• Deciding the rejection yes or no of ‘Null hypothesis’ by providing the intensity of it’s 

counterevidence. 

• Ex) The machine that produces metal cylinders is set to make cylinders with a diameter 
50mm. Is it calibrated correctly?

𝐻𝐻𝑜𝑜 : 𝜇𝜇=50     𝑣𝑣𝑠𝑠 𝐻𝐻𝐴𝐴 :𝜇𝜇≠50
• p-Value(significance probability) : the probability of obtaining the worse data set  when 

the null hypothesis is true. (usually 0.01)
– The smaller the p-value, the less plausible is the null hypothesis.
– 𝐻𝐻𝐴𝐴 cannot be proven to be true; 𝐻𝐻𝑜𝑜 can only be shown to be implausible.

Two sided One sided

Null hypothesis(𝐻𝐻𝑜𝑜) 𝜇𝜇 = 𝜇𝜇𝑜𝑜 𝜇𝜇 ≤ 𝜇𝜇𝑜𝑜 𝜇𝜇 ≥ 𝜇𝜇𝑜𝑜

Alternative hypothesis(𝐻𝐻𝐴𝐴) 𝜇𝜇 ≠ 𝜇𝜇𝑜𝑜 𝜇𝜇 > 𝜇𝜇𝑜𝑜 𝜇𝜇 < 𝜇𝜇𝑜𝑜
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• Two-sided problem

𝐻𝐻𝑜𝑜: 𝜇𝜇 = 𝜇𝜇𝑜𝑜 𝑣𝑣𝑣𝑣 𝐻𝐻𝐴𝐴 : 𝜇𝜇 ≠ 𝜇𝜇𝑜𝑜

Test statistic: t = 𝑛𝑛(𝑥̅𝑥−𝜇𝜇𝑜𝑜)
𝑠𝑠

• One-sided problem
𝐻𝐻𝑜𝑜: 𝜇𝜇 ≤ 𝜇𝜇𝑜𝑜 𝑣𝑣𝑣𝑣 𝐻𝐻𝐴𝐴 : 𝜇𝜇 > 𝜇𝜇𝑜𝑜
𝐻𝐻𝑜𝑜: 𝜇𝜇 ≥ 𝜇𝜇𝑜𝑜 𝑣𝑣𝑣𝑣 𝐻𝐻𝐴𝐴 : 𝜇𝜇 < 𝜇𝜇𝑜𝑜

• Rejection region
– The set of values for the test statistic that leads to rejection of 𝐻𝐻𝑂𝑂.
– If the value falls inside the rejection region, you reject the null hypothesis.
– If you choose the alpha level 5%, that level is the rejection region.

𝐻𝐻𝐴𝐴 P-value(reject) , 𝑋𝑋~t(n − 1) Rejection region

𝜇𝜇 ≠ 𝜇𝜇𝑜𝑜 𝑃𝑃 𝑋𝑋 ≥ 𝑡𝑡 < 𝛼𝛼 𝑡𝑡 > 𝑡𝑡𝛼𝛼
2,𝑛𝑛−1

𝜇𝜇 > 𝜇𝜇𝑜𝑜 𝑃𝑃 𝑋𝑋 ≥ 𝑡𝑡 < 𝛼𝛼 𝑡𝑡 > 𝑡𝑡𝛼𝛼,𝑛𝑛−1

𝜇𝜇 < 𝜇𝜇𝑜𝑜 𝑃𝑃 𝑋𝑋 ≤ 𝑡𝑡 < 𝛼𝛼 𝑡𝑡 < −𝑡𝑡𝛼𝛼,𝑛𝑛−1
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4. Estimation of Parameter and Distribution
• Ex) The data : the times in minutes taken to remove paint.

Question : Is the average blast time is less than 10 min?

1. Data summary
𝑛𝑛 = 6, 𝑥̅𝑥 = 9.683, s=0.906

2. Determination of suitable hypothesis
𝐻𝐻𝑜𝑜: 𝜇𝜇 ≥ 10 𝑣𝑣𝑣𝑣 𝐻𝐻𝐴𝐴 : 𝜇𝜇 < 10

3. Calculation of the test statistic
t = 𝑛𝑛(𝑥̅𝑥−𝜇𝜇𝑜𝑜)

𝑠𝑠
= 6(9.683−10)

0.906
= −0.857

4. Expression for the 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑃𝑃 𝑋𝑋 ≤ −0.857 ,𝑋𝑋~𝑡𝑡(5)

5. Evaluation of the 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
set 𝛼𝛼=0.1, P 𝑋𝑋 ≤ −0.857 >

0.1 or 𝑡𝑡 = −0.857 > −𝑡𝑡0.1,5 = −1.476

6. Decision
𝐻𝐻𝑜𝑜is accepted.

7. Conclusion
The data can’t provide sufficient evidence 

that the average blast time is less than 10 min.

Data : 10.3, 9.3, 11.2, 8.8, 9.5, 9.0
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4. Estimation of Parameter and Distribution
• Type of errors

Real

𝐻𝐻𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐻𝐻𝐴𝐴 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Result of test
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐻𝐻𝑜𝑜 OK Type 2 error(𝜷𝜷)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐻𝐻𝐴𝐴 Type 1 error(𝜶𝜶) OK
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