
M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong 

Ch. 4 Stress and Strain 1 / 21 

 

 

 

 

 

 

CH. 4 

STRESS AND STRAIN 

  



M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong 

Ch. 4 Stress and Strain 2 / 21 

 

4.1 Introduction 

 In this chapter, to derive the overall behavior of a body from the 
properties of differentially small elements within the body still requires the 
use of the three fundamental principles of equilibrium, geometric 
compatibility, and the relations between force and deformation. 

▶ CH. 4: The equilibrium and geometry of deformation at a point are 
considered.   Stress and Strain 

CH. 5: The force, deformation, and their relation at a point are 
observed for structures under various (mechanical and thermal) loading 
conditions.   Stress-Strain-Temperature Relations 

 

4.2 Stress 

▶ Four major characteristics of stress 

i) The physical dimensions of stress are force per unit area. 

ii) Stress is defined at a point upon an imaginary plane or boundary 
dividing the material into two parts. 

iii) Stress is a vector equivalent to the action of one part of the material 
upon another. 

iv) The direction of the stress vector is not restricted. 

▶ Stress Vector (୬)  

▷Definition 

𝐓(୬) = lim
∆→

∆𝐅

∆
 (4.1) 

The stress vector 𝐓(୬) is force intensity or stress acting at the point 
𝑂 on a plane whose normal is 𝐧 passing through 𝑂. 
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cf. 𝐓(୬) does not act in general in the direction of 𝐧. 

cf. ∆𝐴 → 0  means ∆𝐴 → 𝜖ଶ , and 𝜖ଶ  is the minimum area for 
continuous ∆𝐅. 

 

▷The components in the Cartesian coordinate system 

𝐓(𝐧) = 𝑇𝒙
(𝒏)

𝐢 + 𝑇𝒚
(𝒏)

𝐣 + 𝑇𝒛
(𝒏)

𝐤  (4.2) 

 

▷The stress components on the  face at point  (see Fig. 4.4, 
4.5) 

𝜎௫ = 𝑙𝑖𝑚
∆ೣ→

∆ிೣ

∆ೣ
  

𝜏௫௬ = 𝑙𝑖𝑚
∆ೣ→

∆ி

∆ೣ
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𝜏௫௭ = 𝑙𝑖𝑚
∆ೣ→

∆ி

∆ೣ
  (4.3) 

 

 

▷Sign convention 

i) When a positively directed force component acts on positive face 
→ (+) 
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ii) When a negatively directed force component acts on negative face 
→ (+) 

▶ Stress component 



𝜎௫ 𝜏௫௬ 𝜏௫௭

𝜏௬௫ 𝜎௬ 𝜏௬௭

𝜏௭௫ 𝜏௭௬ 𝜎௭

൩ (4.4) 

i) The primes are used to indicate that the stress components on 
opposite face. 

ii) The stress components in Fig. 4.8 should be thought of as average 
values over the respective faces of the parallelepiped. 

 

▶ Index or Indicial notation 

 Indicial notation for stress is often more convenient for general 
discussions in elasticity. 
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 In indicial notation the coordinate axes 𝑥, 𝑦, and 𝑧 are replaced by 
numbered axes, 𝑥ଵ, 𝑥ଶ, and 𝑥ଷ, respectively. 

𝜎௫ ;  σଵଵ = lim
∆భ→

∆ிభ

∆భ
  

𝜏௫௬ ;  σଵଶ = lim
∆భ→

∆ிమ

∆భ
  

𝜏௫௭ ;  σଵଷ = lim
∆భ→

∆ிయ

∆భ
  

σ = lim
∆→

∆ிೕ

∆
  (4.5)  

4.3 Plane Stress 

 A thin sheet is being pulled by forces in the plane of the sheet. If we 
take the xy plane to be the plane of the sheet, then 𝜎௫ , 𝜎௫

ᇱ , 𝜎௬ , 𝜎௬
ᇱ , 𝜏௫௬ ,

𝜏௫௬
ᇱ , 𝜏௬௫, 𝜏௬௫

ᇱ   will be the only stress components acting on the 

parallelepiped. Therefore, the state of stress at a given point will only 
depend upon the four stress components. 

ቂ
𝜎௫ 𝜏௫௬

𝜏௬௫ 𝜎௬
ቃ (4.6) 

 This combination of stress components is called plane stress in the 
𝑥𝑦 plane. 

Ex) Slender members under axial loading, Axis under torsion, Stress in 
the beam, etc. 

4.4 Equilibrium of a Differential Element in Plane Stress 

 Using the concept of the partial derivative, we can approximate the 
amount of a stress component changes between two points separated by 
a small distance as the product of the partial derivative in the direction 
connecting the two points. 

 If a continuous body is in equilibrium, then any isolated part of the 
body must be acted upon by an equilibrium set of forces. 
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 If all systems are in equilibrium, the element shown in Fig. 4.10 must 
satisfy the equilibrium conditions ∑ 𝐌 = 0 and ∑ 𝐅 = 0. 

▶ Proof of ௬௫ ௫௬ (Eq. 4.12) 

From Fig. 4.10, 

∑ 𝐌 = {൫𝜏௫௬∆𝑦∆𝑧൯
∆௫

ଶ
+ ቂቀ𝜏௫௬ +

డఛೣ

డ௫
∆𝑥ቁ ∆𝑦∆𝑧ቃ

∆௫

ଶ
  

−൫𝜏௬௫∆𝑥∆𝑧൯
∆௬

ଶ
− ቂቀ𝜏௬௫ +

డఛೣ

డ௬
∆𝑦ቁ ∆𝑥∆𝑧ቃ

∆௬

ଶ
}𝐤 = 0 (4.8)  

∴ 𝜏௫௬ +
డఛೣ

డ௫

∆௫

ଶ
− 𝜏௬௫ −

డఛೣ

డ௬

∆௬

ଶ
= 0 (4.11) 

For the limits ∆𝑥 → 0, ∆𝑦 → 0  

𝜏௬௫ = 𝜏௫௬ (4.12) 

In the limit as ∆𝑥 and ∆𝑦 go to zero, 
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cf. In general, 𝜏௫௬ = 𝜏௬௫ , 𝜏௫௭ = 𝜏௭௫ , 𝜏௬௭ = 𝜏௭௬. 

▶ Proof of 
డఙೣ

డ௫

డఛೣ

డ௬
, 

డఛೣ

డ௫

డఙ

డ௬
 (Eq. 4.13) 

From Fig. 4.10, 

∑ 𝐹௫ = ቀ𝜎௫ +
డఙೣ

డ௫
∆𝑥ቁ ∆𝑦∆𝑧 + ቀ𝜏௬௫ +

డఛೣ

డ௬
∆𝑦ቁ ∆𝑥∆𝑧  

−𝜎௫∆𝑦∆𝑧 − 𝜏௬௫∆𝑥∆𝑧 = 0 (4.9)  

∑ 𝐹௬ = ቀσ௬ +
డఙ

డ௬
∆𝑦ቁ ∆𝑥∆𝑧 + ቀ𝜏௫௬ +

డఛೣ

డ௫
∆𝑥ቁ ∆𝑦∆𝑧  

−𝜎௬∆𝑥∆𝑧 − 𝜏௫௬∆𝑦∆𝑧 = 0 (4.10) 

If we now return to Eqs (4.9) and (4.10), we find, using (4.12), that the 
requirements of ∑ 𝐅 = 0 at a point lead to the differential equations. 

பೣ

డ௫
+

డఛೣ

డ௬
= 0

பதೣ

డ௫
+

డఙ

డ௬
= 0

  (4.13) 

cf. We have found the requirements (4.12) and (4.13) which equilibrium 
imposes upon the stress components acting on perpendicular faces. 

▶ The three dimensional equations corresponding to Eq. (4.13) 
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பభభ

డ௫భ
+

பఙమభ

డ௫మ
+

பయభ

డ௫య
= 0  

பభమ

డ௫భ
+

பమమ

డ௫మ
+

பయమ

డ௫య
= 0 (4.14) 

பభయ

డ௫భ
+

பమయ

డ௫మ
+

பయయ

డ௫య
= 0  

 ∑
డఙೕ

డ௫

ଷ
ୀଵ = 0 (𝑗 = 1,2,3)  

 
பౠ

డ௫
= 0 (4.15) 

cf. Moment equilibrium has the result (4.12) that the original four stress 
components are reduced to three independent components in a two 
dimensional case, and for a three dimensional case of stress, moment 
equilibrium will reduce the original nine components of stress to six 
independent ones. 

4.5 Stress Components Associated with Arbitrarily 
Oriented Faces in Plane Stress 

▶ We examine further the problem of equilibrium of stress at a 
point and determine relationships which must exist between the 
stress components associated with faces which are not 
perpendicular to each other. 

▶ Let us assume that we know the values of the stress 
components at some point in a body subjected to plane stress. 
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▶ To determine the stress components 𝜎௫ᇲ  and 𝜏௫ᇲ௬ᇲ  in terms of 

𝜎௫ , 𝜎௬ , 𝜏௫௬ , and 𝜃, consider the equilibrium of a small wedge centered 

on point 𝑂 as shown in Fig. 4.15. 
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∑ 𝐹௫ᇱ = 𝜎௫ᇲ(𝐴 𝑠𝑒𝑐 𝜃) − 𝜎௫𝐴𝑐𝑜𝑠𝜃 − 𝜏௫௬𝐴𝑠𝑖𝑛𝜃 −

𝜎௬(𝐴𝑡𝑎𝑛𝜃)𝑠𝑖𝑛𝜃 − 𝜏௬௫(𝐴𝑡𝑎𝑛𝜃)𝑐𝑜𝑠𝜃 = 0  (4.21) 

∑ 𝐹௬ᇱ = 𝜏௫ᇱ௬ᇱ𝐴𝑠𝑒𝑐𝜃 + 𝜎௫𝐴𝑠𝑖𝑛𝜃 − 𝜏௫௬𝐴𝑐𝑜𝑠𝜃 −

𝜎௬(𝐴𝑡𝑎𝑛𝜃)𝑐𝑜𝑠𝜃 + 𝜏௬௫(𝐴𝑡𝑎𝑛𝜃)𝑠𝑖𝑛𝜃 = 0  (4.22) 

∴ ቊ
𝜎௫ᇱ = 𝜎௫𝑐𝑜𝑠ଶ𝜃 + 𝜎௬𝑠𝑖𝑛ଶ𝜃 + 2𝜏௫௬𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝜏௫ᇱ௬ᇱ = ൫𝜎௬ − 𝜎௫൯𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝜏௫௬(𝑐𝑜𝑠ଶ𝜃 − 𝑠𝑖𝑛ଶ𝜃)
  (4.23) 

where 𝐴 = 𝑀𝑃തതതതത × ∆𝑧 

 From (4.23) it is evident that in plane stress if we know the stress 
components on any two perpendicular faces, we know the stress 
components on all faces whose normals lie in the plane. 

▷In particular, acting on a face perpendicular to the  axis. 

 If we substitute 𝜃 + 90° for 𝜃, 

𝜎௬ᇱ = 𝜎௫ 𝑠𝑖𝑛ଶ 𝜃 + 𝜎௬ 𝑐𝑜𝑠ଶ 𝜃 − 2𝜏௫௬ 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃  (4.24) 

−𝜏௬ᇲ௫ᇲ = 𝜏௫ᇲ௬ᇲ   

= ൫𝜎௬ − 𝜎௫൯ 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 + 𝜏௫௬(𝑐𝑜𝑠ଶ 𝜃 − 𝑠𝑖𝑛ଶ 𝜃)   

 Specification of a state of stress in plane stress involves knowledge 
of three stress components, most conveniently taken as the normal and 
shear components on two perpendicular faces. 

4.6 Mohr’s Circle Representation of Plane Stress 

𝑐𝑜𝑠ଶ𝜃 =
ଵା௦ଶఏ

ଶ
 , 𝑠𝑖𝑛ଶ𝜃 =

ଵି௦

ଶ
 , 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 =

ଵ

ଶ
𝑠𝑖𝑛2𝜃  

 In order to facilitate application of (4.23) and (4.24), we shall make 
use of a simple graphical representation. 
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𝜎௫ᇲ =
ఙೣାఙ

ଶ
+

ఙೣିఙ

ଶ
𝑐𝑜𝑠 2𝜃  + 𝜏௫௬ 𝑠𝑖𝑛 2𝜃

𝜎௬ᇲ =
ఙೣାఙ

ଶ
−

ఙೣିఙ

ଶ
𝑐𝑜𝑠 2𝜃  − 𝜏௫௬ 𝑠𝑖𝑛 2𝜃

𝜏௫ᇲ௬ᇲ = −
ఙೣିఙ

ଶ
𝑠𝑖𝑛 2𝜃 + 𝜏௫௬ 𝑐𝑜𝑠 2𝜃

𝜎௫ᇲ + 𝜎௬ᇲ = 𝜎௫ + 𝜎௬ = 𝑐𝑜𝑛𝑠𝑡 

 (4.25) 

cf. Sign convention of shear stress 

 Positive shear stress 𝜏௫௬ (see Fig. 4.11) is plotted downward at 𝑥 

and upward at 𝑦 . Negative shear stress is plotted upward at 𝑥  and 
downward at 𝑦.  

 

▶ To construct Mohr’s circle (see Fig. 4.17) 

i) Using the sign convention for stress components just given, we 
locate the point x with coordinates 𝜎௫ , and 𝜏௫௬ , and the point 
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𝑦 with coordinates 𝜎௬, and 𝜏௫௬. 

ii) We join points x and y with a straight line intersecting the 𝜎 axis 
at point C, which is to be the center of Mohr’s circle. The abscissa 
of C is 

𝑐 = (𝜎௫ + 𝜎௬)/2  (4.26) 

iii) With C as center and 𝑥𝑦  as diameter we draw the circle. The 
radius of the circle is 

𝑟 = ቀ
ఙೣିఙ

ଶ
ቁ

ଶ
+ 𝜏௫௬

ଶ ൨
ଵ/ଶ

  (4.27) 

Once the circle has been constructed, it may be used to determine 
the stress components 𝜎௫ᇱ, 𝜎௬ᇱ, and 𝜏௫ᇱ௬ᇱ shown in Fig. 4.17 (d). 

These stress components apply to the same physical point 𝑂 in the 
body but are in respect to the axes 𝑥′𝑦′ which make an angle 𝜃 
with the original 𝑥𝑦 axes. 

iv) We locate the 𝑥′𝑦′ diameter with respect to the 𝑥𝑦 diameter in 
Mohr’s circle by laying off the double angle 2𝜃 in Fig. 4.17 (c) in 
the same sense as the rotation 𝜃 which carries the 𝑥𝑦 axes into 
the 𝑥′𝑦′ axes in Fig. 4.17 (d). 

v) Using the sign convention for stress components in Mohr’s circle, 
we read off the values of 𝜎௫ᇱ and 𝜏௫ᇱ௬ᇱ as the coordinates of point 

𝑥ᇱand the values of 𝜎௬ᇱ and 𝜏௫ᇱ௬ᇱ as the coordinates of point 𝑦′ 
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▶ Example 4.1 We consider a thin sheet pulled in its own plane 
so that the stress components with respect to the  axes are 
as given in Fig. 4.18 (a). We wish to find the stress components 
with respect to the  axes which are inclined at 45° to the  
axes. 

cf. Though we set the coordinate axis 𝑎 like the left figure, the Mohr’s 
circle is same with Fig. 4.18 (a). 
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2𝜃ଵ = 𝑡𝑎𝑛ିଵ(40/30) = 53.2°  

𝑟 = ඥ(30)ଶ + (40)ଶ = 50 MN/mଶ  

𝜎 = 80 + 50 𝑐𝑜𝑠(90° − 53.2°) = 120 MN/mଶ  

𝜎 = 80 − 50 𝑐𝑜𝑠(90° − 53.2°) = 40 MN/mଶ  

𝜏 = −50𝑠𝑖 𝑛(90° − 53.2°) = −30 MN/mଶ  
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▶ Principle Axes & Principle Stress 

 

▷Principle stress 

 ଵ is the maximum possible normal stress component, and 

ଶ is the minimum possible normal stress component at certain 
location in the body. 

▷Principle axes 

 The axes which is applied by only normal stress. 

▷Maximum Shear Stress 



M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong 

Ch. 4 Stress and Strain 17 / 21 

 

 The difference between the maximum and minimum of 𝜏௫ᇲ௬ᇲ occur 

at perpendicular faces. At this location, the magnitude of the shear 
stresses is same but the sign of them is different.  

cf. The axes of maximum shear are inclined at 45˚ with respect to the 
principal axes. 

▷The calculation of the principal axes 

ௗఙೣᇲ

ௗఏ
= −൫𝜎௫ − 𝜎௬൯𝑠𝑖𝑛2𝜃 + 𝜏௫௬𝑐𝑜𝑠2𝜃 = 0  

𝑡𝑎𝑛 2𝜃 =
ଶఛೣ

ఙೣିఙ
  

▷The calculation of the principal stress 

𝜎ଵ,ଶ =
ఙೣାఙ

ଶ
± ටቀ

ఙೣିఙ

ଶ
ቁ

ଶ
+ 𝜏௫௬

ଶ    

▷The calculation of the axes of maximum shear stress 

ௗఛೣᇲᇲ

ௗఏ
= −൫𝜎௫ − 𝜎௬൯𝑐𝑜𝑠2𝜃 − 2𝜏௫௬𝑠𝑖𝑛2𝜃 = 0  

𝑡𝑎𝑛 2𝜃௦ = −
ఙೣିఙ

ଶఛೣ
   

▷The calculation of the maximum shear stress 

𝜏௫ = ටቀ
ఙೣିఙ

ଶ
ቁ

ଶ
+ 𝜏௫௬

ଶ   

=
భିఙమ

ଶ
  

▶ Synopsis 

𝜎ଵ,ଶ =
ఙೣାఙ

ଶ
± ටቀ

ఙೣିఙ

ଶ
ቁ

ଶ
+ 𝜏௫௬

ଶ   
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𝜏௫ = ටቀ
ఙೣିఙ

ଶ
ቁ

ଶ
+ 𝜏௫௬

ଶ  =
ఙభିఙమ

ଶ
  

𝑡𝑎𝑛 2𝜃 =
ଶఛೣ

ఙೣିఙ
  

𝜎௫ᇱ =
ఙೣାఙ

ଶ
+

ఙೣିఙ

ଶ
𝑐𝑜𝑠2𝜃 + 𝜏௫௬𝑠𝑖𝑛2𝜃  

𝜎௬ᇱ =
ఙೣାఙ

ଶ
−

ఙೣିఙ

ଶ
𝑐𝑜𝑠2𝜃 − 𝜏௫௬𝑠𝑖𝑛2𝜃  

𝜏௫ᇱ௬ᇱ =                −
ఙೣିఙ

ଶ
𝑠𝑖𝑛2𝜃 + 𝜏௫௬𝑐𝑜𝑠2𝜃  

𝜎௫ᇱ + 𝜎௬ᇱ = 𝜎௫ + 𝜎௬  

4.7 Mohr’s Circle Representation of a General State of 
Stress (Stress Analysis in three dimension) 

 

▶ The stress components 𝜎௫ᇲ  and 𝜏௫ᇲ௬ᇲ  are unaffected by the stress 

components associated with the 𝑧 axis. This results from the fact that 
for force equilibrium in the 𝑥′ and 𝑦′ directions the contributions of 
the components 𝜏௭௫ and 𝜏௬௭ acting on the +𝑧 face of the wedge are 
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exactly balanced by those of the components 𝜏௭௫ and 𝜏௬௭ acting on 

the −𝑧 face. 

▶ If we resolve the stress components 𝜏௭௫  and 𝜏௬௭  on the +𝑧  face 

into components perpendicular and parallel to 𝑀𝑁തതതതത , we find that the 
right-hand side of (4.30) is the sum of the components perpendicular to 
𝑀𝑁തതതതത. 

𝜏௭௫ᇲ∆𝑧𝑀𝑁തതതതത + 𝜎௭
ேതതതതெതതതതത

ଶ
− 𝜏௭௫∆𝑧𝑀𝑃തതതതത − 𝜏௬௭∆𝑧𝑁𝑃തതതത − 𝜎௭

ேതതതതெതതതതത

ଶ
= 0     

𝜏௭௫ᇱ = 𝜏௭௫𝑐𝑜𝑠𝜃 + 𝜏௬௭𝑠𝑖𝑛𝜃  (4.30) 

 

▶ Conclusion of the three-dimensional stress 

i) The results given by (4.25) and the Mohr’s circle representation of 
these are correct whether or not the stress components 𝜎௭, 𝜏௬௭, and 

𝜏௭௫ are zero. 

ii) If either 𝜏௬௭ or 𝜏௭௫ is nonzero, then in general there will exist a 

shear-stress component 𝜏௭௫ᇱ on the 𝑥′ face in addition to 𝜏௫ᇱ௬ᇱ. 

In such a case the 1 and 2 axes of Fig. 4.19 should not be called 
principal axes since we wish to retain the designation principal axis 
of stress for the normal to a face on which no shear-stress 
component acts. 
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▶ Mohr’s circle of three-dimensional infinitesimal volume (for 

ଷ ) 

 

 According to the independence of the stress components, we can 
obtain three Mohr’s circles as shown in Fig. 4.22. 
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▶ General state of stress (for ଷ ) 

 

 

 The stress components for all possible planes are contained in the 
shaded area in Fig. 4. 23 (b) (where we have assumed a case in which 
0 < 𝜎ଶ < 𝜎ଷ < 𝜎ଵ). 

cf. In Fig 4.23 (b) the shear stress 𝜏  is the resultant shear-stress 

component acting on the plane (for example, ට(𝜏௫ᇲ௬ᇲ)ଶ + (𝜏௭௫ᇲ)ଶ in 

Fig. 4.21). 

If the six stress components associated with any three mutually 
perpendicular faces are specified, it is possible to develop equations 
similar to (4.23) for the normal and resultant shear-stress components 
on any arbitrary plane passed through the point. 

 


