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4.1 Heat Capacity

The heat capacity C

𝐶 = lim
∆𝑇→0

𝑄

∆𝑇
=
𝛿𝑄

𝑑𝑇

Specific heat capacity

=heat capacity per unit mass

𝑐 =
1

𝑛

𝛿𝑄

𝑑𝑇
=
𝛿𝑞

𝑑𝑇

[1] https://thermalproperties.wikispaces.com/file/view/dd2.jpg/248898851/dd2.jpg

[1]
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4.1 Heat Capacity

The specific heat 𝒄𝒗, where the heat is 

supplied at constant volume

𝑐𝑣 =
𝛿𝑄

𝑑𝑇
𝑣

The specific heat 𝒄𝒑, where the heat is 

supplied at constant pressure

𝑐𝑝 =
𝛿𝑄

𝑑𝑇
𝑝 Figure Heat addition on different conditions [2]

[2] http://cfile25.uf.tistory.com/image/246FE841534790190378A0
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4.1 Heat Capacity

[3] https://upload.wikimedia.org/wikipedia/en/c/cb/Heat_Capacity_of_Selected_Substances.PNG

Figure Heat capacity of selected substances [3]
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4.1 Heat Capacity

Figure Water Heat capacity [4]

[4] http://physics.stackexchange.com/questions/287910/why-water-heat-capacity-has-minimum-

at-body-temperature

https://i.stack.imgur.com/SCTqh.png
https://i.stack.imgur.com/SCTqh.png
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4.2 Mayer’s Equation

We wish to find the relationship between 𝑐𝑣 and  𝑐𝑝 for an ideal gas

𝑑𝑈 = 𝛿𝑄 − 𝑃𝑑𝑉

𝑑𝑢 = 𝛿𝑞 − 𝑃𝑑𝑣

𝑢 = 𝑢(𝑣, 𝑇)

the equation of state is Pv=RT

𝑑𝑢 =
𝜕𝑢

𝜕𝑣
𝑇

𝑑𝑣 +
𝜕𝑢

𝜕𝑇
𝑣

𝑑𝑇
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4.2 Mayer’s Equation

𝛿𝑞 =
𝜕𝑢

𝜕𝑇
𝑣

𝑑𝑇 +
𝜕𝑢

𝜕𝑣
𝑇

+ 𝑃 𝑑𝑣

To obtain 𝑐𝑣, we divide this equation by dT and hold the volume constant so that 

dv=0. The result, which holds for any reversible process is  

𝑐𝑣 =
𝛿𝑞

𝑑𝑇
𝑣

=
𝜕𝑢

𝜕𝑇
𝑣

𝜕𝑢

𝜕𝑣
𝑇

= 0

This follows from the Gay-Lussac-Joule experiment. Thus
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4.2 Mayer’s Equation

𝛿𝑞 = 𝑐𝑣𝑑𝑇 + 𝑃𝑑𝑣

𝑃𝑑𝑣 + 𝑣𝑑𝑃 = 𝑅𝑑𝑇

𝛿𝑞 = (𝑐𝑣+𝑅)𝑑𝑇 − 𝑣𝑑𝑃

𝑐𝑝 =
𝛿𝑞

𝑑𝑇 𝑝
=>

𝛿𝑞

𝑑𝑇 𝑝
= 𝑐𝑣 + R = 𝑐𝑝

∴ 𝑐𝑝= 𝑐𝑣 + 𝑅 This relation is known as Mayer’s equation

𝛾 =
𝑐𝑝
𝑐𝑣

The ratio of specific heat capacities



9/18  

4.3 Enthalpy and Heats of Transformation

Types of heat transfer

Figure Types of heat transfer [5]

[5] http://www.spectrose.com/wp-content/uploads/2012/12/modes-of-heat-transfer-conduction-convection-and-radiation.jpg



10/18  

4.3 Enthalpy and Heats of Transformation

The heat of transformation is the heat transfer accompanying a phase change. 

A change of phase is an isothermal and isobaric process and entails a change 

of volume, so work is always done on or by a system in a phase change.

𝑤 = 𝑃(𝑣2 − 𝑣1)

𝑑𝑢 = 𝛿𝑞 − 𝑃𝑑𝑣

Or, for a finite change, 𝑢2 − 𝑢1 = 𝑙 − 𝑃(𝑣2 − 𝑣1)

𝑙 = 𝑢2 + 𝑃𝑣2 − 𝑢1 + 𝑃𝑣1

𝑙 is the latent heat of transformation per kilomole associated with a given 

Phase change
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4.3 Enthalpy and Heats of Transformation

Let ℎ ≡ 𝑢 + 𝑃𝑣 h is the specific enthalpy.

Since u, p, and v are all state variables, h is also a state variable.

So, 𝑙 = ℎ2 − ℎ1

∴ the latent heat of transformation is equal to the difference in enthalpies 

of the two phases.
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4.4 Relationships Involving Enthalpy

ℎ = ℎ(𝑇, 𝑃)

𝑑ℎ =
𝜕ℎ

𝜕𝑇
𝑃

𝑑𝑇 +
𝜕ℎ

𝜕𝑃
𝑣

𝑑𝑃

ℎ = 𝑢 + 𝑃𝑣

𝑑ℎ = 𝑑𝑢 + 𝑃𝑑𝑣 + 𝑣𝑑𝑃

𝛿𝑞 = 𝑑𝑢 + 𝑃𝑑𝑣 = 𝑑ℎ − 𝑣𝑑𝑃

𝛿𝑞 =
𝜕ℎ

𝜕𝑇
𝑃

𝑑𝑇 +
𝜕ℎ

𝜕𝑃
𝑣

− 𝑣 𝑑𝑃
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4.4 Relationships Involving Enthalpy

Since 𝑐𝑝 =
𝛿𝑞

𝑑𝑇 𝑝

From previous equation, we can get 𝑐𝑝 =
𝜕ℎ

𝜕𝑇 𝑝

From the result of the Joule-Thomson experiment, it will be shown that

𝜕ℎ

𝜕𝑃 𝑇
= 0

For an ideal gas. Then 𝛿𝑞 = 𝑐𝑝𝑑𝑇 − 𝑣𝑑𝑃

Thus, for an ideal gas 𝑐𝑝 =
𝜕ℎ

𝜕𝑇 𝑝
=

𝑑ℎ

𝑑𝑇
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4.5 Comparison of u and h

The parallel expressions involving the internal energy and the enthalpy

Internal energy u Enthalpy h

Reversible process 𝑑𝑢 = 𝛿𝑞 − 𝑃𝑑𝑣 𝑑ℎ = 𝛿𝑞 + 𝑣𝑑𝑃

𝑐𝑣 =
𝜕𝑢

𝜕𝑇
𝑣

𝑐𝑝 =
𝜕ℎ

𝜕𝑇
𝑝

Ideal gas 𝛿𝑞 = 𝑐𝑣𝑑𝑇 + 𝑃𝑑𝑣 𝛿𝑞 = 𝑐𝑝𝑑𝑇 − 𝑣𝑑𝑃

𝜕𝑢

𝜕𝑣
𝑇

= 0
𝜕ℎ

𝜕𝑃 𝑇
= 0

Table Analogous relations involving the internal energy and the enthalpy
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4.5 Comparison of u and h

Thermodynamic potentials: relations of the internal energy and the enthalpy

Figure Relations of Thermodynamic potentials [8]

[8] http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/imgheat/tpot2.gif
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4.6 Work Done in an Adiabatic Process

We now wish to find the specific work done in an adiabatic process involving 

An ideal gas. Setting 𝛿𝑞 = 0 in 𝛿𝑞 = 𝑐𝑝𝑑𝑇 − 𝑣𝑑𝑃, we obtain

𝑣𝑑𝑃 = 𝑐𝑝𝑑𝑇

We also have

𝛿𝑞 = 𝑐𝑣𝑑𝑇 + 𝑃𝑑𝑣

Which for 𝛿𝑞 = 0 yields 

𝑃𝑑𝑣 = −𝑐𝑣𝑑𝑇

𝑣𝑑𝑃

𝑝𝑑𝑣
= −

𝑐𝑝
𝑐𝑣

= −𝛾 or
𝑑𝑃

𝑃
= −𝛾

𝑑𝑣

𝑣
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4.6 Work Done in an Adiabatic Process

This equation can be easily integrated to give

𝑃𝑣𝛾 = 𝐾

Where K is constant of integration. This is the relationship between the pressure

and volume for an adiabatic process involving an ideal gas. Since 𝛾 > 1,
it follows that P falls off more rapidly with v for an adiabatic process than 

it does for an isothermal process(for which Pv=constant)

The work done in the adiabatic process is 

𝑤 = න𝑃𝑑𝑣 = 𝐾 න

𝑣1

𝑣2

𝑣−𝛾𝑑𝑣 =
1

1 − 𝛾
( ቚ𝐾𝑣1−𝛾)

𝑣1

𝑣2
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4.6 Work Done in an Adiabatic Process

Now, 𝐾 = 𝑃𝑣𝛾 at both limits: if we use K = 𝑃2𝑣2 at the upper limit and K = 𝑃1𝑣1
at the lower limit, we obtain 

𝛾 𝛾

𝑤 =
1

1 − 𝛾
𝑃2𝑣2 − 𝑃1𝑣1

For an expansion, 𝑣2 > 𝑣1, 𝑤 > 0, and the work is done by the gas: for a 

compression the work is done by the surroundings on the gas. Note that for a 

reversible adiabatic process, 𝑤 = 𝑢1 − 𝑢2 = 𝑐𝑣(𝑇1 − 𝑇2), which is another useful

Expression for an ideal gas.


