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Chapter 2 : Stresses and Strains

Traction or Stress Vector; Stress Components

Traction Vector

Consider a surface element, AS, of either the bounding surface of the body or the
fictitious internal surface of the body as shown in Fig. 2.1.

Assume that AScontains the point.
The traction vector, t, is defined by

(@) b)

Fig. 2.1 Definition of surface traction
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Traction or Stress Vector; Stress Components

Traction Vector (Continued)

It is assumed that Af and ASapproach zero but the fraction, in general,
approaches a finite limit.

An even stronger hypothesis is made about the limit approached at Q by the
surface force per unit area.

First, consider several different surfaces passing through Q all having the same
normal n at Q asshown in Fig. 2.2.

Fig. 2.2 Traction vector t and vectors at Q

Then the tractionson S, S'and S”are the same.

That is, the traction is independent of the surface chosen so long as they all have
the same normal.
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Traction or Stress Vector; Stress Components

Stress vectors on three coordinate plane

Let the traction vectors on planes perpendicular to the coordinate axes be t®),
t@, and t© as shown in Fig. 2.3.

Then the stress vector at that point on any other plane inclined arbitrarily to the
coordinate axes can be expressed in terms of t@, t@, and t®,

Note that the vector t) acts on the positive x;-side of the element.
The stress vector on the negative side will be denoted by - tb,

t'i?)
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Fig. 2.3 Traction vectors on three planes
perpendicular to coordinate axes
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Traction or Stress Vector; Stress Components

Stress components
The traction vectors on planes perpendicular to the coordinate axes, X;, X, and
X,are t) t@) and t®).

The three vectors can be decomposed into the directions of coordinate axes as
th =T i +T,j+TK
t@ =T, i+T,,j+T,.K (2-2)
t® =T i+T,,j+ Tk

The nine rectangular components T are called the stress components.

Here,

the first subscript represents the “plane” and
the second subscript represents the “direction”.

sz Ty T
T,j——T’T ij —> Direction

31 13 Ax, > Plane

Ax,

‘ﬁ‘xl -
x / Fig. 2.4 Stress components
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Traction or Stress Vector; Stress Components

Sign convention

A stress component is positive when it acts in the positive direction of the
coordinate axes and on a plane whose outer normal points in one of the positive
coordinate directions.

‘ Xoa $
T{1 L.txl 'Tlrl

1

Fig. 2.5 Sign convention of
1 Iy stress components

Sign convention

The stress state at a point Q is uniquely determined by the tensor T which is
represented by

Tll T12 T13

T=T,, T, Ty (2-3)
_T31 Ts T33_
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Traction or Stress Vector; Stress Components

Traction vector on an arbitrary plane: The Cauchy tetrahedron

When the stress at a point O is given, then the traction on a surface passing the
point Q is uniquely determined.

Consider a tetrahedron as shown in Fig. 2.6.
The orientation of the oblique plane ABC is arbitrary.

Let the surface normal of AABCDbe n and the line ON is perpendicular to AABC
The components of the unit normal vector n are the direction cosine as

n, = cos(£AON)
n, =cos(£BON)  (2-4)
n, =cos(£CON)

X3 Fig. 2.6 Geometry of tetrahedron
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Traction or Stress Vector; Stress Components

Traction vector on an arbitrary plane: The Cauchy tetrahedron (Conti.)
If we let ON =h, then

h=0A-n,=0B-n,=0C-n, (2-5)
Let the area of AABC, AOBC, AOCA & AOABbe AS, AS,, AS,& AS, respectively.
Then the volume of the tetrahedron, AV, can be obtained by
1 1 1 1

From this we get,

AS, = AS -~ AS 1,
OA
h
AS, =AS-——=AS-n 2-7
2 OB 2 (2-7)
h

AS3=AS-——=AS-n
3 OC 3
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Traction or Stress Vector; Stress Components

Traction vector on an arbitrary plane: The Cauchy tetrahedron (Conti.)
Now consider the balance of the force on OABC as shown in Fig. 2.7,
The equation expressing the equilibrium for the tetrahedron becomes

t"™°AS + p’b’AV —tP°AS, —tP°AS, —t¥AS, =0 (2-8)

Here the subscript * indicates the average quantity.
Substituting for AV,AS,,AS, and AS,, and dividing through by AS, we get

* 1 *p % * * *
™" +§hp b =tYn, +t9n, +t%n, (2-9)

Fig. 2.7 Forces on tetrahedron
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Traction or Stress Vector; Stress Components

Traction vector on an arbitrary plane: The Cauchy tetrahedron (Conti.)

Now let h approaches zero, then the term containing the body force approaches
zero, while the vectors in the other terms approach the vectors at the point O.

The result is in the limit
t™ =tYn, +t%n, +t%n, =tYn, (2-10)
The important equation permits us to determine the traction t™ at a point acting

on an arbitrary plane through the point, when we know the tractions on only
three mutually perpendicular planes through the point.

The equation (2-10) is a vector equation, and it can be rewritten by
t" =tPn, +t7n, +tn,
t" =tn, +t7n, +t7n, (2-11)
t" =tPn, +tPn, +17n,
Comparing these with eq. (2-2), we get
tl(n) =T,n +TyN, +T31n3 = TN,
tén) = Tphy + Ty, + TN, =Ty o0, (2-12)
t?En) = TN, +Ty3n, + TNy =Ty N,



Chapter 2 : Stresses and Strains

Traction or Stress Vector; Stress Components

Cauchy stress tensor
Or for simplicity, we put
e inindicial notation t" =T;n,
e inmatrix notation  t® =T ™n (2-13)
e indyadicnotation t™ =n.T=T".n

From the derivation of this section, it can be shown that the relation (2-13) also
holds for fluid mechanics.

Tij : Cauchy stress tensor.

This stress tensor is the linear vector function which associates with n the
traction vector t(



Chapter 2 : Stresses and Strains

Coordinate Transformation of Stress Tensors

Transformation matrix

As we discussed in the previous chapter, stress tensor follows the tensor
coordinate transformation rule.

That is, let Xand X be the two coordinate systems and A be a transformation
matrix as

V=AV or v=A'v
Then the stress tensor T transformsto T as
T=A"TA
We may consider the stress tensor transformation in two dimensional case.

Let the angle between X axis and X axisis 6.
Then the transformation matrix A becomes

A a a, | |cosd —sind
la? a?| |sin@ cosé
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Coordinate Transformation of Stress Tensors

Transformation matrix (Continued)
The stress T transforms to T according to the following

cosd sine}rﬂ le}{cose —sin@}

T=ATA=| _
—sin@ cos@ || T,, T, |/ sin@ cosé
Evaluating the equation, we get

T, =T, 08>0+ 2T, sin@cosé +T,, cos@sin &

T, =(T,, —T,)sin@cosd+T,(cos* & —sin® H)

T,, =T, sin* & +T,,cos” & — 2T, sindcosé

By using double angle trigonometry, we can get

-F11’-F22 _ (T +Ty) + (T = Tz) Cos20£T,sin26
2 2

T, = M=) G g +T,,€0820
2
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Coordinate Transformation of Stress Tensors

Transformation matrix (Continued)
Now we recognize the last two equations are the same as the ones we derived for
Mohr circle, (eq 4-25) of Crandall’s book.

For the two dimensional stress state, Mohr circle may be convenient because we
recognize the stress transformation more intuitively.

However, for 3D stress state and computation, it is customary to use the tensor
equation directly to calculate the stress components in transformed coordinate

system.

. Fig. 2.8 Mohr’s circle
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Principal Axes of Stress, Principal Stress, etc.

Characteristics of the principal stress

(1) When we consider the stress tensor T as a transformation, then there exist
a line which is transformed onto itself by T.

(2) There are three planes where the traction of the plane is in the direction
of the normal vector, i.e.

t™ //n or t™ = An (2-14)

Definitions

e Principal axes
* Principal plane

* Principal stress
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Principal Axes of Stress, Principal Stress, etc.

Determination of the principal stress

Let T be the stress at a point in some Cartesian coordinate system, N be a unit
vector in one of the unknown directions and / represent the principal component

on the plane whose normal is n.
Then t™ =An;thatis, n-T=An
In indicial notation, we have
T.n =An, = 40N,
Rearranging, we have
(T,—A0,)n =0 (2-15)

The three direction cosines cannot be all zero, since
_n2 2 2 _
nn =n +n;+n; =1
A system of linear homogeneous equations, such as eq. (2-15), has solutions
which are not all zero if and only if the determinant

T.-15,|=0 (2-16)

The equation (2-16) represents third order polynomial equation w.r.t. 4 and it has
3 real roots for 4 since T represents a real symmetric matrix.
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Principal Axes of Stress, Principal Stress, etc.

Determination of the principal direction
When we get 1 = 4,, 4,, 43 We can substitute the 4, into the system of three

algebraic equations

_T11 -4 T12 T13 ] n
T,, T,-4 T,, n, =0 (2-17)

B T31 T32 T33 _/1_ n,

From these, we get the ratio of n;: n, : n,.
Since |n|=./n:n, =1, we can determine (n, n, n,)uniquely.
There can be three different cases;

(1) 3 distinctive roots
(2) Two of the roots are the same (cylindrical)
(3) All three roots are the same (spherical)

When the two of the principal stresses, say o, and ¢, are not equal, the
corresponding principal directions n®Mand n®@are perpendicular.
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Principal Axes of Stress, Principal Stress, etc.

Determination of the principal direction (Continued)

Proof>
Recall eq. (2-15)

(T,.—-15,)n =0 (2-15)
By substituting 4; and n®, we get
(Trs B Z‘lgrs)nr(l) =0 (2_18)

(Trs _ﬂ‘zé‘rs)nﬁZ) =0

Note that (T,s — 46,.)n: represent a vector.
From eg. (2-18), we can have

(Trs _ 2’15I‘S)n£1) nS(Z) = O (a)
(T, - 4,6.,)n%n® =0 (b)
By subtracting (b) from (a), we get

T n(l)n(Z) -T n(2)n(1) -I—ﬂ n(2) (1) ﬂ,ln(l) (2) _

s 'r rs r

(c)
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Principal Axes of Stress, Principal Stress, etc.

Determination of the principal direction (Continued)
The first two terms of eq. (c) become

T n(l)n(2) —T n®¥n (1) —T n%n (2) -T n(l)n(2)

s r s r s r sr-r

- (Trs o sr)nfl) 3(2) - O

because T is symmetric.
The remaining terms of eq. (c) become

(A, —2)nPn? =0 (d)
Since 4 # 4, and |n®|=|n®|=1, eq. (d) implies

Therefore, N and N are perpendicular to each other.
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Principal Axes of Stress, Principal Stress, etc.

Invariants

The principal stresses are physical quantities. Their value does not depend on the
choice of the coordinate system. Therefore, the principal stresses are invariants
of the stress state. That is, they are invariant w.r.t. the rotation of the coordinate
axes.

The determinant in the characteristic equation becomes
T11 — A T12 T13
Ty Ty —4 Ty |=0
T31 T32 T33 —A
Evaluating the determinant, we get
/13—IT/12—IITJL—IIIT =0 (2-20)
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Principal Axes of Stress, Principal Stress, etc.

Invariants (Continued)
where

IT :T11+T22 +T33 :Tkk =tr(T)

= _(T11T22 + T22T33 + T33T11) + Tzé + Tsi + le

1
ZE TijTij i ”)
Tll T12 T13
I, =det(T)=[T,, T, T,
Ty Ty Ty
1
6 €€ pqulpTJqT

Since the roots of the cubic equation are invariants, the coefficients should be
Invariants.
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Example 1. Determine the normal and shear stress at the
Interface

~
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~ ~
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~ ~
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~
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~
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~
~
~

o, =0, =—500 psi

Other stress components are zero.
l o, =0, =100 psi Stress distribution is uniform.

From the figure we can determine
n=sinqae, +cosae,
We use eq (2-10), T =T n to find out surface traction. That is,

(500 O 1[sina| [-500sin« |
T | 0 100 cosa |=| 100cosax
100 0 0
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Example 1. Determine the normal and shear stress at the
Interface

Therefore, the traction at the surface whose normal is n given by

T™ =-500sin ae, +100cos ae,
Therefore, the surface traction in n direction is given by

T =T .n=(-500sinae, +100cosae,) - (sinae, +cosae,)
= (-500sin’ o +100co0s” &)

There may be different ways to obtain shear component of the traction. One way
may be the vector subtraction.

Then the shear stress at the interface becomes
T =T®™ —(-500sin*a +100co0s” )(sin cre, + cosae,)
=-500sin ae, +100cosae, — (-500sin® o +100cos’ & )(sin ae, + cosae,)
= (-500sin a +500sin® o —100cos’ asina)e,
+(100cosa +500sin’ o cosa +500sin®  cos e,

= -600sin a cos’ ae, + 600cosasin® ae,

mmm)  The magnitude of T, becomes [T,,|=600sinacosa
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Example 2

3000 -1000 O
Let, T =|-1000 2000 2000
0 2000 2000 |

Then determine the normal traction on the surface whose normal is
n=0.6e, +0.8e,

Againweuse T™ =T .n

(3000 -1000 O |[ O
T™M=T.n=|-1000 2000 2000 || 0.6
0 2000 2000/ 0.8

600 ]
= | 2800 | =—600e, + 2800e, + 28008,
2800

T,=T"-n=2800 and s=e,
Againweuse T =T .s=(-600e, +2800e, + 2800e,)-s = —600
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Example 2

The generalized Hooke’s law

_ ijkl
G; =C"e,

Inasmuchas 6; =6 and &; =€;, C™ =C"™ and C™™ =C™

According to these symmetry properties, the maximum number of the
Independent elastic constants is 36.
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